
CS 477: Formal Methods for
Software Development

Sasa Misailovic

Based on previous slides by Gul Agha, Elsa Gunter,
Mahesh Viswanathan, and Madhusudan Parathasarathy

University of Illinois at Urbana-Champaign

CS 477

This course gives an overview of mathematical
models, languages, and methods for software
specification, development, and verification.

• 3 undergraduate hours.

• 4 graduate hours.

• Prerequisites: CS 225; CS 374 or MATH 414.

• Useful: CS 421; CS 475

2

CS 477: Course Details

3

Teaching Assistant:

Vimuth Fernando
3107 Siebel Center

Office hours:

Wed 2-4pm
or by appointment

Email: wvf2@illinois.edu

Instructor:

Prof. Sasa Misailovic
4110 Siebel Center

Office hours:

TBD
by appointment

Email: misailo@illinois.edu

Course Website:

https://courses.grainger.illinois.edu/cs477/fa2021/

https://courses.grainger.illinois.edu/cs477/fa2021/

From Real World to Formal Methods

4
Sources: https://www.researchgate.net/figure/Example-of-Control-Flow-Graph_fig5_4065402 and https://freesvg.org/computer-station-vector-graphics

Reg1 Reg2

Reg3 Reg4

PC

CPU Mem

ALU

What do we want to do?

Program

5

Input

Assumptions

System

Assumptions

Desired Property of

Execution/Result

What do we want to do?

read(x)

y=sqrt(x)

return y

6

x=abs(x)

Is the program going to experience an error?

Is the program going to terminate?

Is the program going to produce a correct/accurate result?

What assumptions do we need to make about inputs?

What assumptions do we need to make about hardware?

double sqrt_newtonmethod(double x) {

if (x==0) return x;

double div = x, val = x, last;

do {

last = val;

val = (val + div / val) * 0.5;

} while (abs(val - last) > 1e-9);

return val;

}

What do we want to do?

read(x)

y=sqrt(x)

return y

7

x=abs(x)

Is the program going to experience an error?

Is the program going to terminate?

Is the program going to produce a correct/accurate result?

What assumptions do we need to make about inputs?

What assumptions do we need to make about hardware?

https://mudongliang.github.io/x86/

What Kinds of Math?

• Sets, Graphs, Trees

• Automata and formal models of computing

• Logic and Proof theory, Temporal logics

• Induction, especially structural induction and well-
founded induction, inductive relations

• Polyhedral Analysis / Convex optimization

• Probability and Statistics
. . .

• Differential Equations, PDEs

8

What Kinds of Tools?

• Abstract interpreters, e.g. ASTREE

• Code contracts, e.g., Dafny

• SAT/SMT solvers, e.g., Z3

• Model Checkers, e.g., SPIN, Java PathFinder, . . .

• Interactive Theorem Provers, e.g., Isabelle, Coq,
HOL4, PVS, . . .

• Runtime Monitoring, e.g., JavaMOP

9

Aims of this Course

Theoretical: The fundamental mathematics behind proving a
program correct by reducing it to logic

• Static analysis using abstraction; abstract interpretations.

• Floyd-Hoare logic; contracts; pre/post conditions; inductive
invariants verification conditions, strongest postcondition,
weakest precondition

• Contract-based programming for both sequential and
concurrent programs; developing software using contracts.

• Model checking; representing programs as transition
systems; systematic exploration of execution paths

• Understand the advantages and limitations of formal
methods, and some workarounds

10

Aims of this Course

Practical: Use existing tools or build your own, e.g.,

• Build static analysis algorithms for some analysis
problems using abstraction, and learn to use some
abstract-interpretation tools

• Proving small programs correct using a modern
program verification tool (Floyd-style)

• Use SMT solvers to solve logical constraints;
understand how program verification can be done
using these solvers.

