CS 477: Background and
Propositional Logic

Sasa Misailovic

Based on previous slides by Elsa Gunter, which were based
on earlier slides by Gul Agha, and Mahesh Viswanathan

University of lllinois at Urbana-Champaign



Propositional Logic

The Language of Propositional Logic
* Constants {T,F}

e Countable set AP of propositional variables (x,y,z),
a.k.a. propositional atoms, a.k.a. atomic propositions

* logical connectives: A (and); V (or); - (not); =
(implies);< (if and only if)



Propositional Logic (cont.)

The set of propositional formulae PROP is the inductive
closure of the previous elements as follows:

« {T,F}SPROP
* AP €PROP
 if A EPROP then (A) EPROP and -A EPROP

« if A EPROP and B EPROP then (A AB ) EPROP,
(AVB) EPROP, (A =B ) EPROP, (A =B ) EPROP.

* Nothing else is in PROP

* Informal definition; formal definition requires math
foundations, set theory, fixed point theorem ...



Propositional Logic

We can write it as a grammar too:

e C:u=T|F

e AP:=x]|y|z]|..

e PROP::=C | AP | (PROP) | =PROP

PROP A PROP | PROP V PROP
PROP = PROP | PROP & PROP

We can get various “sentences” in this language.
Eg. XAV, (XAYy)=>(xVy),xV-xT

But what is their meaning?



Toward Propositional Logic Semantics

Model for Propositional Logic has three parts

* Mathematical set of values used as meaning of
propositions

* Interpretation function giving meaning to props
built from logical connectives, via structural
recursion

e Standard Model of Propositional Logic
* Boolean values B = {true,false}

Example valuation:

i AP B
e avaluationv:AP - B ,

X rue

y false

Background read: Z true

https://courses.engr.illinois.edu/cs498mv/fa2018/PropositionallLogic.pdf



https://courses.engr.illinois.edu/cs498mv/fa2018/PropositionalLogic.pdf

Semantics of Propositional Logic

Standard interpretation |, defined by structural induction on formulae:
* [, (T) = true and [, (F) = false
« [fa€e AP thenl, (a) =v (a)

 For p € PROP , if [, (p) = true then I, (-p) = false, and if
[, (p) = false then I, (-p) = true

v
 For p,q € PROP :
If [, (p) = true and I, (q) = true, then [, (pAq) = true, else I, (pAq) = false
If [, (p) = true or I, (q) = true, then I, (pvq) = true, else [, (pvq) = false
If [, (q) = true or I, (p) = false, then [, (p=q) = true, else I, (p=q) = false
If I, (p) = I, (q) then L, (p&q) = true, else I, (p&q) = false



Example

* [, (T) = true and I, (F) = false
If a € AP then I, (a) = v (a)
* For p € PROP, if |, (p) = true then |, (wp) = false, and if
I, (p) = false then I, (=p) = true
.+ For p,q € PROP:
* If1, (p) = true and I, (q) = true, then I, (p Aq) = true, else 1, (p Aq) = false
* If], (p) = true or I, (q) = true, then I, (p vq) = true, else I, (p vq) = false
+ If1, (q) = true or I, (p) = false, then I, (p =q) = true, else I, (p =q) = false
« If1, (p) = I, (q) then I (p <q) = true, else I (p <q) = false

PAG|pVg | p=>q|peq

true | true
true | false
false | true
false | false




Example

* [, (T) = true and I, (F) = false
* Ifa € AP then |, (a) = v (a)
* For p € PROP, if |, (p) = true then I, (=p) = false, and if
I, (p) = false then I, (mp) = true
* For p,q € PROP:
* If1, (p) = true and I, (q) = true, then I (p Aq) = true, else 1, (p Aq) = false
* If], (p) = true or I, (q) = true, then I, (p vq) = true, else I, (p vq) = false
« If1, (q) = true or I, (p) = false, then I, (p =q) = true, else I, (p =q) = false
« If1, (p) = I, (q) then I (p <q) = true, else I (p <q) = false

P q p | PAQIPVqGIp=q|p=(q
true | true | false | true | true | true true
true | false | false | false | true | false | false
false | true | true | false | true | true false
false | false | true | false | false | true true




Semantics of Propositional Logic

(B,I) is the standard model of proposition logic

= : Given valuation v and proposition p EPROP,
we write v = P iff IV (p) = true (the = symbol name is called “double turnstile”)

* More fully written as B,I,v = p.
* Can also write (B,I,v,p) € =

» Say|valuation v satisfies p, or v models p

* Writev £ p if [, (p) = false

* pis if there exists valuation v such thatv = p
*pis ,a.k.a.a if for every valuation v we have v = p
*pis to g, p = q if for every valuation, v, we have

v &= p iff v = q. Claim: Logical equivalence is an equivalence relation

We can have other models of this logic, e.g. defined via sets



Example Tautology

A= ((A= B)= B)

