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From Real World to Formal Methods
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Sources: https://www.researchgate.net/figure/Example-of-Control-Flow-Graph_fig5_4065402 and https://freesvg.org/computer-station-vector-graphics
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Set

A collection of elements

• Reminder: empty set, singleton, subset, powerset, cardinality

• Natural numbers N, Integers Z, Reals R, Machine numbers 

• Operations: Union, Intersection, Complement, Cartesian Product

Backround read: http://pfister.ee.duke.edu/courses/ece586/notes_ch1.pdf

http://pfister.ee.duke.edu/courses/ece586/notes_ch1.pdf


Relation

• Relation over X1, X2,…Xn: A subset of X1 × X2 × … × Xn

• Binary: x, y ∈ 𝑅, 𝑅 ⊆ 𝑋 × 𝑌

• Operators: relations are sets => set operators

• Properties: Transitive, Reflexive, Symmetric, Asymmetric,…

• Equivalence relation: reflexive+symmetric+transitive

• Partial Order relation: reflexive+antisymmetric+transitive

• Preorder: reflexive+transitive



Function

• Special relation: a particular input has a single output
• 𝑦 = 𝑓(𝑥) , also (𝑥, 𝑦)  𝑓, 𝑓 ⊆ 𝑋 × 𝑌 where 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌

• ∀𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌, 𝑧 ∈ 𝑍. 𝑥, 𝑦  𝑓 ∧ 𝑥, 𝑧 ∈ 𝑓 ⇒ 𝑦 = 𝑧

• Domain X and codomain Y; type: 𝑋 → 𝑌; total and partial functions

• Input/results of a function can be another function



Language

• Alphabet (set ), language ( *) and words (w ×⋯× )
• Empty word (), length, prefix/suffix, concatenation(w w), alternation (w|w)

• Regular expression 
• E::=  |  A   |  E E | E “|” E  |  E* 

• Equivalent to finite state machine (automaton)

Syntax (words in language) + 
Semantics (meaning of those words: relating to other math objects) 



Simple Imperative Programming 
Language (more complex)

• I  Identifiers

• N  Numerals

• B ::= true | false 
| B & B | B or B | not B | E < E | E = E

• E::= N | I | E + E | E * E | E - E | - E

• C::= skip | C;C | I ::= E 
| if B then C else C fi | while B do C od

7



Program Representations:

• Graphs: (V,E) – set of vertices V and set of edges E

Some models of computation:

• Automaton: represents a computation

• Pushdown automaton: automaton with a stack (for CFGrammars)

• Turning machine: an automaton with a memory tape

Some representations of execution (static/dynamic): 

• Parse tree and Abstract syntax tree: represent syntax

• Traces/Paths: a sequence of executed instructions or states

• Transition system: represents possible executions

• Control-flow graph: succinctly represents paths in a program



Propositional Logic

• Syntax

• Semantics (truth tables)

• Proofs 



Propositional Logic

The Language of Propositional Logic

• Constants {T,F}

• Countable set AP of propositional variables (x,y,z), 
a.k.a. propositional atoms, a.k.a. atomic propositions 

• logical connectives: ∧ (and); ∨ (or); ¬ (not); ⇒
(implies);⇔ (if and only if)



Propositional Logic (cont.)

The set of propositional formulae PROP is the inductive 
closure of the previous elements as follows:

• {T,F}⊆PROP

• AP ⊆PROP

• if A ∈PROP then (A) ∈PROP and ¬A ∈PROP

• if A ∈PROP and B ∈PROP then (A ∧B ) ∈PROP ,
(A ∨B ) ∈PROP , (A ⇒B ) ∈PROP , (A ⇔B ) ∈PROP .

• Nothing else is in PROP

• Informal definition; formal definition requires math 
foundations, set theory, fixed point theorem ...



Propositional Logic

We can write it as a grammar too:

• C ::= T | F

• AP ::= x | y | z | …

• PROP ::= C | AP | (PROP) | ¬PROP 
| PROP ∧ PROP | PROP ∨ PROP  
| PROP ⇒ PROP | PROP ⇔ PROP

We can get various “sentences” in this language. 
E.g. x ∧ y , (x ∧ y ) ⇒ ( x ∨ y), x ∨ ¬ x⇔ T

But what is their meaning?



