CS 477: Background and
Propositional Logic

Sasa Misailovic

Based on previous slides by Elsa Gunter, which were based
on earlier slides by Gul Agha, and Mahesh Viswanathan

University of lllinois at Urbana-Champaign

From Real World to Formal Methods

Source Program:

int binsearch(int x, int v[], int n)
{
int low, high, mid;
1 low = 0;
high = n - 1;
while (low <= high)|2
{

3

mid = (low + high)/2;
if (®x < v[mid])
high = mid - 1; |4
5| else if (x > v[mid])
low = mid + 1; |5
7| else return mid;

}

return -1; \8

bl

CPU Mem

e AW/

Regl Reg2

Reg3 Reg4

¥V n>0.low < high A high<n

Sources: https://www.researchgate.net/figure/Example-of-Control-Flow-Graph figs 4065402 and https://freesvg.org/computer-station-vector-graphics

Set

A collection of elements
 Reminder: empty set, singleton, subset, powerset, cardinality
* Natural numbers N, Integers Z, Reals R, Machine numbers

* Operations: Union, Intersection, Complement, Cartesian Product

Backround read: http://pfister.ee.duke.edu/courses/ece586/notes chl.pdf

http://pfister.ee.duke.edu/courses/ece586/notes_ch1.pdf

Relation

Relation over X,, X,,...X_: A subset of X; X X, X ... X X
 Binary: (X,y) , X

n

* Operators: relations are sets => set operators
* Properties: Transitive, Reflexive, Symmetric, Asymmetric,...
* Equivalence relation: reflexive+symmetric+transitive

e Partial Order relation: reflexive+antisymmetric+transitive

* Preorder: reflexive+transitive

Function

 Special relation: a particular input has a single output
. — (),also(,)e , X where :

y , , - C,)e (L) =

e Domain X and codomain Y; type: - ; total and partial functions

* Input/results of a function can be another function

Language

* Alphabet (set), language (~*) and words (we 2x X %)

* Empty word (g), length, prefix/suffix, concatenation(w w), alternation (w|w)
e Regular expression

e Eik=¢ | AeX | EE |E“|”E | E*

e Equivalent to finite state machine (automaton)

Syntax(words in language) +
Semantic§meaning of those words: relating to other math objects)

Simple Imperative Programming
Language (more complex)

e | € Identifiers
* N € Numerals

* B ::=true | false
|B&B|BorB|notB |E<E|E=E

*Ex=N|I||E+E|E*E|E-E|-E

e Ci:i=skip | CG,C|I:=E
| if B then Celse Cfi | while B do C od

Program Representations:

e Graphs: (V,E) — set of vertices V and set of edges E

Some models of computation:

* Automaton: represents a computation

* Pushdown automaton: automaton with a stack (for CFGrammars)
e Turning machine: an automaton with a memory tape

Some representations of execution (static/dynamic):

* Parse tree and Abstract syntax tree: represent syntax
 Traces/Paths: a sequence of executed instructions or states

* Transition system: represents possible executions

e Control-flow graph: succinctly represents paths in a program

Propositional Logic

* Syntax
* Semantics (truth tables)
* Proofs

Propositional Logic

The Language of Propositional Logic
* Constants {T,F}

e Countable set AP of propositional variables (x,y,z),
a.k.a. propositional atoms, a.k.a. atomic propositions

* logical connectives: (and); (or); - (not);
(implies); = (if and only if)

Propositional Logic (cont.)

The set of propositional formulae PROP is the inductive
closure of the previous elements as follows:

« {T,F} PROP
* AP PROP
 f A PROP then (A) PROP and -A PROP

« if A PROPandB PROPthen(A B) PROP,
(A B) PROP,(A B) PROP,(A -~B) PROP.

* Nothing else is in PROP

* Informal definition; formal definition requires math
foundations, set theory, fixed point theorem ...

Propositional Logic

We can write it as a grammar too:

e C:u=T|F

e AP:=x]|y|z]|..

e PROP::=C | AP | (PROP) | =PROP

PROP PROP | PROP PROP
PROP PROP | PROP = PROP

We can get various “sentences” in this language.
Eg.x vy,(x y) (x y,x -x=T

But what is their meaning?

