
CS 477: Background and
Propositional Logic

Sasa Misailovic

Based on previous slides by Elsa Gunter, which were based
on earlier slides by Gul Agha, and Mahesh Viswanathan

University of Illinois at Urbana-Champaign

Propositional Logic

The Language of Propositional Logic

ÅConstants {T,F}

ÅCountable set AP of propositional variables (x,y,z),
a.k.a. propositional atoms, a.k.a. atomic propositions

Ålogical connectives: ᷈(and); ᷉ (or); ¬ (not); ᵼ
(implies);ᵾ (if and only if)

Propositional Logic (cont.)

The set of propositional formulae PROP is the inductive
closure of the previous elements as follows:

Å{T,F}ṖPROP

ÅAP ṖPROP

Åif A ɴ PROP then (A) ɴPROP and ¬A ɴPROP

Åif A ɴ PROP and B ɴPROP then (A ᷈B) ɴ PROP ,
(A ᷉ B) ɴ PROP , (A ᵼB) ɴ PROP , (A ᵾB) ɴ PROP .

ÅNothing else is in PROP

ÅInformal definition; formal definition requires math
foundations, set theory, fixed point theorem ...

Propositional Logic

We can write it as a grammar too:

ÅC ::= T | F

ÅAP ::= x | y | z | …

ÅPROP ::= C | AP | (PROP) | ¬PROP
| PROP ᷈ PROP | PROP ᷉PROP
| PROP ᵼPROP | PROP ᵾ PROP

We can get various “sentences” in this language.
E.g. x ᷈ y , (x ᷈ y) ᵼ(x ᷉ y), x ᷉ ¬ xᵾ T

But what is their meaning?

Toward Propositional Logic Semantics

Model for Propositional Logic has three parts

ÅMathematical set of values used as meaning of
propositions

ÅInterpretation function giving meaning to props
built from logical connectives, via structural
recursion

ÅStandard Model of Propositional Logic
ÅBoolean values B = {true,false}

Åa valuation v : AP → B
AP B

x true

y false

z true

Example valuation:

Background read:
https://courses.engr.illinois.edu/cs498mv/fa2018/PropositionalLogic.pdf

https://courses.engr.illinois.edu/cs498mv/fa2018/PropositionalLogic.pdf

Semantics of Propositional Logic

Standard interpretation Iv defined by structural induction on formulae:

ÅIv (T) = true and I v (F) = false

ÅIf a ᶰAP then I v (a) = v (a)

ÅFor p ᶰPROP , if I v (p) = true then I v (¬p) = false, and if

Iv (p) = false then I v (¬p) = true

ÅFor p,q ᶰPROP :

ÅIf I v (p) = true and I v (q) = true, then I v (p q᷈) = true, else I v (p q᷈) = false

ÅIf I v (p) = true or I v (q) = true, then I v (p q᷉) = true, else I v (p q᷉) = false

ÅIf I v (q) = true or I v (p) = false, then I v (pᵼq) = true, else I v (pᵼq) = false

ÅIf I v (p) = I v (q) then I v (pᵾq) = true, else I v (pᵾq) = false

Example

Example

Semantics of Propositional Logic
(B,I) is the standard model of proposition logic

ÅSatisfaction relation ~: Given valuation v and proposition p ɴPROP,
we write v ~p iff Iv (p) = true (the~symbol name is called “double turnstile”)

ÅMore fully written as B,I,v ~p.

ÅCan also write (B,I,v,p) Í~

ÅSay valuation v satisfiesp, or v modelsp

ÅWrite v ~p if Iv (p) = false

Åp is satisfiableif there existsvaluation v such that v ~p

Åp is valid, a.k.a. a tautology if for every valuation v we have v ~p

Åp is logically equivalent to q, p Ɖ q if for every valuation, v , we have
v ~p iff v ~q. Claim: Logical equivalence is an equivalence relation

We can have other models of this logic, e.g. defined via sets

Example Tautology

Some Useful Logical Equivalences

Normal Forms

Conjunctive normal form (CNF):

Disjunctive normal form (DNF):

where I and J are index sets

APi,j

APi,j

Question:
What is the computational
complexity of finding a
satisfying assignment of
variables?