Toward Propositional Logic Semantics

Model for Propositional Logic has three parts

• Mathematical set of values used as meaning of 
propositions

• Interpretation function giving meaning to props 
built from logical connectives, via structural 
recursion

• Standard Model of Propositional Logic
• Boolean values B = {true,false}

• a valuation v : AP → B
AP B

x true

y false

z true

Example valuation:

Background read: 
https://courses.engr.illinois.edu/cs498mv/fa2018/PropositionalLogic.pdf

https://courses.engr.illinois.edu/cs498mv/fa2018/PropositionalLogic.pdf


Semantics of Propositional Logic

Standard interpretation Iv defined by structural induction on formulae:

• Iv (T) = true and Iv (F) = false

• If a ∈ AP then Iv (a) = v (a)

• For p ∈ PROP , if Iv (p) = true then Iv (¬p) = false, and if

Iv (p) = false then Iv (¬p) = true

• For p,q ∈ PROP :

•If Iv (p) = true and Iv (q) = true, then Iv (p∧q) = true, else Iv (p∧q) = false

•If Iv (p) = true or Iv (q) = true, then Iv (p∨q) = true, else Iv (p∨q) = false

•If Iv (q) = true or Iv (p) = false, then Iv (p ⇒q) = true, else Iv (p ⇒q) = false

•If Iv (p) = Iv (q) then Iv (p ⇔q) = true, else Iv (p ⇔q) = false



Example



Example



Semantics of Propositional Logic
(B,I) is the standard model of proposition logic

• Satisfaction relation  : Given valuation v and proposition p ∈PROP, 
we write v  p iff Iv (p) = true (the  symbol name is called “double turnstile”)

• More fully written as B,I,v  p. 

• Can also write (B,I,v,p)  

• Say valuation v satisfies p, or v models p

• Write v  p if Iv (p) = false

• p is satisfiable if there exists valuation v such that v  p

• p is valid, a.k.a. a tautology if for every valuation v we have v  p

• p is logically equivalent to q, p ≡ q if for every valuation, v , we have
v  p iff v  q. Claim: Logical equivalence is an equivalence relation

We can have other models of this logic, e.g. defined via sets



Example Tautology



Some Useful Logical Equivalences



Normal Forms

Conjunctive normal form (CNF):

Disjunctive normal form (DNF):

where I and J are index sets

APi,j

APi,j

Question:
What is the computational 
complexity of finding a 
satisfying assignment of 
variables?



Proofs in Propositional Logic

Constructing the full truth table is expensive!

Natural Deduction proof is tree and a discharge function

• Nodes are instances of inference rules

• Leaves are assumptions of subproofs

• Discharge function maps each leaf of the tree to an 
ancestor as prescribed by the inference rules

See also: https://en.wikipedia.org/wiki/Propositional_calculus#Example_2._Natural_deduction_system

https://en.wikipedia.org/wiki/Propositional_calculus#Example_2._Natural_deduction_system


Proofs in Propositional Logic

• Inference rule has hypotheses and conclusion

• Conclusion (C) is a single proposition

• Hypotheses  (H)  are zero or more propositions, possibly 

with (discharged) hypotheses

• Rule with no hypotheses is called an axiom (A)

• Inference rule graphically presented as

axioms

hypotheses

conclusion



Natural Deduction Inference Rules

Inference rules associated with connectives
Two main kinds of inference rules:

• Introduction: says how to 
conclude proposition made 
from connective is true

• Eliminations: says how to 
use a proposition made from 
connective to prove result



Why: Conjunction?
• Local soundness: if we introduce a conjunction 

and then eliminate it, we should be able to 
remove the whole subtree [local reduction ⇒𝑅 ]

• Local completeness: we can eliminate the 
conjunction such that we can still reconstruct it 
by applying introduction [local expansion ⇒𝐸 ]

*From https://www.cs.cmu.edu/~fp/courses/atp/handouts/ch2-natded.pdf for full description

https://www.cs.cmu.edu/~fp/courses/atp/handouts/ch2-natded.pdf


Why: Conjunction?
• Local soundness: if we introduce a conjunction 

and then eliminate it, we should be able to 
remove the whole subtree [local reduction ⇒𝑅 ]

• Local completeness: we can eliminate the 
conjunction such that we can still reconstruct it 
by applying introduction [local expansion ⇒𝐸 ]

*From https://www.cs.cmu.edu/~fp/courses/atp/handouts/ch2-natded.pdf for full description

*soundness:

*completeness:

https://www.cs.cmu.edu/~fp/courses/atp/handouts/ch2-natded.pdf


Why: Conjunction?
• Local soundness: if we introduce a conjunction 

and then eliminate it, we should be able to 
remove the whole subtree [local reduction ⇒𝑅 ]

• Local completeness: we can eliminate the 
conjunction such that we can still reconstruct it 
by applying introduction [local expansion ⇒𝐸 ]

(Your turn)



Introduction Rules



Example 1



Example 1



Example 1

All assumptions discharged; proof complete


