CS 477: Background and
Propositional Logic

Sasa Misailovic

Based on previous slides BisaGunter,which were based
on earlier slides by GWgha,and MaheshViswanathan

University of lllinois at Urbar@hampaign



Propositional Logic

The Language of Propositional Logic
AConstantqT,F}

ACountable seAP of propositional variablesx(y,2,
a.k.a. propositional atoms, a.k.a. atomic propositions
Alogical connectives: (and)™ (or); = (not)}
(implies)g (if and only If)



Propositional Logic (cont.)

The set of propositional formulae PROP is the inductive
closure of the previous elements as follows:

A{T,FPPROP
AAPPPROP
Aif AN PROP then (A)PROP and “APROP

Aif AN PROP and BPROP then (AB )N PROP ,
(A" B)NPROP , (AB ) PROP, (& B )N PROP .

ANothing else is in PROP

Alnformal definition; formal definition requires math
foundations, set theory, fixed point theorem ...



Propositional Logic

We can write it as a grammar too:
AC:=T|F

AAP ::= x | vy | =z |
APROP ::=C | AP | (PROP) | -PROP

| PROP PROP | PROPPROP
| PROR PROP | PRGP PROP

We can get various senten

Eg. Xy, X y) (X y),X =% T

But what is their meaning?



Toward Propositional Logic Semantics

Model for Propositional Logic has three parts

AMathematical set of values used as meaning of
oropositions

Alnterpretation function giving meaning to props
puilt from logical connectives, via structural
recursion

AStandard Model of Propositional Logic
ABoolean valuesB = {frue,falsé

Example valuation:

: AP B
Aavaluationv : AP - B
X true
y false
Background read: Z true

https://courses.engr.illinois.edu/cs498mv/fa2018/PropositionalLogic.pdf



https://courses.engr.illinois.edu/cs498mv/fa2018/PropositionalLogic.pdf

Semantics of Propositional Logic

Standard interpretation ldefined by structural induction on formulae

Al, (T) =true and | , (F) = false

Alfa N APthenl , (a) =V (a)

AForp N PROP,ifl, (p) =truethen|  (-p) = false, and if
|, (p) = false then | , (-p) = true

AFor p,g N PROP :
Afl, (p) =trueand | , (q) =true, then| ,(p q)=true, elsel , (p" g) = false
Afl, (p) =trueorl , (q) =true, thenl , (o q)=true, elsel , (o q) = false
Af1, (q) =trueorl , (p) = false, thenl , (pt q) =true, else | , (pt q) = false
Afl,(p) =1, (g)thenl , (pv q) =true, else | , (py q) = false



Example

* [, (T) = true and I, (F) = false
If a € AP then I, (a) = v (a)
* For p € PROP, if |, (p) = true then |, (wp) = false, and if
I, (p) = false then I, (=p) = true
.+ For p,q € PROP:
* If1, (p) = true and I, (q) = true, then I, (p Aq) = true, else 1, (p Aq) = false
* If], (p) = true or I, (q) = true, then I, (p vq) = true, else I, (p vq) = false
+ If1, (q) = true or I, (p) = false, then I, (p =q) = true, else I, (p =q) = false
« If1, (p) = I, (q) then I (p <q) = true, else I (p <q) = false

PAG|pVg | p=>q|peq

true | true
true | false
false | true
false | false




Example

* [, (T) = true and I, (F) = false
* Ifa € AP then |, (a) = v (a)
* For p € PROP, if |, (p) = true then I, (=p) = false, and if
I, (p) = false then I, (mp) = true
* For p,q € PROP:
* If1, (p) = true and I, (q) = true, then I (p Aq) = true, else 1, (p Aq) = false
* If], (p) = true or I, (q) = true, then I, (p vq) = true, else I, (p vq) = false
« If1, (q) = true or I, (p) = false, then I, (p =q) = true, else I, (p =q) = false
« If1, (p) = I, (q) then I (p <q) = true, else I (p <q) = false

P q p | PAQIPVqGIp=q|p=(q
true | true | false | true | true | true true
true | false | false | false | true | false | false
false | true | true | false | true | true false
false | false | true | false | false | true true




Semantics of Propositional Logic

(B,l) Is the standard model of proposition logic

~ . Given valuation v and proposition'g?ROP,
we writev ~ p Iff |, (p) = true |the~symbol name is called
A More fully written asB,l,v ~ p.
A Can also writeR,l,v,p ) | ~
A Say valuatiowv satisfiesp, or vmodelsp
A Writev + p if 1, (p) = false

Apis if there existsvaluation v such thag ~ p
Apis , a.k.a. & If for everyvaluation v we have ¥ p
Apis toq,p Dif far every valuation, v , we have

v ~ p iff v ~ g. Claim: Logical equivalence is an equivalence relati

We can have other models of this logic, e.g. defined via sets



Example Tautology

A= ((A= B)= B)