Notions of Logical Consequence

Semantic entailment: v ~p

ÅAs we defined on the previous slides

Syntactic entailment: ɜṲὴis true iff there is a
proof from the formulas in ɜto the formula p

ÅDeductive system: a list of rules that express
which formulas can legally follow which.

ÅProof (aka derivation): a sequence of formulas
that follow the rules of the deductive apparatus

Proofs in Propositional Logic

Constructing the full truth table is expensive!

Natural Deduction proof is tree and a discharge function

ÅNodes are instances of inference rules

ÅLeaves are assumptions of subproofs

ÅDischarge function maps each leaf of the tree to an
ancestor as prescribed by the inference rules

See also: https://en.wikipedia.org/wiki/Propositional_calculus#Example_2._Natural_deduction_system

https://en.wikipedia.org/wiki/Propositional_calculus#Example_2._Natural_deduction_system

Proofs in Propositional Logic

ÅInference rule has hypotheses and conclusion

ÅConclusion (C) is a single proposition

ÅHypotheses (H) are zero or more propositions, possibly

with (discharged) hypotheses

ÅRule with no hypotheses is called an axiom (A)

ÅInference rule graphically presented as

axioms

hypotheses

conclusion

(syntactically)
“entails”

label

Natural Deduction Inference Rules

Proof system: Inference rules associated with connectives
Two main kinds of inference rules in natural deduction:

ÅIntroduction: says how to
conclude proposition made
from connective is true

ÅEliminations: says how to
use a proposition made from
connective to prove result

Introduction Rules

Elimination Rules

Desired Properties of a Proof System

ÅSoundness: if something is provable, it is valid

ÅCompleteness: if something is valid, it is provable

Why: Conjunction? (slightly simplified)
ÅLocal soundness: if we introduce a conjunction

and then eliminate it, we should be able to
remove the whole subtree [local reduction ᵼ]

ÅLocal completeness: we can eliminate the
conjunction such that we can still reconstruct it
by applying introduction [local expansion ᵼ]

*From https://www.cs.cmu.edu/~fp/courses/atp/handouts/ch2-natded.pdffor full description

https://www.cs.cmu.edu/~fp/courses/atp/handouts/ch2-natded.pdf

Why: Conjunction? (slightly simplified)
ÅLocal soundness: if we introduce a conjunction

and then eliminate it, we should be able to
remove the whole subtree [local reduction ᵼ]

ÅLocal completeness: we can eliminate the
conjunction such that we can still reconstruct it
by applying introduction [local expansion ᵼ]

*From https://www.cs.cmu.edu/~fp/courses/atp/handouts/ch2-natded.pdffor full description

*local soundness:

*local completeness:

https://www.cs.cmu.edu/~fp/courses/atp/handouts/ch2-natded.pdf

Why: Conjunction? (full rule)
ÅLocal soundness: if we introduce a conjunction

and then eliminate it, we should be able to
remove the whole subtree [local reduction ᵼ]

ÅLocal completeness: we can eliminate the
conjunction such that we can still reconstruct it
by applying introduction [local expansion ᵼ]

(Your turn)

Introduction Rules

Example 1

Example 1

Example 1

All assumptions discharged; proof complete

Example 2

Example 2

?

Example 2

ÅClosed proofs must discharge all hypotheses

ÅOtherwise have theorem relative to undischarged
hypotheses

ÅHere we have proved ñAssuming A, we have B ᵼ(A ᷈B)ò

Example 3

ÅThe rules may discharge multiple
instances of hypotheses

ÅOr they may discharge none

ÅEach (implicit) assumption* can be discharged only once
* in the sense of the previous slide

Need for Elimination Rules

ÅSo far, have rules to “introduce” logical connectives into

propositions

ÅNo rules for how to “use” logical connectives

No assumptions with logical connectives

ÅNeed “elimination” rules

Example: Can’t prove (A ᵼB) ᵼ((B ᵼC) ᵼ(A ᵼC))

with what we have so far

ÅElimination rules assume assumption with a connective;

have general conclusion

ÅGenerally, needs additional hypotheses

Elimination Rules

Example with
Elimination

Example with
Elimination

Some Derived Rules

Assumptions in Natural Deduction

Problem: Keeping track of hypotheses and their discharge in
Natural Deduction is HARD!

