
CS 477: Background and
Propositional Logic

Sasa Misailovic

Based on previous slides by Elsa Gunter, which were based
on earlier slides by Gul Agha, and Mahesh Viswanathan

University of Illinois at Urbana-Champaign

Propositional Logic

The Language of Propositional Logic

• Constants {T,F}

• Countable set AP of propositional variables (x,y,z),
a.k.a. propositional atoms, a.k.a. atomic propositions

• logical connectives: ∧ (and); ∨ (or); ¬ (not); ⇒
(implies);⇔ (if and only if)

Propositional Logic (cont.)

The set of propositional formulae PROP is the inductive
closure of the previous elements as follows:

• {T,F}⊆PROP

• AP ⊆PROP

• if A ∈PROP then (A) ∈PROP and ¬A ∈PROP

• if A ∈PROP and B ∈PROP then (A ∧B) ∈PROP ,
(A ∨B) ∈PROP , (A ⇒B) ∈PROP , (A ⇔B) ∈PROP .

• Nothing else is in PROP

• Informal definition; formal definition requires math
foundations, set theory, fixed point theorem ...

Propositional Logic

We can write it as a grammar too:

• C ::= T | F

• AP ::= x | y | z | …

• PROP ::= C | AP | (PROP) | ¬PROP
| PROP ∧ PROP | PROP ∨ PROP
| PROP ⇒ PROP | PROP ⇔ PROP

We can get various “sentences” in this language.
E.g. x ∧ y , (x ∧ y) ⇒ (x ∨ y), x ∨ ¬ x⇔ T

But what is their meaning?

Toward Propositional Logic Semantics

Model for Propositional Logic has three parts

• Mathematical set of values used as meaning of
propositions

• Interpretation function giving meaning to props
built from logical connectives, via structural
recursion

• Standard Model of Propositional Logic
• Boolean values B = {true,false}

• a valuation v : AP → B
AP B

x true

y false

z true

Example valuation:

Background read:
https://courses.engr.illinois.edu/cs498mv/fa2018/PropositionalLogic.pdf

https://courses.engr.illinois.edu/cs498mv/fa2018/PropositionalLogic.pdf

Semantics of Propositional Logic

Standard interpretation Iv defined by structural induction on formulae:

• Iv (T) = true and Iv (F) = false

• If a ∈ AP then Iv (a) = v (a)

• For p ∈ PROP , if Iv (p) = true then Iv (¬p) = false, and if

Iv (p) = false then Iv (¬p) = true

• For p,q ∈ PROP :

•If Iv (p) = true and Iv (q) = true, then Iv (p∧q) = true, else Iv (p∧q) = false

•If Iv (p) = true or Iv (q) = true, then Iv (p∨q) = true, else Iv (p∨q) = false

•If Iv (q) = true or Iv (p) = false, then Iv (p⇒q) = true, else Iv (p⇒q) = false

•If Iv (p) = Iv (q) then Iv (p⇔q) = true, else Iv (p⇔q) = false

Example

Example

Semantics of Propositional Logic
(B,I) is the standard model of proposition logic

• Satisfaction relation  : Given valuation v and proposition p ∈PROP,
we write v  p iff Iv (p) = true (the  symbol name is called “double turnstile”)

• More fully written as B,I,v  p.

• Can also write (B,I,v,p)  

• Say valuation v satisfies p, or v models p

• Write v  p if Iv (p) = false

• p is satisfiable if there exists valuation v such that v  p

• p is valid, a.k.a. a tautology if for every valuation v we have v  p

• p is logically equivalent to q, p ≡ q if for every valuation, v , we have
v  p iff v  q. Claim: Logical equivalence is an equivalence relation

We can have other models of this logic, e.g. defined via sets

Example Tautology

Some Useful Logical Equivalences

Normal Forms

Conjunctive normal form (CNF):

Disjunctive normal form (DNF):

where I and J are index sets

APi,j

APi,j

Question:
What is the computational
complexity of finding a
satisfying assignment of
variables?

Notions of Logical Consequence

Semantic entailment: v  p

• As we defined on the previous slides

Syntactic entailment: Γ ⊢ 𝑝 is true iff there is a
proof from the formulas in Γ to the formula p

• Deductive system: a list of rules that express
which formulas can legally follow which.

• Proof (aka derivation): a sequence of formulas
that follow the rules of the deductive apparatus

Proofs in Propositional Logic

Constructing the full truth table is expensive!

Natural Deduction proof is tree and a discharge function

• Nodes are instances of inference rules

• Leaves are assumptions of subproofs

• Discharge function maps each leaf of the tree to an
ancestor as prescribed by the inference rules

See also: https://en.wikipedia.org/wiki/Propositional_calculus#Example_2._Natural_deduction_system

https://en.wikipedia.org/wiki/Propositional_calculus#Example_2._Natural_deduction_system

Proofs in Propositional Logic

• Inference rule has hypotheses and conclusion

• Conclusion (C) is a single proposition

• Hypotheses (H) are zero or more propositions, possibly

with (discharged) hypotheses

• Rule with no hypotheses is called an axiom (A)

• Inference rule graphically presented as

axioms

hypotheses

conclusion

(syntactically)
“entails”

label

Natural Deduction Inference Rules

Proof system: Inference rules associated with connectives
Two main kinds of inference rules in natural deduction:

• Introduction: says how to
conclude proposition made
from connective is true

• Eliminations: says how to
use a proposition made from
connective to prove result

Introduction Rules

Elimination Rules

Desired Properties of a Proof System

• Soundness: if something is provable, it is valid

• Completeness: if something is valid, it is provable

Why: Conjunction? (slightly simplified)
• Local soundness: if we introduce a conjunction

and then eliminate it, we should be able to
remove the whole subtree [local reduction ⇒𝑅]