Toward Propositional Logic Semantics

Model for Propositional Logic has three parts

* Mathematical set of values used as meaning of
propositions

* Interpretation function giving meaning to props
built from logical connectives, via structural
recursion

e Standard Model of Propositional Logic

Example valuation:
* Boolean values = {true,false}

: AP B
* a valuationv : AP - B
X true
y false
Background read: Z true

https://courses.engr.illinois.edu/cs498mv/fa2018/PropositionallLogic.pdf

https://courses.engr.illinois.edu/cs498mv/fa2018/PropositionalLogic.pdf

Semantics of Propositional Logic

Standard interpretation |, defined by structural induction on formulae:
* 1, (T)=trueand | |, (F) = false
- Ifa APthenl , (a)=vVv(a)

* Forp PROP,ifl, (p) =truethenl| | (-p) = false, and if
|, (p) = false then | , (-p) = true

* For p,g PROP:
Ifl, (p) =trueand 1 ,(q) =true,thenl ,(p q)=true,elsel , (p q) = false
Ifl, (p) =trueorl , (q) =true,thenl ,(p q)=true, elsel , (p q) = false
If1,(q) =trueor! ,(p) =false,thenl ,(p q)=true,elsel ,(p q)="false
Ifl, (p)=1,(q)thenl ,(p =q) =true, elsel , (p =q) = false

Example

* [, (T) = true and I, (F) = false
If a € AP then I, (a) = v (a)
* For p € PROP, if |, (p) = true then |, (wp) = false, and if
I, (p) = false then I, (=p) = true
.+ For p,q € PROP:
* If1, (p) = true and I, (q) = true, then I, (p Aq) = true, else 1, (p Aq) = false
* If], (p) = true or I, (q) = true, then I, (p vq) = true, else I, (p vq) = false
+ If1, (q) = true or I, (p) = false, then I, (p =q) = true, else I, (p =q) = false
« If1, (p) = I, (q) then I (p <q) = true, else I (p <q) = false

PAG|pVg | p=>q|peq

true | true
true | false
false | true
false | false

Example

* [, (T) = true and I, (F) = false
* Ifa € AP then |, (a) = v (a)
* For p € PROP, if |, (p) = true then I, (=p) = false, and if
I, (p) = false then I, (mp) = true
* For p,q € PROP:
* If1, (p) = true and I, (q) = true, then I (p Aq) = true, else 1, (p Aq) = false
* If], (p) = true or I, (q) = true, then I, (p vq) = true, else I, (p vq) = false
« If1, (q) = true or I, (p) = false, then I, (p =q) = true, else I, (p =q) = false
« If1, (p) = I, (q) then I (p <q) = true, else I (p <q) = false

P q p | PAQIPVqGIp=q|p=(q
true | true | false | true | true | true true
true | false | false | false | true | false | false
false | true | true | false | true | true false
false | false | true | false | false | true true

Semantics of Propositional Logic

(B,1) is the standard model of proposition logic

~ . Given valuation v and proposition p PROP,
we write v ~ P iff IV (p) = frue |the ~ symbol name is called “double turnstile”)

* More fully written as B,l,v ~ p.

Can also write (B,l,v,p) € ~

» Say|valuation v satisfiesp, or v modelsp
Writev + p if I, (p) = false

* pis if there exists valuation v such thatv ~ p
*pis ,a.k.a.a if for every valuation v we havev ~ p
*pis toq,p Dif far every valuation, v, we have

v ~ p iff v ~ . Claim: Logical equivalence is an equivalence relation

We can have other models of this logic, e.g. defined via sets

Example Tautology

A= ((A= B)= B)

A B A=B|(A=B)=B|A=((A= B)= B)
true | true true true true
true | false | false true true
false | true true true true
false | false | true false true

Some Useful Logical Equivalences

—A=A
(AVA) = A
(ANA)= A

AVB=BVA

AANB=BAA
(AN-A)=F
(AV-A) =T
(TAA)=A
(TVA=T

(FAA) =F

-T=F --F=T
(AVB)VC=AvV(BVC()
(ANABYAC=AAN(BAC)

-(AV B) = (-A) A (—B)

-(AAB) = (-A)V (—B)
AV(BANC)=(AVB)A(AV Q)
(AAB)VC=(AVC)A(BV ()
AN(BVC)=(AAB)V(AANCQ)
(AAB)VC=(AANC)V(BACQ)

(FVA) = A

Normal Forms

Conjunctive normal form (CNF):

/\\/AP

[1&.7;

Disjunctive normal form (DNF):

\//\AP

[7.0,

where | and J are index sets

Question:

What is the computational
complexity of finding a
satisfying assignment of
variables?