ÅSolution: Use sequents to track hypotheses

A sequent is a pair of

Å#: a set of propositions (called assumptions, or hypotheses
of sequent) and

ÅA: a proposition (called conclusion of sequent)

ÅNotation:

ÅNote: Ṳexpresses syntactic derivation (~was semantic)

Sequent Rules: Introduction

Sequent Rules: Elimination

Example Revisited

Example Revisited

Desired Properties of a Proof System

ÅSoundness: if something is provable, it is valid

Suppose (ȟȣȟ(Ṳ0is provable. Then, for every
valuation v , if for every Éwe have ÖṺ(, then ÖṺ0.

True for natural deduction.

ÅCompleteness: if something is valid, it is provable

For given rules, can not prove A ᷉¬A. Need an axiom.

More: https:// courses.grainger.illinois.edu/cs477/sp2020/lectures/04-prop-proof-soundness.pdf

https://courses.grainger.illinois.edu/cs477/sp2020/lectures/04-prop-proof-soundness.pdf

Tool Support: Boolean Satisfiability

SAT Solver

ÅTakes a logical formula

ÅReturns a satisfying valuation (or unsat)

ÅDifficulty: Answering if P is satisfiableis NP-complete

Power-horses of many of today’s analysis

ÅFinding the solution is NP-hard in general

ÅThere are many good heuristics for common formulas arising
from analysis of programs

ÅWe will use Z3 (which can do much more) in our project
assignments.

Basic Solution Algorithm

ÅDPLL (Davis–Putnam–Logemann–Loveland), 1961:
many modern algorithms derive from it in some way

ÅOperates on the formula in CNF

ÅCore –Backtracking:
ÅRecursively, choose a literal, set a truth value, check if the

simplified formula was satisfied;

Åif not invert the truth value of the literal, and try again

ÅAggressive simplification:
ÅUnit clauses: contains only a single unassigned literal –it

can be set in only one way to make the clause true!

ÅPure literal elimination: only x (or ×x) occur in all clauses –
assign it to make all clauses that contain it true

DPLL algorithm
Algorithm DPLL

Input: A set of clauses Ǣ in CNF .

Output: A Truth Value .

function DPLL(Ǣƾ

if Ǣ is a consistent set of literals then

return true;

if Ǣ contains an empty clause then

return false;

for every unit clause {l} in Ǣ do

Ǣ β unit - propagate(l, ǢƾƘ

for every literal l that occurs pure in Ǣ do

Ǣ β pure - literal - assign(l, ǢƾƘ

Ì β ÃÈÏÏÓÅ- literal(ǢƾƘ

return DPLL(Ǣ ᷈ { l}) or DPLL(Ǣ ᷈ { not(l)});

From Wikipedia: https://en.wikipedia.org/wiki/DPLL_algorithm

https://en.wikipedia.org/wiki/DPLL_algorithm

Some Practical Consequences

ÅSome classes of SAT formulas are easier to solve than others.
Practical solvers apply many ‘tricks’ under the hood, e.g.,
ÅPick better order of variables (e.g., conflict driven resolution)

ÅEstimate which version of algorithm will be better for the
input formula, and run one algorithm from the “portfolio”

ÅEmploy machine learning

ÅWe didn’t yet introduce quantifiers -> First-order logic (soon)

ÅWe don’t yet know how to solve formulas that also should
obey the rules of arithmetic and similar theories (e.g.,
uninterpretedfunctions, theory of arrays and others)
ÅWe will introduce SMT solving (later in the class)