A B A=B|(A=B)=B|A=((A= B)= B)
true | true true true true
true | false | false true true
false | true true true true
false | false | true false true




Some Useful Logical Equivalences

—A=A
(AVA) = A
(ANA)= A

AVB=BVA

AANB=BAA
(AN-A)=F
(AV-A) =T
(TAA)=A
(TVA=T

(FAA) =F

-T=F --F=T
(AVB)VC=AvV(BVC()
(ANABYAC=AAN(BAC)

-(AV B) = (-A) A (—B)

-(AAB) = (-A)V (—B)
AV(BANC)=(AVB)A(AV Q)
(AAB)VC=(AVC)A(BV ()
AN(BVC)=(AAB)V(AANCQ)
(AAB)VC=(AANC)V(BACQ)

(FVA) = A



Normal Forms

Conjunctive normal form (CNF):

AV AP,

Disjunctive normal form (DNF):

where [ and J are index sets

Question:

What is the computational
complexity of finding a
satisfying assignment of
variables?



Notions of Logical Consequence

VED
* As we defined on the previous slides

I' - pistrueiff thereis a
proof from the formulas in I" to the formula p

* Deductive system: a list of rules that express
which formulas can legally follow which.

* Proof (aka derivation): a sequence of formulas
that follow the rules of the deductive apparatus



Proofs in Propositional Logic

Constructing the full truth table is expensive!

Natural Deduction proof is tree and a discharge function
* Nodes are instances of inference rules
* Leaves are assumptions of subproofs

* Discharge function maps each leaf of the tree to an
ancestor as prescribed by the inference rules

See also: https://en.wikipedia.org/wiki/Propositional calculus#Example 2. Natural deduction system



https://en.wikipedia.org/wiki/Propositional_calculus#Example_2._Natural_deduction_system

Proofs in Propositional Logic

* Inference rule has hypotheses and conclusion
* Conclusion (C) is a single proposition

* Hypotheses (H) are zero or more propositions, possibly
with (discharged) hypotheses

e Rule with no hypotheses is called an axiom (A)

* Inference rule graphically presented as

axioms
hypotheses Aj Ak
: : label
(syntactically) Hi ... Hi ... H ... H¢ ... H,
“entails” rule

conclusion



Natural Deduction Inference Rules

Proof system: Inference rules associated with connectives
Two main kinds of inference rules in natural deduction:

. A
 Introduction: says how to ;
conclude proposition made 5
from connective Is true Imp |
A= B

+ Eliminations: says how to 5

use a proposition made from |
connective to prove result Imp E




Introduction Rules

Truth Introduction:

— T
T

Or Introduction:
A
AV B

Or_.r_ |

Not Introduction:
A
F
—— Not |

—A

No False Introduction

And Introduction:

A B
ANB

B
AV B

A

A= B

And |

Orﬁ» |

Implication Introduction:

Imp |



Elimination Rules

False Elimination:

F
—FE
C

And Elimination:
A
AN B C
C

Or Elimination:

A B

AvB C C
C

OrE

Not Elimination:

-A A
Not E
C
B
ANB C
AndR E
C
Implication Elimination:
B
A=B A C(C
Imp E
C



Desired Properties of a Proof System

* Soundness: if something is provable, it is valid

 Completeness: if something is valid, it is provable



Why: Conjunction? (slightly simplified)

Introduction: * Local soundness: if we introduce a conjunction
A B and then eliminate it, we should be able to
And | remove the whole subtree [local reduction =p ]
AN B * Local completeness: we can eliminate the

conjunction such that we can still reconstruct it

Elimination: *simplified by applying introduction [local expansion = |

ANB
AndLE
A
ANB
Andg E
B

*From https://www.cs.cmu.edu/~fp/courses/atp/handouts/ch2-natded.pdf for full description



https://www.cs.cmu.edu/~fp/courses/atp/handouts/ch2-natded.pdf

Why: Conjunction? (slightly simplified)

Introduction:

A B
—— And |
AN B

Elimination: *simplified

ANAB

— And,E
A

AN B

- Andg E
B

* Local soundness: if we introduce a conjunction
and then eliminate it, we should be able to
remove the whole subtree [local reduction = ]

* Local completeness: we can eliminate the
conjunction such that we can still reconstruct it
by applying introduction [local expansion = |

*|local soundness:

D £ D £
A ltrue B true A lrue B true

D
Al — -

AN B true n A true AN B frue Al —p B true

J"\]",L .-"\ER_

A lrue B true

*local completeness:

D D
AN B true A n B frue
. AFEq,
TE A true B true

D
AN DB true

AER

Al

AN B true

*From https://www.cs.cmu.edu/~fp/courses/atp/handouts/ch2-natded.pdf for full description



https://www.cs.cmu.edu/~fp/courses/atp/handouts/ch2-natded.pdf

Why: Conjunction? (full rule)