Proofs in Propositional Logic

Constructing the full truth table is expensive!

Natural Deduction proofs tree and a discharge function
* Nodes are instances of inference rules
* Leaves are assumptions of subproofs

* Discharge function maps each leaf of the tree to an
ancestor as prescribed by the inference rules

See also: https://en.wikipedia.org/wiki/Propositional calculus#Example 2. Natural deduction system

https://en.wikipedia.org/wiki/Propositional_calculus#Example_2._Natural_deduction_system

Proofs in Propositional Logic

* Inference rule has hypotheses and conclusion
* Conclusion (C)is a single proposition

* Hypotheses (H) arezero or more propositions, possibly
with (discharged) hypotheses

* Rule with no hypotheses is called an axiom (A)

* Inference rule graphically presented as

axioms

hypotheses Aj Ak

conclusion

Natural Deduction Inference Rules

Inference rules associated with connectives
Two main kinds of inference rules:

. A
 Introduction: says how to ;
conclude proposition made 5

from connective Is true P Imp |

» Eliminations: says how to 5

use a proposition made from |
connective to prove result Imp E

Why: Conjunction?

Introduction: * Local soundnessf we introduce a conjunction
and then eliminate it, we should be able to
A B And | remove the whole subtree [local reduction
ANB » Local completenesswe can eliminate the
conjunction such that we can still reconstruct it
by applying introduction [local expansion]

Elimination: *simplified

ANB
AndLE
A
ANB
Andg E
B

*From https://www.cs.cmu.edu/~fp/courses/atp/handouts/ch2-natded.pdf for full description

]

https://www.cs.cmu.edu/~fp/courses/atp/handouts/ch2-natded.pdf

Why: Conjunction?

Introduction: * Local soundnessf we introduce a conjunction
and then eliminate it, we should be able to
A B And | remove the whole subtree [local reduction
ANB » Local completenesswe can eliminate the
conjunction such that we can still reconstruct it
by applying introduction [local expansion]

Elimination: *simplified

*soundness:
D £ D £
A /\ B A ltrue B true D A lrue B true
- Al — 3
And L E AN B true - ' I A true AN B frue Al B true
A A true AP NERr
rue B true
compileteness:
D D
A /\ B D AN B true AN B true
. AFEq, AE
—_— A n d R E AN DB true Tk A true : B true :
Al
B AN B true

*From https://www.cs.cmu.edu/~fp/courses/atp/handouts/ch2-natded.pdf for full description

]

https://www.cs.cmu.edu/~fp/courses/atp/handouts/ch2-natded.pdf

Why: Conjunction?

Introduction: * Local soundnessf we introduce a conjunction
A B and then eliminate it, we should be able to
And | remove the whole subtree [local reduction
ANB » Local completenesswe can eliminate the
conjunction such that we can still reconstruct it
Elimination: by applying introduction [local expansion]
A
AANB C
AndL E
C
B (Your turn)
ANB C
AndR E

Introduction Rules

Truth Introduction:

— T
T

Or Introduction:
A
AV B

Or_.r_ |

Not Introduction:
A
F
—— Not |

—A

No False Introduction

And Introduction:

A B
ANB

B
AV B

A

A= B

And |

Orﬁ» |

Implication Introduction:

Imp |

Example 1

Truth Introduction: And Introduction:

A B
T Tl And |
AANB
Or Introduction:
A B
Ol’[_ I OFR I
Av B AV B

Not Introduction: Implication Introduction:

A A

E

—— Not | Imp |
-A A= B

No False Introduction

—(B =

ANB

Example 1

A B
AN B
B = (AN B)

A=(B= (AN B))

And |

Imp |

Imp |

Example 1

Al |B
AN B
Bl= (AN B)

Al=(B = (AN B))

All assumptions discharged; proof complete

And |

Imp |

Imp |

