
CS 477: Background and
Propositional Logic

Sasa Misailovic

Based on previous slides by Elsa Gunter, which were based
on earlier slides by Gul Agha, and Mahesh Viswanathan

University of Illinois at Urbana-Champaign

From Real World to Formal Methods

2
Sources: https://www.researchgate.net/figure/Example-of-Control-Flow-Graph_fig5_4065402 and https://freesvg.org/computer-station-vector-graphics

Reg1 Reg2

Reg3 Reg4

PC

CPU Mem

ALU

 n > 0 . low  high  high  n

Set

A collection of elements

• Reminder: empty set, singleton, subset, powerset, cardinality

• Natural numbers N, Integers Z, Reals R, Machine numbers

• Operations: Union, Intersection, Complement, Cartesian Product

Backround read: http://pfister.ee.duke.edu/courses/ece586/notes_ch1.pdf

http://pfister.ee.duke.edu/courses/ece586/notes_ch1.pdf

Relation

• Relation over X1, X2,…Xn: A subset of X1 ×X2 ×… ×Xn

• Binary: x,y ∈𝑅,𝑅⊆𝑋×𝑌

• Operators: relations are sets => set operators

• Properties: Transitive, Reflexive, Symmetric, Asymmetric,…

• Equivalence relation: reflexive+symmetric+transitive

• Partial Order relation: reflexive+antisymmetric+transitive

• Preorder: reflexive+transitive

Function

• Special relation: a particular input has a single output
• 𝑦= 𝑓(𝑥), also (𝑥,𝑦) 𝑓, 𝑓⊆𝑋×𝑌where 𝑥∈𝑋,𝑦∈𝑌

• ∀𝑥∈𝑋,𝑦∈𝑌,𝑧∈𝑍. 𝑥,𝑦 𝑓∧ 𝑥,𝑧 ∈𝑓⇒ 𝑦=𝑧

• Domain X and codomain Y; type: 𝑋→𝑌; total and partial functions

• Input/results of a function can be another function

Language

• Alphabet (set ), language (`*) and words (w ×⋯×)
• Empty word (), length, prefix/suffix, concatenation(w w), alternation (w|w)

• Regular expression
• E::=  | A   | E E | E “|” E | E*

• Equivalent to finite state machine (automaton)

Syntax(words in language) +
Semantics(meaning of those words: relating to other math objects)

Simple Imperative Programming
Language (more complex)

• I  Identifiers

• N  Numerals

• B ::= true | false
| B & B | B or B | not B | E < E | E = E

• E::= N | I | E + E | E * E | E - E | - E

• C::= skip | C;C | I ::= E
| if B then C else C fi | while B do C od

7

Program Representations:

• Graphs: (V,E) – set of vertices V and set of edges E

Some models of computation:

• Automaton: represents a computation

• Pushdown automaton: automaton with a stack (for CFGrammars)

• Turning machine: an automaton with a memory tape

Some representations of execution (static/dynamic):

• Parse tree and Abstract syntax tree: represent syntax

• Traces/Paths: a sequence of executed instructions or states

• Transition system: represents possible executions

• Control-flow graph: succinctly represents paths in a program

Propositional Logic

• Syntax

• Semantics (truth tables)

• Proofs

Propositional Logic

The Language of Propositional Logic

• Constants {T,F}

• Countable set AP of propositional variables (x,y,z),
a.k.a. propositional atoms, a.k.a. atomic propositions

• logical connectives: ∧(and); ∨(or); ¬ (not); ⇒
(implies);⇔ (if and only if)

Propositional Logic (cont.)

The set of propositional formulae PROP is the inductive
closure of the previous elements as follows:

• {T,F}⊆PROP

• AP ⊆PROP

• if A ∈PROP then (A) ∈PROP and ¬A ∈PROP

• if A ∈PROP and B ∈PROP then (A ∧B) ∈PROP ,
(A ∨B) ∈PROP , (A ⇒B) ∈PROP , (A ⇔B) ∈PROP .

• Nothing else is in PROP

• Informal definition; formal definition requires math
foundations, set theory, fixed point theorem ...

Propositional Logic

We can write it as a grammar too:

• C ::= T | F

• AP ::= x | y | z | …

• PROP ::= C | AP | (PROP) | ¬PROP
| PROP ∧PROP | PROP ∨PROP
| PROP ⇒PROP | PROP ⇔ PROP

We can get various “sentences” in this language.
E.g. x ∧y , (x ∧y) ⇒(x ∨y), x ∨¬ x⇔ T

But what is their meaning?