Introduction: * Local soundness: if we introduce a conjunction
A B and then eliminate it, we should be able to
And | remove the whole subtree [local reduction = ]
AN B

* Local completeness: we can eliminate the
conjunction such that we can still reconstruct it
by applying introduction [local expansion = ]

Elimination:
A
ANB C
AndL E
C
B (Your turn)
AANB C
AndR E



Introduction Rules

Truth Introduction:

— T
T

Or Introduction:
A
AV B

Or_.r_ |

Not Introduction:
A
F
—— Not |

—A

No False Introduction

And Introduction:

A B
ANB

B
AV B

A

A= B

And |

Orﬁ» |

Implication Introduction:

Imp |



Example 1

Truth Introduction: And Introduction:

A B
T And |
AANB
Or Introduction:
Ol’[_ I OFR I
AV B AV B
Not Introduction: Implication Introduction:
A A
F
—— Not | Imp |
-A A= B

No False Introduction

—(B =

ANB



Example 1

A B
ANB

And |

Truth Introduction: And Introduction:

A B
T And |
AANB
Or Introduction:
OI'L I OFR I
AV B AV B
Not Introduction: Implication Introduction:
A A
F
—— Not | Imp |
-A A= B

No False Introduction

B =

Imp |

ANB

A=(B =

ANB

Imp |



Truth Introduction: And Introduction:

Example 1 IZEP T
Al |B
And |
ANB
Imp |
Bl= (AN B)
Imp |

Al=(B = (AN B))

All assumptions discharged; proof complete




Example 2

B =

ANB

Truth Introduction: And Introduction:

A B
T And |
AANB
Or Introduction:
A B
OI'L | OFR I
AV B AV B
Not Introduction: Implication Introduction:
A A
F
—— Not | Imp |
-A A= B

No False Introduction



Example 2

And |

ANB

B =

ANB

Imp

Truth Introduction: And Introduction:

A B
T Tl And |
AANB
Or Introduction:
A B
OI'L I OFR I
Av B AV B

Not Introduction: Implication Introduction:

A A

E

—— Not | Imp |
-A A= B

No False Introduction



Truth Introduction: And Introduction:

A B
T And |
AANB
Or Introduction:
m A B
Xa e OrL | OFR I
AV B AV B
Not Introduction: Implication Introduction:
A A
F
—— Not | Imp |
-A A= B

No False Introduction

A B
ANB
B = (AAB)

 Closed proofs must discharge all hypotheses

« Otherwise have theorem relative to undischarged
hypotheses

» Here we have proved “Assuming A, we have B =(A A B)”

And |

Imp |



Example 3

A A A
— And | Imp |
ANA B= A

Imp | Imp |
A= (ANA) A= (B=A)

* The rules may discharge multiple
instances of hypotheses

* Or they may discharge none
* Each (implicit) assumption™ can be discharged only once

*in the sense of the previous slide



Need for Elimination Rules

 So far, have rules to “introduce” logical connectives into
propositions

* No rules for how to “use” logical connectives
No assumptions with logical connectives

* Need “elimination” rules
Example: Can’t prove (A =B) =((B =C) =(A =C))
with what we have so far

* Elimination rules assume assumption with a connective;
have general conclusion

* Generally, needs additional hypotheses



Elimination Rules

False Elimination:

F
—FE
C

And Elimination:
A
AN B C
C

Or Elimination:

A B

AvB C C
C

OrE

Not Elimination:

-A A
Not E
C
B
ANB C
AndR E
C
Implication Elimination:
B
A=B A C(C
Imp E
C



And | :
. ANB ANB C
And; E
Implication Introduction: C
B
A :
. . . : AAB C
B Andg E
Imp | C
A=B
Implication Elimination:
B
A=B A C
Imp E
C

(A=B)=(B=C(C)= (A= ())



Example with
Elimination e
B=C B C

Imp E
A=B A C
Imp E
c I I
mp
A= C
Imp |

(B=C)= (A= ()
(A=B)=(B=(C)= (A= (0))

Imp |



Some Derived Rules

Modus Ponens

A=B A A=B A B
MP Imp E
B B

Left Conjunct

ANB ANB A
—— AndL And; E
A A

Right Conjunct

ANB ANB B
—— AndR Andg E
B B




Assumptions in Natural Deduction

Problem: Keeping track of hypotheses and their discharge Iin
Natural Deduction is HARD!