A B A=B|(A=B)=B|A=((A= B)= B)
true | true true true true
true | false | false true true
false | true true true true
false | false | true false true




Some Useful Logical Equivalences

—A=A
(AVA) = A
(ANA)= A

AVB=BVA

AANB=BAA
(AN-A)=F
(AV-A) =T
(TAA)=A
(TVA=T

(FAA) =F

-T=F --F=T
(AVB)VC=AvV(BVC()
(ANABYAC=AAN(BAC)

-(AV B) = (-A) A (—B)

-(AAB) = (-A)V (—B)
AV(BANC)=(AVB)A(AV Q)
(AAB)VC=(AVC)A(BV ()
AN(BVC)=(AAB)V(AANCQ)
(AAB)VC=(AANC)V(BACQ)

(FVA) = A



Normal Forms

Conjunctive normal form (CNF):

AV AR,

Disjunctive normal form (DNF):

\//\AP

[ 7.0,

wherel andJ are index sets

Question:

What is the computational
complexity of finding a
satisfying assignment of
variables?



Notions of Logical Consequence

V=P
AAs we defined on the previous slides

3 U nis trueiff there is a
proof from the formulas irs to the formula p

ADeductive systemalist of rules that express
which formulas can legally follow which.

AProof (aka derivation)a sequence of formulas
that follow the rules of the deductive apparatus



Proofs in Propositional Logic

Constructing the full truth table is expensive!

Natural Deduction proofs tree and a discharge function
ANodes are instances of inference rules
AlLeaves are assumptionssfbproofs

ADischarge function maps each leaf of the tree to an
ancestor as prescribed by the inference rules

See alsohttps://en.wikipedia.org/wiki/Propositional calculus#Example 2. Natural deduction system



https://en.wikipedia.org/wiki/Propositional_calculus#Example_2._Natural_deduction_system

Proofs in Propositional Logic

Alnference rule has hypotheses and conclusion
AConclusior{C)is a single proposition

AHypotheses(H) arezero or more propositions, possibly
with (discharged) hypotheses

ARule with no hypotheses is called an axi@)

Alnference rule graphically presented as

axioms

hypoth A; A
yPOINESES : :k label

(syntactically) Hy ... H,- ... Hj ... H;( ... H,
“entaits” rule

conclusion




Natural Deduction Inference Rules

Proof system: Inference rules associated with connectives
Two main kinds of inference rules in natural deduction:

. A
Alntroduction: says how to ;
conclude proposition made 5
from connective Is true Imp |
A= B

AEliminations: says how to B
use a proposition made from

connective to prove result ok
mp E




Introduction Rules

Truth Introduction:

— T
T

Or Introduction:
A
AV B

Or_.r_ |

Not Introduction:
A
F
—— Not |

—A

No False Introduction

And Introduction:

A B
ANB

B
AV B

A

A= B

And |

Orﬁ» |

Implication Introduction:

Imp |



Elimination Rules

False Elimination:

F
—FE
C

And Elimination:
A
AN B C
C

Or Elimination:

A B

AvB C C
C

OrE

Not Elimination:

-A A
Not E
C
B
ANB C
AndR E
C
Implication Elimination:
B
A=B A C(C
Imp E
C



Desired Properties of a Proof System

ASoundness: if something is provable, it is valid

ACompletenessif something is valid, it isrovable



Why: Conjunction? (slightly simplified)

Introduction: A Local soundnessf we introduce a conjunction
and then eliminate it, we should be able to
A B And | remove the whole subtree [local reductien ]
ANB A Local completenessve can eliminate the

conjunction such that we can still reconstruct it

Elimination: *simplified by applying introduction [local expansien |

ANB
AndLE
A
ANB
Andg E
B

*From https://www.cs.cmu.edu/~fp/courses/atp/handouts/chBatded.pdffor full description



https://www.cs.cmu.edu/~fp/courses/atp/handouts/ch2-natded.pdf

Why: Conjunction? (slightly simplified)

Introduction: A Local soundnessf we introduce a conjunction
and then eliminate it, we should be able to
A B And | remove the whole subtree [local reductien ]
ANB A Local completenessve can eliminate the

conjunction such that we can still reconstruct it

Elimination: *simplified by applying introduction [local expansien |

*local soundness

ANB p e D £
And E A lrue B true Al D A lrue I3 true . <
L AN B true o A true AN B true A = p B true
AEL AR
A A true I3 true MR

*local completeness

D D
A /\ B D AN B true An B frue
. E E
—_— A n d R E AN DB true Tk A true b B true f