Toward Propositional Logic Semantics

Model for Propositional Logic has three parts

• Mathematical set of values used as meaning of
propositions

• Interpretation function giving meaning to props
built from logical connectives, via structural
recursion

• Standard Model of Propositional Logic
• Boolean values B = {true,false}

• a valuation v : AP → B
AP B

x true

y false

z true

Example valuation:

Background read:
https://courses.engr.illinois.edu/cs498mv/fa2018/PropositionalLogic.pdf

https://courses.engr.illinois.edu/cs498mv/fa2018/PropositionalLogic.pdf

Semantics of Propositional Logic

Standard interpretation Iv defined by structural induction on formulae:

• Iv (T) = true and I v (F) = false

• If a ∈AP then I v (a) = v (a)

• For p ∈PROP , if I v (p) = true then I v (¬p) = false, and if

Iv (p) = false then I v (¬p) = true

• For p,q ∈PROP :

•If I v (p) = true and I v (q) = true, then I v (p∧q) = true, else I v (p∧q) = false

•If I v (p) = true or I v (q) = true, then I v (p∨q) = true, else I v (p∨q) = false

•If I v (q) = true or I v (p) = false, then I v (p ⇒q) = true, else I v (p ⇒q) = false

•If I v (p) = I v (q) then I v (p ⇔q) = true, else I v (p ⇔q) = false

Example

Example

Semantics of Propositional Logic
(B,I) is the standard model of proposition logic

• Satisfaction relation ~: Given valuation v and proposition p ∈PROP,
we write v ~p iff Iv (p) = true (the~symbol name is called “double turnstile”)

• More fully written as B,I,v ~p.

• Can also write (B,I,v,p)  ~

• Say valuation v satisfiesp, or v modelsp

• Write v ~p if Iv (p) = false

• p is satisfiableif there exists valuation v such that v ~p

• p is valid, a.k.a. a tautology if for every valuation v we have v ~p

• p is logically equivalent to q, p Ɖ q if for every valuation, v , we have
v ~p iff v ~q. Claim: Logical equivalence is an equivalence relation

We can have other models of this logic, e.g. defined via sets

Example Tautology

Some Useful Logical Equivalences

Normal Forms

Conjunctive normal form (CNF):

Disjunctive normal form (DNF):

where I and J are index sets

APi,j

APi,j

Question:
What is the computational
complexity of finding a
satisfying assignment of
variables?

Proofs in Propositional Logic

Constructing the full truth table is expensive!

Natural Deduction proof is tree and a discharge function

• Nodes are instances of inference rules

• Leaves are assumptions of subproofs

• Discharge function maps each leaf of the tree to an
ancestor as prescribed by the inference rules

See also: https://en.wikipedia.org/wiki/Propositional_calculus#Example_2._Natural_deduction_system

https://en.wikipedia.org/wiki/Propositional_calculus#Example_2._Natural_deduction_system

Proofs in Propositional Logic

• Inference rule has hypotheses and conclusion

• Conclusion (C) is a single proposition

• Hypotheses (H) are zero or more propositions, possibly

with (discharged) hypotheses

• Rule with no hypotheses is called an axiom (A)

• Inference rule graphically presented as

axioms

hypotheses

conclusion

Natural Deduction Inference Rules

Inference rules associated with connectives
Two main kinds of inference rules:

• Introduction: says how to
conclude proposition made
from connective is true

• Eliminations: says how to
use a proposition made from
connective to prove result

Why: Conjunction?
• Local soundness: if we introduce a conjunction

and then eliminate it, we should be able to
remove the whole subtree [local reduction ⇒𝑅]

• Local completeness: we can eliminate the
conjunction such that we can still reconstruct it
by applying introduction [local expansion ⇒𝐸]

*From https://www.cs.cmu.edu/~fp/courses/atp/handouts/ch2-natded.pdf for full description

https://www.cs.cmu.edu/~fp/courses/atp/handouts/ch2-natded.pdf

Why: Conjunction?
• Local soundness: if we introduce a conjunction

and then eliminate it, we should be able to
remove the whole subtree [local reduction ⇒𝑅]

• Local completeness: we can eliminate the
conjunction such that we can still reconstruct it
by applying introduction [local expansion ⇒𝐸]

*From https://www.cs.cmu.edu/~fp/courses/atp/handouts/ch2-natded.pdf for full description

*soundness:

*completeness:

https://www.cs.cmu.edu/~fp/courses/atp/handouts/ch2-natded.pdf

Why: Conjunction?
• Local soundness: if we introduce a conjunction

and then eliminate it, we should be able to
remove the whole subtree [local reduction ⇒𝑅]

• Local completeness: we can eliminate the
conjunction such that we can still reconstruct it
by applying introduction [local expansion ⇒𝐸]

(Your turn)

Introduction Rules

Example 1

Example 1

Example 1

All assumptions discharged; proof complete

