CS 477: Background and Propositional Logic
 Sasa Misailovic

Based on previous slides by Elsa Gunter, which were based on earlier slides by Gul Agha, and Mahesh Viswanathan

University of Illinois at Urbana-Champaign

From Real World to Formal Methods

```
Source Program:
```

```
int binsearch(int x, int v[], int n)
    int low, high, mid;
    1 low = 0;
    high = n - 1;
        high = n - l; 
        {hil
            3 mid = (low + high)/2;
            3 if (x < v[mid])
            high = mid - 1; 4
            5 else if (x > v[mid])
            7 else return mid; 1; |
            7 else return mid;
        }}\mathrm{ return -1; |
} |
```


$\forall \mathrm{n}>0$. low \leq high \wedge high $\leq n$

Set

A collection of elements

- Reminder: empty set, singleton, subset, powerset, cardinality
- Natural numbers N, Integers Z, Reals R, Machine numbers
- Operations: Union, Intersection, Complement, Cartesian Product

Relation

- Relation over $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{n}}$: A subset of $\mathrm{X}_{1} \times \mathrm{X}_{2} \times \ldots \times \mathrm{X}_{\mathrm{n}}$
- Binary: $(\mathrm{x}, \mathrm{y}) \in R, R \subseteq X \times Y$
- Operators: relations are sets => set operators
- Properties: Transitive, Reflexive, Symmetric, Asymmetric,...
- Equivalence relation: reflexive+symmetric+transitive
- Partial Order relation: reflexive+antisymmetric+transitive
- Preorder: reflexive+transitive

Function

- Special relation: a particular input has a single output - $y=f(x)$, also $(x, y) \in f, f \subseteq X \times Y$ where $x \in X, y \in Y$
- $\forall x \in X, y \in Y, z \in Z . \quad(x, y) \in f \wedge(x, z) \in f \Rightarrow y=z$
- Domain X and codomain Y ; type: $X \rightarrow Y$; total and partial functions
- Input/results of a function can be another function

Language

- Alphabet (set Σ), language ($\subseteq \Sigma^{*}$) and words ($w \in \Sigma \times \cdots \times \Sigma$)
- Empty word (ε), length, prefix/suffix, concatenation(w w), alternation ($w \mid w$)
- Regular expression
- $\mathrm{E}::=\varepsilon|\mathrm{A} \in \mathrm{\Sigma}| \mathrm{EE} \mid \mathrm{E}$ "|"E|E*
- Equivalent to finite state machine (automaton)

Syntax (words in language) + Semantics (meaning of those words: relating to other math objects)

Simple Imperative Programming Language (more complex)

- I \in Identifiers
- $\mathrm{N} \in$ Numerals
- B ::= true | false
$|\mathrm{B} \& \mathrm{~B}| \mathrm{B}$ or $\mathrm{B}|\operatorname{not} \mathrm{B}| \mathrm{E}<\mathrm{E} \mid \mathrm{E}=\mathrm{E}$
- $\mathrm{E}::=\mathrm{N}|\mathrm{I}| \mathrm{E}+\mathrm{E}|\mathrm{E} * \mathrm{E}| \mathrm{E}-\mathrm{E} \mid-\mathrm{E}$
- C::= skip | C; C | $1::=\mathrm{E}$
| if B then C else C fi \| while B do C od

Program Representations:

- Graphs: (V,E) - set of vertices V and set of edges E

Some models of computation:

- Automaton: represents a computation
- Pushdown automaton: automaton with a stack (for CFGrammars)
- Turning machine: an automaton with a memory tape

Some representations of execution (static/dynamic):

- Parse tree and Abstract syntax tree: represent syntax
- Traces/Paths: a sequence of executed instructions or states
- Transition system: represents possible executions
- Control-flow graph: succinctly represents paths in a program

Propositional Logic

- Syntax
- Semantics (truth tables)
- Proofs

Propositional Logic

The Language of Propositional Logic

- Constants $\{\mathrm{T}, \mathrm{F}\}$
- Countable set AP of propositional variables (x, y, z), a.k.a. propositional atoms, a.k.a. atomic propositions
- logical connectives: \wedge (and); \vee (or); $\sim(n o t) ; ~ \Rightarrow$ (implies); \Leftrightarrow (if and only if)

Propositional Logic (cont.)