• Local completeness: we can eliminate the
conjunction such that we can still reconstruct it
by applying introduction [local expansion ⇒𝐸]

*From https://www.cs.cmu.edu/~fp/courses/atp/handouts/ch2-natded.pdf for full description

https://www.cs.cmu.edu/~fp/courses/atp/handouts/ch2-natded.pdf

Why: Conjunction? (slightly simplified)
• Local soundness: if we introduce a conjunction

and then eliminate it, we should be able to
remove the whole subtree [local reduction ⇒𝑅]

• Local completeness: we can eliminate the
conjunction such that we can still reconstruct it
by applying introduction [local expansion ⇒𝐸]

*From https://www.cs.cmu.edu/~fp/courses/atp/handouts/ch2-natded.pdf for full description

*local soundness:

*local completeness:

https://www.cs.cmu.edu/~fp/courses/atp/handouts/ch2-natded.pdf

Why: Conjunction? (full rule)
• Local soundness: if we introduce a conjunction

and then eliminate it, we should be able to
remove the whole subtree [local reduction ⇒𝑅]

• Local completeness: we can eliminate the
conjunction such that we can still reconstruct it
by applying introduction [local expansion ⇒𝐸]

(Your turn)

Introduction Rules

Example 1

Example 1

Example 1

All assumptions discharged; proof complete

Example 2

Example 2

?

Example 2

• Closed proofs must discharge all hypotheses

• Otherwise have theorem relative to undischarged
hypotheses

• Here we have proved “Assuming A, we have B ⇒(A ∧ B)”

Example 3

• The rules may discharge multiple
instances of hypotheses

• Or they may discharge none

• Each (implicit) assumption* can be discharged only once
* in the sense of the previous slide

Need for Elimination Rules

• So far, have rules to “introduce” logical connectives into

propositions

• No rules for how to “use” logical connectives

No assumptions with logical connectives

• Need “elimination” rules

Example: Can’t prove (A ⇒B) ⇒((B ⇒C) ⇒(A ⇒C))

with what we have so far

• Elimination rules assume assumption with a connective;

have general conclusion

• Generally, needs additional hypotheses

Elimination Rules

Example with
Elimination

Example with
Elimination

Some Derived Rules

Assumptions in Natural Deduction

Problem: Keeping track of hypotheses and their discharge in
Natural Deduction is HARD!

• Solution: Use sequents to track hypotheses

A sequent is a pair of

• : a set of propositions (called assumptions, or hypotheses
of sequent) and

• A: a proposition (called conclusion of sequent)

• Notation:

• Note: ⊢ expresses syntactic derivation ( was semantic)

Sequent Rules: Introduction

Sequent Rules: Elimination

Example Revisited

Example Revisited

Desired Properties of a Proof System

• Soundness: if something is provable, it is valid

Suppose {H1, … , Hn } ⊢ P is provable. Then, for every
valuation v , if for every i we have v ⊨ Hi , then v ⊨ P.

True for natural deduction.

• Completeness: if something is valid, it is provable

For given rules, can not prove A ∨ ¬A. Need an axiom.

More: https://courses.grainger.illinois.edu/cs477/sp2020/lectures/04-prop-proof-soundness.pdf

https://courses.grainger.illinois.edu/cs477/sp2020/lectures/04-prop-proof-soundness.pdf

Tool Support: Boolean Satisfiability

SAT Solver

• Takes a logical formula

• Returns a satisfying valuation (or unsat)

• Difficulty: Answering if P is satisfiable is NP-complete

Power-horses of many of today’s analysis

• Finding the solution is NP-hard in general

• There are many good heuristics for common formulas arising
from analysis of programs

• We will use Z3 (which can do much more) in our project
assignments.

Basic Solution Algorithm

• DPLL (Davis–Putnam–Logemann–Loveland), 1961:
many modern algorithms derive from it in some way

• Operates on the formula in CNF

• Core – Backtracking:
• Recursively, choose a literal, set a truth value, check if the

simplified formula was satisfied;

• if not invert the truth value of the literal, and try again

• Aggressive simplification:
• Unit clauses: contains only a single unassigned literal – it

can be set in only one way to make the clause true!

• Pure literal elimination: only x (or x) occur in all clauses –
assign it to make all clauses that contain it true

DPLL algorithm
Algorithm DPLL

Input: A set of clauses Φ in CNF.

Output: A Truth Value.

function DPLL(Φ)

if Φ is a consistent set of literals then

return true;

if Φ contains an empty clause then

return false;

for every unit clause {l} in Φ do

Φ ← unit-propagate(l, Φ);

for every literal l that occurs pure in Φ do

Φ ← pure-literal-assign(l, Φ);

l ← choose-literal(Φ);

return DPLL(Φ ∧ {l}) or DPLL(Φ ∧ {not(l)});

From Wikipedia: https://en.wikipedia.org/wiki/DPLL_algorithm

https://en.wikipedia.org/wiki/DPLL_algorithm

Some Practical Consequences

• Some classes of SAT formulas are easier to solve than others.
Practical solvers apply many ‘tricks’ under the hood, e.g.,

• Pick better order of variables (e.g., conflict driven resolution)

• Estimate which version of algorithm will be better for the
input formula, and run one algorithm from the “portfolio”

• Employ machine learning

• We didn’t yet introduce quantifiers -> First-order logic (soon)

• We don’t yet know how to solve formulas that also should
obey the rules of arithmetic and similar theories (e.g.,
uninterpreted functions, theory of arrays and others)

• We will introduce SMT solving (later in the class)