« Solution: Use sequents to track hypotheses

A sequent is a pair of

« ['. a set of propositions (called assumptions, or hypotheses
of sequent) and

« A: a proposition (called conclusion of sequent)

[FA

* Note: I expresses syntactic derivation (= was semantic)

* Notation:



Sequent Rules: Introduction

[ is set of propositions (assumptions/hypotheses)
Hypothesis Introduction:

Hyp
FTU{A} A
Truth Introduction: And Introduction:
[FA T+HB
ﬁ Tl And |
[FAAB
Or Introduction:
[ A - B
OI’L | OFR |
[FAV B [FAV B
Not Introduction: Implication Introduction:
FU{A}FF rU{A}+ B
Not | Imp |

[ -A [ FA=B



Sequent Rules: Elimination

[ is set of propositions (assumptions/hypotheses)

Not Elimination: Implication Elimination:
[F-A [FHA [FA=B ITHFA TU{B}FC
Not E Imp E
[+ C [+ C
And Elimination:
[FAANB TU{A}FC TFAAB TU{B}FC
And; E Andgr E
[ - C [ - C
False Elimination: Or Elimination:
[ - F rFAVB TU{A}l-C TU{B}FC
——FE Or E

[=C [=C



And Elimination:

r-AAB TU{A}FC

— Hyp
FrU{A}+ A e And, E

Hypothesis Introduction:

And Introduction:
r-AanB TU{B}FC

Example Revisited A

Implication Introduction: Implication Elimination:
ru{At+ B r’FA=B T+FA TU{B}+-C

{[I1F(A=B)=((B=(0)= (A= (0))



And Elimination:

FrEAAB TU{A}FC
Hyp
rU{A}l—A re-c

Hypothesis Introduction:

And Introduction:

FrFAAB TU{B}FC
An RE

Example Revisited e

SUAEs ians st
3={A=B, B=C, A} e
,={A= B, B= C, A B}
s={A= B, B=C, A B, C}
Hyp Hyp Hyp
Hyp Hyp [,FB=C I4sB IsFC
Imp E
[sFA=B I3FA (s C
| Imp E
3;={A=B, B=C, A} C
Imp |
{A=B, B=C}FA=C
Imp |
{A=B}-(B=(C)= (A= ()
Imp |

{}IF(A=B)= ((B=C)= (A= ())



Desired Properties of a Proof System

e Soundness: if something is provable, it is valid

Suppose {H4, ..., H, } + Pis provable. Then, for every
valuation v, if for every i we havev E H;,thenv EP.

True for natural deduction.

* Completeness: if something is valid, it is provable
For given rules, can not prove A V -A. Need an axiom.

More: https://courses.grainger.illinois.edu/cs477/sp2020/lectures/04-prop-proof-soundness.pdf



https://courses.grainger.illinois.edu/cs477/sp2020/lectures/04-prop-proof-soundness.pdf

Tool Support: Boolean Satistiability

SAT Solver
* Takes a logical formula
e Returns a satisfying valuation (or unsat)

 Difficulty: Answering if P is satisfiable is NP-complete

Power-horses of many of today’s analysis
* Finding the solution is NP-hard in general

* There are many good heuristics for common formulas arising
from analysis of programs

* We will use Z3 (which can do much more) in our project
assignments.



Basic Solution Algorithm

e DPLL (Davis—Putnam—-Logemann—Loveland), 1961:
many modern algorithms derive from it in some way

e Operates on the formula in CNF

* Core — Backtracking:
* Recursively, choose a literal, set a truth value, check if the
simplified formula was satisfied;

* if not invert the truth value of the literal, and try again

* Aggressive simplification:
* Unit clauses: contains only a single unassigned literal — it
can be set in only one way to make the clause true!

* Pure literal elimination: only x (or —x) occur in all clauses —
assign it to make all clauses that contain it true



DPLL algorithm

Algorithm DPLL
Input: A set of clauses O in CNF.
Output: A Truth Value.

function DPLL(O)

if O is a consistent set of literals then
return true;

if O contains an empty clause then
return false;

for every unit clause {1} in 0 do
® « unit-propagate(1l, 0);

for every literal 1 that occurs pure in 0 do
® « pure-literal-assign(l, 0);

1 « choose-literal(0);

return DPLL(® A {1}) or DPLL(® A {not(1)});

From Wikipedia: https://en.wikipedia.org/wiki/DPLL algorithm



https://en.wikipedia.org/wiki/DPLL_algorithm

Some Practical Consequences

 Some classes of SAT formulas are easier to solve than others.
Practical solvers apply many ‘tricks’ under the hood, e.g.,

* Pick better order of variables (e.g., conflict driven resolution)

* Estimate which version of algorithm will be better for the
input formula, and run one algorithm from the “portfolio”

* Employ machine learning

* We didn’t yet introduce quantifiers -> First-order logic (soon)

* We don’t yet know how to solve formulas that also should
obey the rules of arithmetic and similar theories (e.g.,
uninterpreted functions, theory of arrays and others)

* We will introduce SMT solving (later in the class)