The set of propositional formulae PROP is the inductive closure of the previous elements as follows:

- $\{T, F\} \subseteq P R O P$
- AP \subseteq PROP
- if $A \in P R O P$ then (A) $\in P R O P$ and $\neg A \in P R O P$
- if $A \in P R O P$ and $B \in P R O P$ then ($A \wedge B$) $\in P R O P$, ($\mathrm{A} \vee \mathrm{B}$) $\in P R O P$, $(A \Rightarrow B) \in P R O P,(A \Leftrightarrow B) \in P R O P$.
- Nothing else is in PROP
- Informal definition; formal definition requires math foundations, set theory, fixed point theorem ...

Propositional Logic

We can write it as a grammar too:

- C : : = T | F
- AP ::=x|y|z|...
- PROP ::= C | AP | (PROP) | -PROP

PROP \wedge PROP | PROP V PROP
PROP \Rightarrow PROP | PROP \Leftrightarrow PROP

We can get various "sentences" in this language.

$$
\text { E.g. } x \wedge y,(x \wedge y) \Rightarrow(x \vee y), x \vee \neg x \Leftrightarrow T
$$

But what is their meaning?

Toward Propositional Logic Semantics

Model for Propositional Logic has three parts

- Mathematical set of values used as meaning of propositions
- Interpretation function giving meaning to props built from logical connectives, via structural recursion
- Standard Model of Propositional Logic
- Boolean values $B=\{$ true,false $\}$
- a valuation $v: A P \rightarrow B$

$\mathbf{A P}$	\mathbf{B}
x	true
y	false
z	true

Semantics of Propositional Logic

Standard interpretation I_{v} defined by structural induction on formulae:

- $\mathrm{I}_{\mathrm{v}}(\mathrm{T})=$ true and $\mathrm{I}_{\mathrm{v}}(\mathrm{F})=$ false
- If $a \in A P$ then $I_{v}(a)=v(a)$
- For $p \in \operatorname{PROP}$, if $I_{v}(p)=$ true then $I_{v}(\neg p)=$ false, and if $I_{v}(p)=$ false then $I_{v}(\neg p)=$ true
- For $p, q \in \operatorname{PROP}$:
-If $\mathrm{I}_{\mathrm{v}}(\mathrm{p})=$ true and $\mathrm{I}_{\mathrm{v}}(\mathrm{q})=$ true, then $\mathrm{I}_{\mathrm{v}}(\mathrm{p} \wedge \mathrm{q})=$ true, else $\mathrm{I}_{\mathrm{v}}(\mathrm{p} \wedge \mathrm{q})=$ false
-If $I_{v}(p)=$ true or $I_{v}(q)=$ true, then $I_{v}(p \vee q)=$ true, else $I_{v}(p \vee q)=$ false
-If $I_{v}(q)=$ true or $I_{v}(p)=$ false, then $I_{v}(p \Rightarrow q)=$ true, else $I_{v}(p \Rightarrow q)=$ false
-If $I_{v}(p)=I_{v}(q)$ then $I_{v}(p \Leftrightarrow q)=$ true, else $I_{v}(p \Leftrightarrow q)=$ false

Example

- $\mathrm{I}_{\mathrm{v}}(\mathrm{T})=$ true and $\mathrm{I}_{\mathrm{v}}(\mathrm{F})=$ false
- If $a \in A P$ then $I_{v}(a)=v(a)$
- For $p \in P R O P$, if $I_{v}(p)=$ true then $I_{v}(\neg p)=$ false, and if $I_{v}(p)=$ false then $I_{v}(\neg p)=$ true
- For $p, q \in \operatorname{PROP}$:
- If $I_{v}(p)=$ true and $I_{v}(q)=$ true, then $I_{v}(p \wedge q)=$ true, else $I_{v}(p \wedge q)=$ false
- If $I_{v}(p)=$ true or $I_{v}(q)=$ true, then $I_{\gamma}(p \vee q)=$ true, else $I_{v}(p \vee q)=$ false
- If $I_{v}(q)=$ true or $I_{v}(p)=$ false, then $I_{v}(p \Rightarrow q)=$ true, else $I_{v}(p \Rightarrow q)=$ false
- If $I_{v}(p)=I_{v}(q)$ then $I_{v}(p \Leftrightarrow q)=$ true, else $I_{v}(p \Leftrightarrow q)=$ false

p	q	$\neg p$	$p \wedge q$	$p \vee q$	$p \Rightarrow q$	$p \Leftrightarrow q$
true	true					
true	false					
false	true					
false	false					