Al
B AN B true

*From https://www.cs.cmu.edu/~fp/courses/atp/handouts/chBatded.pdffor full description



https://www.cs.cmu.edu/~fp/courses/atp/handouts/ch2-natded.pdf

Why: Conjunction? (full rule)

Introduction: A Local soundnessf we introduce a conjunction
and then eliminate it, we should be able to
ANS And | remove the whole subtree [local reductien |
ANB

A Local completenessve can eliminate the
conjunction such that we can still reconstruct it

Elimination: by applying introduction [local expansien |

ANB C

AndL E

B (Your turn)

ANB C

AndR E



Introduction Rules

Truth Introduction:

— T
T

Or Introduction:
A
AV B

Or_.r_ |

Not Introduction:
A
F
—— Not |

—A

No False Introduction

And Introduction:

A B
ANB

B
AV B

A

A= B

And |

Orﬁ» |

Implication Introduction:

Imp |



Example 1

Truth Introduction: And Introduction:

A B
T And |
AANB
Or Introduction:
Ol’[_ I OFR I
AV B AV B
Not Introduction: Implication Introduction:
A A
F
—— Not | Imp |
-A A= B

No False Introduction

—(B =

ANB



Example 1

A B
ANB

And |

Truth Introduction: And Introduction:

A B
T And |
AANB
Or Introduction:
OI'L I OFR I
AV B AV B
Not Introduction: Implication Introduction:
A A
F
—— Not | Imp |
-A A= B

No False Introduction

B =

Imp |

ANB

A=(B =

ANB

Imp |



Truth Introduction: And Introduction:

Example 1 IZEP T
Al |B
And |
ANB
Imp |
Bl= (AN B)
Imp |

Al=(B = (AN B))

All assumptions discharged; proof complete




Example 2

B =

ANB

Truth Introduction: And Introduction:

A B
T And |
AANB
Or Introduction:
A B
OI'L | OFR I
AV B AV B
Not Introduction: Implication Introduction:
A A
F
—— Not | Imp |
-A A= B

No False Introduction



Example 2

And |

ANB

B =

ANB

Imp

Truth Introduction: And Introduction:

A B
T Tl And |
AANB
Or Introduction:
A B
OI'L I OFR I
Av B AV B

Not Introduction: Implication Introduction:

A A

E

—— Not | Imp |
-A A= B

No False Introduction



Truth Introduction: And Introduction:

A B
T And |
AANB
Or Introduction:
m A B
Xa e OrL | OFR I
AV B AV B
Not Introduction: Implication Introduction:
A A
F
—— Not | Imp |
-A A= B

No False Introduction

A B
ANB
B = (AAB)

AClosed proofs must discharge all hypotheses

AOtherwise have theorem relative to undischarged
hypotheses

AHer e we have proved AA@RSBN

And |

Imp |



Example 3

A A A

— And | Imp |
ANA B= A

Imp | Imp |

A= (ANA) A= (B=A)

AThe rules may discharge multiple
iInstances of hypotheses

AOr they may dischargeone
AEach (implicit) assumption* can be discharged only c

* in the sense of the previous slide



Need for Elimination Rules

ASo far, have rules to i n
propositions

ANo rules for how to “use’
No assumptions with logical connectives

ANeed “elimination” rul es

Example Can’ t+ Bpr((Biv@t (AtAC))
with what we have so far

AElimination rules assume assumption with a connective;
have general conclusion

AGenerally, needs additional hypotheses



Elimination Rules

False Elimination:

F
—FE
C

And Elimination:
A
AN B C
C

Or Elimination:

A B

AvB C C
C

OrE

Not Elimination:

-A A
Not E
C
B
ANB C
AndR E
C
Implication Elimination:
B
A=B A C(C
Imp E
C



And | :
. ANB ANB C
And; E
Implication Introduction: C
B
A :
. . . : AAB C
B Andg E
Imp | C
A=B
Implication Elimination:
B
A=B A C
Imp E
C

(A=B)=(B=C(C)= (A= ())



Example with
Elimination e
B=C B C

Imp E
A=B A C
Imp E
c I I
mp
A= C
Imp |

(B=C)= (A= ()
(A=B)=(B=(C)= (A= (0))

Imp |



Some Derived Rules

Modus Ponens

A=B A A=B A B
MP Imp E
B B

Left Conjunct

ANB ANB A
—— AndL And; E
A A

Right Conjunct

ANB ANB B
—— AndR Andg E
B B




Assumptions in Natural Deduction

Problem: Keeping track of hypotheses and their discharge Iin
Natural Deduction is HARD!