• Learn contract based programming using Dafny;
use to generate unit tests and proofs

• Using model checkers to find errors in programs
11

Topics covered in the course

Core topics:

• Introduction to logic and proofs

• Relation between program semantics and analysis

• Abstract interpretation

• Contract languages and constraint checking

• Model checking

Cross-cutting topics:

• Nondeterministic and concurrent systems

• Probabilistic and statistical methods

• Program synthesis (if time permits)
12

Landscape of Formal Approaches

13

Some Formal Methods Not Covered
• Type systems (see CS 421 and Spring 2022 CS-598)

• Process algebras (see CS 524)

• Testing/Symbolic Execution (CS 527, CS 498)

• Theorem proving (Spring 22 CS-598, sometimes CS477)

• Computational Learning for Verification (Fall 2021 CS-598)

• Formal methods for Cyber-physical systems (ECE/CS 584)

• Term-rewriting systems (CS 476, CS 522)

• Runtime verification (CS 522, CS 598)

• Compositional methods such as assume-rely guarantees

• Methods to derive programs from models (e.g., synthesis)

• Integration of multiple formal methods (various graduate-level
formal methods courses)

14

The Software Challenge

• Software failures were estimated to cost the US
economy about $60 billion* annually [NIST 2002]
• Improvements in software testing infrastructure may save

one-third of this cost.

• One-third to one half of the total cost of ownership is
preparing for, or recovering from, failures.

• A study of safety-critical systems (prior to 2001)
reported 1,100 deaths attributable to computer error.

15
* Estimated to over 200 billion in 2015

What are Formal Methods?

• Mathematical formalisms used to specify and
reason about software.
• Consist of a large collection of techniques varying in

complexity and usability.

• Not all methods are equally used.
• Light-weight methods such as design by contract are

common

• More rigorous methods used design and
maintenance of safety critical systems.

16

Motivation for Formal Methods

Introduce rigor to improve the software development
process for

• Improved code structure

• Increased maintainability

• Reduced errors

Usually formal methods are applied to only some part of
a large software system (perhaps 10%).

17

Why Formal Methods?

• To catch bugs

• To eliminate whole classes of errors

• Testing vs formal methods:

18

Limitations of Formal Methods

• From CS theory we know that most interesting
properties about the program (e.g. its termination)
are undecidable (see Rice’s theorem)

• But we choose not to settle for the defeat: practical
formal methods are about simplifying assumptions,
making tractable specifications, and automating
special cases that cover many real-world programs

• While not all programs can be analyzed, many
programs that developers care about can!

19

Limitations of Formal Methods

• No method proves a program “correct” !
• cf. Karl Popper: “Science is about refutation, not proofs.”

• How a program works and our model of how it works
are not the same.

• Formal methods can only establish some part of
the system is correct with respect to a specification
under some assumptions.

• Specifications are often incomplete and may be
erroneous.

• From the statistical world: “All models are wrong,
but some are useful” (George Box)

20

Limitations of Different Formal
Method Techniques

• Static Methods: may result in falsely identifying
errors.

• Test generation: generally incomplete.

• Model checking: limitations on how large a state
space can be handled.

• Theorem proving: generally requires human expert
intervention.

21

Formal Methods “Levels”

Source: Bownen and Hinchey , “Ten Commandments of Formal Methods .. Ten Years Later, “ IEEE Computer 2006

22

Getting the Design Right
The size explodes as we proceed down the development
implementation hierarchy (hypothetical numbers):

24
Source: Bownen and Hinchey , “Ten Commandments of Formal Methods .. Ten Years Later, “ IEEE Computer 2006

Notes on Kinds of Formal
Methods Used

• Many projects use more than one technique.

• Different techniques applied to different parts of
the code.

• Formal methods often applied only to some parts
of a large code (e.g. judged safety-critical).

25

Types of Formal Methods Used

26

Source: Woodcock, et al. “Formal Methods: Practice and Experience”,

ACM Computing Surveys, 2009

Perceived Impact

27

Source: Woodcock, et al. “Formal Methods: Practice and Experience”,

ACM Computing Surveys, 2009

Use of Formal Methods Judged
Successful?