Example

- $\mathrm{I}_{\mathrm{v}}(\mathrm{T})=$ true and $\mathrm{I}_{\mathrm{v}}(\mathrm{F})=$ false
- If $a \in A P$ then $I_{v}(a)=v(a)$
- For $p \in \operatorname{PROP}$, if $I_{v}(p)=$ true then $I_{v}(\neg p)=$ false, and if $\mathrm{I}_{\mathrm{v}}(\mathrm{p})=$ false then $\mathrm{I}_{\mathrm{v}}(\neg \mathrm{p})=$ true
- For $p, q \in \operatorname{PROP}$:
- If $I_{v}(p)=$ true and $I_{v}(q)=$ true, then $I_{v}(p \wedge q)=$ true, else $I_{v}(p \wedge q)=$ false
- If $I_{v}(p)=$ true or $I_{v}(q)=$ true, then $I_{v}(p \vee q)=$ true, else $I_{v}(p \vee q)=$ false
- If $I_{v}(q)=$ true or $I_{v}(p)=$ false, then $I_{v}(p \Rightarrow q)=$ true, else $I_{v}(p \Rightarrow q)=$ false
- If $I_{v}(p)=I_{v}(q)$ then $I_{v}(p \Leftrightarrow q)=$ true, else $I_{v}(p \Leftrightarrow q)=$ false

p	q	$\neg p$	$p \wedge q$	$p \vee q$	$p \Rightarrow q$	$p \Leftrightarrow q$
true	true	false	true	true	true	true
true	false	false	false	true	false	false
false	true	true	false	true	true	false
false	false	true	false	false	true	true

Semantics of Propositional Logic

(B, I) is the standard model of proposition logic

- Satisfaction relation \vDash : Given valuation v and proposition $p \in P R O P$, we write $\mathrm{v} \vDash \mathrm{p}$ iff $\mathrm{I}_{\mathrm{v}}(\mathrm{p})=$ true (the \vDash symbol name is called "double turnstile")
- More fully written as $\mathrm{B}, \mathrm{I}, \mathrm{v} \vDash \mathrm{p}$.
- Can also write (B,I,v,p) $\in \models$
- Say valuation v satisfies p, or v models p
- Write v $\neq p$ if $I_{v}(p)=$ false
- p is satisfiable if there exists valuation v such that $v \vDash p$
- p is valid, a.k.a. a tautology if for every valuation v we have $v \vDash p$
- p is logically equivalent to $\mathrm{q}, \mathrm{p} \equiv \mathrm{q}$ if for every valuation, v , we have $\mathrm{v} \vDash \mathrm{p}$ iff $\mathrm{v} \vDash \mathrm{q}$. Claim: Logical equivalence is an equivalence relation

We can have other models of this logic, e.g. defined via sets

Example Tautology

$$
A \Rightarrow((A \Rightarrow B) \Rightarrow B)
$$

A	B	$A \Rightarrow B$	$(A \Rightarrow B) \Rightarrow B$	$A \Rightarrow((A \Rightarrow B) \Rightarrow B)$
true	true	true	true	true
true	false	false	true	true
false	true	true	true	true
false	false	true	false	true

Some Useful Logical Equivalences

$$
\begin{array}{rlrl}
\neg \neg A & \equiv A & \neg \mathbf{T} \equiv \mathbf{F} & \neg \mathbf{F} \equiv \mathbf{T} \\
(A \vee A) & \equiv A & & (A \vee B) \vee C \equiv A \vee(B \vee C) \\
(A \wedge A) & \equiv A & & (A \wedge B) \wedge C \equiv A \wedge(B \wedge C) \\
A \vee B & \equiv B \vee A & \neg(A \vee B) \equiv(\neg A) \wedge(\neg B) \\
A \wedge B & \equiv B \wedge A & \neg(A \wedge B) \equiv(\neg A) \vee(\neg B) \\
(A \wedge \neg A) & \equiv \mathbf{F} & A \vee(B \wedge C) \equiv(A \vee B) \wedge(A \vee C) \\
(A \vee \neg A) & \equiv \mathbf{T} & & (A \wedge B) \vee C \equiv(A \vee C) \wedge(B \vee C) \\
(\mathbf{T} \wedge A) & \equiv A & & A \wedge(B \vee C) \equiv(A \wedge B) \vee(A \wedge C) \\
(\mathbf{T} \vee A) & \equiv \mathbf{T} & & (A \wedge B) \vee C \equiv(A \wedge C) \vee(B \wedge C) \\
(\mathbf{F} \wedge A) & \equiv \mathbf{F} & & (\mathbf{F} \vee A) \equiv A
\end{array}
$$

Normal Forms

Conjunctive normal form (CNF):

$$
\bigwedge_{i \in I} \bigvee_{j \in J_{i}} A P_{i, j}
$$

Disjunctive normal form (DNF):

Question:
What is the computational complexity of finding a satisfying assignment of variables?

where I and J are index sets

Proofs in Propositional Logic

Constructing the full truth table is expensive!