A Solution: Use sequents to track hypotheses

A sequent is a pair of

A#: a set of propositions (called assumptions, or hypotheses
of sequent) and

A A: a proposition (called conclusion of sequent)

A Notation:
[ A

A Note: U expresses syntactic derivation (vas semantic



Sequent Rules: Introduction

[ is set of propositions (assumptions/hypotheses)
Hypothesis Introduction:

Hyp
FTU{A} A
Truth Introduction: And Introduction:
[FA T+HB
ﬁ Tl And |
[FAAB
Or Introduction:
[ A - B
OI’L | OFR |
[FAV B [FAV B
Not Introduction: Implication Introduction:
FU{A}FF rU{A}+ B
Not | Imp |

[ -A [ FA=B



Sequent Rules: Elimination

[ is set of propositions (assumptions/hypotheses)

Not Elimination: Implication Elimination:
[F-A [FHA [FA=B ITHFA TU{B}FC
Not E Imp E
[+ C [+ C
And Elimination:
[FAANB TU{A}FC TFAAB TU{B}FC
And; E Andgr E
[ - C [ - C
False Elimination: Or Elimination:
[ - F rFAVB TU{A}l-C TU{B}FC
——FE Or E

[=C [=C



And Elimination:

r-AAB TU{A}FC

— Hyp
FrU{A}+ A e And, E

Hypothesis Introduction:

And Introduction:
r-AanB TU{B}FC

Example Revisited A

Implication Introduction: Implication Elimination:
ru{At+ B r’FA=B T+FA TU{B}+-C

{[I1F(A=B)=((B=(0)= (A= (0))



And Elimination:

FrEAAB TU{A}FC
Hyp
rU{A}l—A re-c

Hypothesis Introduction:

And Introduction:

FrFAAB TU{B}FC
An RE

Example Revisited e

SUAEs ians st
3={A=B, B=C, A} e
,={A= B, B= C, A B}
s={A= B, B=C, A B, C}
Hyp Hyp Hyp
Hyp Hyp [,FB=C I4sB IsFC
Imp E
[sFA=B I3FA (s C
| Imp E
3;={A=B, B=C, A} C
Imp |
{A=B, B=C}FA=C
Imp |
{A=B}-(B=(C)= (A= ()
Imp |

{}IF(A=B)= ((B=C)= (A= ())



Desired Properties of a Proof System

ASoundnessif something is provable, it is valid

Suppose( BB R UO0is provable. Then, for every
valuationv , iffor everyBwe have® U ( , thenO U 0.

True for natural deduction.

ACompletenessif something is valid, it iprovable
Forgiven rules, can not prove A-A. Needan axiom

More: https:// courses.qgrainger.illinois.edu/cs477/sp2020/lecturesfbp-proof-soundness. pdf



https://courses.grainger.illinois.edu/cs477/sp2020/lectures/04-prop-proof-soundness.pdf

Tool Support: Boolean Satistiability

SAT Solver

ATakes a logical formula

AReturns a satisfying valuation (@nsaj

ADifficulty: Answering if P satisfiableis NRcomplete

Powerhor ses of many of today’ s
AFinding the solution is NRard in general

AThere are many good heuristics for common formulas arising
from analysis of programs

AWe will use Z3 (which can do much more) in paject
assignments.



Basic Solution Algorithm

ADPLLDavisPutnam-LogemanrLoveland, 1961;
many modern algorithms derive from it in some way

AOperates on the formula in CNF

ACore— Backtracking:

ARecursively, choose a literal, set a truth value, check if the
simplified formula was satisfied,

Aif not invert the truth value of the literal, and try again

AAggressive simplification:

AUnit clausescontains only a single unassignédral — it
can be set in only one way to make the clause true!

APure literal elimination: only x (orx) occur in all clauses
assign it tanake allclauseghat contain ittrue



DPLL algorithm

Algorithm DPLL

Input: A set of clauses /Ein CNF.
Output: A Truth Value

function DPLL(ZAES
if /Eis a consistent set of literals then
return true;
if /Econtains an empty clause then
return false;

for every unit clause {I} in A do
/A [Binit - propagate(l, /&S K
for every literal | that occurs pure Iin /Edo

/A [pure-literal -assign(l, /&S K
I B AEIltdrafA A£S K
return DPLL( A& {I[}) or DPLL( A& {not(l )});

From Wikipediahttps://en.wikipedia.org/wiki/DPLL algorithry



https://en.wikipedia.org/wiki/DPLL_algorithm

Some Practical Consequences

ASome classes of SAT formulas are easier to solve than o
Practical solvers apply m.

APick better order of variables (e.g., conflict driven resolutio

A Estimate which version of algorithm will be better for the
l nput formul a, and run one

AEmploy machine learning

AWe didn’t yet i-nRirstooddripgic(soon

AWe don’t yet know how to
obey the rules of arithmetic and similar theories (e.g.,
uninterpretedfunctions, theory of arrays and others)

AWe will introduce SMT solving (later in the class)