28

Caveat: These projects reported using Formal Methods

You may be less likely to report use if you thought it was a

failure.

Source: Woodcock, et al. “Formal Methods: Practice and Experience”,

ACM Computing Surveys, 2009

Some Case Studies
• Woodcock et al. 2009 highlights a number of

industrial projects using formal methods. Software
projects include:
• Railway signaling and train control

• Smart card based electronic cash system

• Microcode for the AAMP5 microprocessor

• Airbus controllers: Flight Control Secondary Computer and
the Electric Load Management Unit.

• Maeslant Kering Storm Surge Barrier

29

Railway signaling and train control

• RATP 1998 (Parisian regional
rail system): computerized
signaling system
• Increase network traffic by 25%

• Preserve safety levels

• SACEM system with
embedded hardware and
software controls the speed
of trains on RER Line A

30

http://www.flickr.com/photos/bindonlane/5802050248/

RER Line A

• 21,000 lines of Modula-2 code:
• 63% regarded as safety critical

• Subjected to formal specification and verification

• Specification written in B and proofs done
interactively using automatically generated
verification conditions.

• Validation took 100 person years.

• Method used again on other lines..

• Unit tests replaced by global tests, all successful.

31

Paris Metro Railway Signaling

32

Airbus
• Used SCADE tool suite to manage

development of controllers,
including Flight Control Secondary
Computer and the Electric Load
Management Unit.

• Reported significant decrease in
coding errors.

• Shorter requirements changes,
improved traceability.

• 70% of code generated
automatically.

33

http://www.flickr.com/photos/peterpearson/2683260198/

Boeing 777

• Problems with databus
and flight management
software delay
assembly and integration
of fly-by-wire system by
more than one year

• Certified to be safe in
April 1995

• Total development cost 3
billion; software
integration and validation
costs were about one-
third.

34

Boeing 777 (WSJ Analysis)

• A Boeing 777 plane operated by Malaysian Airlines, flying from Perth to
Kuala Lumpur in August 2005, experiences problems: The plane
suddenly zoomed up 3000 feet. The pilot’s efforts at gaining manual
control succeeded after a physical struggle, and the passengers were
safely flown back to Australia.

• Cause: Defective software provided incorrect data about the plane’s
speed and accelaration.

• “Plane makers are accustomed to testing metals and plastics under
almost every conceivable kind of extreme stress, but it’s impossible to
run a big computer program through every scenario to detect bugs
that invariably crop up.”
“. . . problems in aviation software stem not from bugs in code of a
single program but rather from the interaction between two different
parts of a plane’s computer system.”

35

And for everyone else…
• “Things like even software verification, this has been the Holy Grail of computer science

for many decades but now in some very key areas, for example, driver verification we’re
building tools that can do actual proof about the software and how it works in order to
guarantee the reliability.” Bill Gates, April 18, 2002. WinHec Keynote

• https://www.microsoft.com/en-us/research/project/slam/

36

https://www.microsoft.com/en-us/research/project/slam/

More Reports from the Trenches

• A Few Billion Lines of Code Later: Using Static Analysis to Find Bugs in the
Real World
Dawson Engler (Stanford/Coverity) et al. CACM 2010:
https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext

• Continuous Reasoning: Scaling the Impact of Formal Methods
Peter O’Hearn (UCLondon/Facebook), 2018:
https://research.fb.com/publications/continuous-reasoning-scaling-the-impact-of-formal-methods/

• Amazon Relies on Formal Methods for the Security of AWS
Keynote by Byron Cook (ex UCLondon/Amazon), FLoC 2018:
https://blog.adacore.com/amazon-relies-on-formal-methods-for-the-security-of-aws

• Why Aren't There More Programming Languages Startups?
Jean Yang (ex CMU/Akita), blog 2021:
https://www.akitasoftware.com/blog-posts/why-arent-there-more-programming-languages-
startups

37

https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext
https://research.fb.com/publications/continuous-reasoning-scaling-the-impact-of-formal-methods/
https://blog.adacore.com/amazon-relies-on-formal-methods-for-the-security-of-aws
https://www.akitasoftware.com/blog-posts/why-arent-there-more-programming-languages-startups

Course Administration

38

CS 477

This course gives an overview of mathematical
models, languages, and methods for software
specification, development, and verification.