Natural Deduction proof is tree and a discharge function

- Nodes are instances of inference rules
- Leaves are assumptions of subproofs
- Discharge function maps each leaf of the tree to an ancestor as prescribed by the inference rules

Proofs in Propositional Logic

- Inference rule has hypotheses and conclusion
- Conclusion (C) is a single proposition
- Hypotheses (H) are zero or more propositions, possibly with (discharged) hypotheses
- Rule with no hypotheses is called an axiom (A)
- Inference rule graphically presented as

Natural Deduction Inference Rules

Inference rules associated with connectives
Two main kinds of inference rules:

- Introduction: says how to conclude proposition made from connective is true

- Eliminations: says how to use a proposition made from connective to prove result

Why: Conjunction?

Introduction:
$\frac{A \wedge}{A \wedge B}$ And I

Elimination: *simplified

- Local soundness: if we introduce a conjunction and then eliminate it, we should be able to remove the whole subtree [local reduction \Rightarrow_{R}]
- Local completeness: we can eliminate the conjunction such that we can still reconstruct it by applying introduction [local expansion \Rightarrow_{E}]
$\frac{A \wedge B}{A} \quad \operatorname{And}_{L} \mathrm{E}$
$\frac{A \wedge B}{B} \quad \operatorname{And}_{R} \mathrm{E}$
*From https://www.cs.cmu.edu/~fp/courses/atp/handouts/ch2-natded.pdf for full description

Why: Conjunction?

Introduction:

Elimination: *simplified
*soundness:
$\frac{A \wedge B}{B} \quad \operatorname{And}_{R} \mathrm{E}$

*completeness:

- Local soundness: if we introduce a conjunction and then eliminate it, we should be able to remove the whole subtree [local reduction \Rightarrow_{R}]
- Local completeness: we can eliminate the conjunction such that we can still reconstruct it by applying introduction [local expansion \Rightarrow_{E}]

[^0]
Why: Conjunction?

Introduction:
$\frac{A \wedge}{A \wedge B}$ And I

Elimination:

$$
B
$$

- Local soundness: if we introduce a conjunction and then eliminate it, we should be able to remove the whole subtree [local reduction \Rightarrow_{R}]
- Local completeness: we can eliminate the conjunction such that we can still reconstruct it by applying introduction [local expansion \Rightarrow_{E}]

Introduction Rules

Truth Introduction
And Introduction:

$$
\bar{T}^{T}
$$

$$
\frac{A \wedge B}{A \wedge B} \text { And } I
$$

Or Introduction:

$$
\frac{A}{A \vee B} \operatorname{Or}_{L} \mathrm{I} \quad \frac{B}{A \vee B} \operatorname{Or}_{R} 1
$$

Not Introduction:
Implication Introduction:

No False Introduction

$$
\overline{\mathbf{T}} \mathbf{T} \mathbf{I} \quad \frac{A \wedge}{A \wedge B} \text { And I }
$$

Example 1

Or Introduction:

$$
\begin{gathered}
\frac{A}{A \vee B} \mathrm{Or}_{L} \mathrm{I} \\
\text { Implication Introduction: }
\end{gathered} \frac{B}{A \vee B} \mathrm{Or}_{R} \mathrm{I}
$$

Not Introduction:
A
\vdots
$\frac{\mathbf{F}}{\neg A}$ Not I

$$
\begin{gathered}
A \\
\vdots \\
\frac{B}{A \Rightarrow B} \operatorname{Imp~I}
\end{gathered}
$$

No False Introduction

$A \Rightarrow(B \Rightarrow(A \wedge B))$

Example 1

$A \quad B$

- And I
$A \wedge B$
\longrightarrow Imp |
$B \Rightarrow(A \wedge B)$
Imp I
$A \Rightarrow(B \Rightarrow(A \wedge B))$

Example 1

A B

$-B$ And I
$A \wedge B$
$\bar{B}(A \wedge B)$ Imp I
$B \Rightarrow(A \wedge B)$
Imp I
$A \Rightarrow(B \Rightarrow(A \wedge B))$
All assumptions discharged; proof complete

[^0]: *From https://www.cs.cmu.edu/~fp/courses/atp/handouts/ch2-natded.pdf for full description