• 3 undergraduate hours.

• 4 graduate hours.

• Prerequisites: CS 225; CS 374 or MATH 414.

• Useful: CS 421; CS 475

39

Tentative Topics

• Background and Predicate Logic

• Operational Program Semantics

• Static Analysis and Abstract Interpretation

• First Order Logic, Hoare Logic and Code Contracts

• Model Checking

• Advanced Topics

40

CS 477: Course Details

41

Teaching Assistant:

Vimuth Fernando
3107 Siebel Center

Office hours:

Wed 2-4pm
or by appointment

Email: wvf2@illinois.edu

Instructor:

Prof. Sasa Misailovic
4110 Siebel Center

Office hours:

TBD
by appointment

Email: misailo@illinois.edu

Course Website:

https://courses.grainger.illinois.edu/cs477/fa2021/

https://courses.grainger.illinois.edu/cs477/fa2021/

Grading Scheme

Should be done individually!

For undergraduates registered for 3 credits:

• Four or five homework assignments include machine
problems: 75% of the grade

• A final homework: 25% of the grade

For graduate students registered for 4 credits:

• Homework assignments 56.25%

• Final homework 18.75%

• Group term project 25%
42

Assignments
• Each of the 5 assignments will consist of a theoretical part

(proofs) and a practical part (code).

• Submit individual reports. Can discuss with other students
but must list all the people.

• Depending on the project, between 1- and 2-week time will
be given to solve the homework.
• Dates TBD (first one next week)

• Late submission will result in a reduced score: 33% penalty
per day (unless a valid health reason – contact

• Homework must be submitted electronically

• Scanned (or photographed) answers are OK as long as the
handwriting is legible.
• We’ll let you know the submission infrastructure

43

Semester Project (for Grads; 4 credit)

• Projects may be done individually or in groups of 2.

• An abstract (1 to 2 pages) describing the project is due
before the Spring Break.

• The project must be submitted on the last day of class
to be graded.

• Involves either
- Reading up a set of papers, and writing a report, or
- Programming a particular technique or developing
software using contracts, and submitting a write-up

44

Sample Project

Develop a memory management system that hands
out chunks of memory to processes ensuring no
overlap.

Clear simple specification.

Implementation using linked lists.

Specification using separation logic.
Prove correct using VCC/VCDryad/DAFNY.

45

Tentative Grading Scale

Grade Score

A [93,100]

A- [90,93)

B+ [87,90)

B [83,87)

B- [80,83)

C+ [77,80)

C [73,77)

C- [70,73)

D [55,70)

F [0,55)

46

Grades may be curved if the spread of points is too high

The curve *may* be separate for undergrads and grads

Academic Integrity

• Students in the class are expected to abide by the
University's Student Code. Infractions will be
governed by standard policies of the Department of
Computer Science.

• Please refer to the University Policy on Academic
Integrity and the CS Department's Honor Code.

47

https://studentcode.illinois.edu/article1/part4/1-401/
https://cs.illinois.edu/academics/honor-code

Course References

No required textbook
• But many existing resources available (+ online)

• May do “inverse lectures” from time to time

Reference Books:

• Introduction to Static Analysis, Rival and Yi, MIT Press 2021

• Principles of Static Analysis: F. Nielson, H. Nielson, Hankin, Springer 2005

• The Calculus of Computation: Bradley and Manna, Springer 2007

• Principles of Model Checking: Baier and Katoen, MIT Press 2008

• Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation,
Mine Now Publishers 2017

Many more references on the website!
48

