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Previously, on CS 477

Propositional Logic:

• Syntax

• Semantics

• Proof

(Homework/Quiz #1 is out: due next Thursday)



Simple Imperative Programming 
Language

• I  Identifiers

•N  Numerals

•B ::= true | false 
| B & B | B or B | not B | E < E | E = E

•E::= N | I | E + E | E * E | E - E | - E

•S::= skip | S; S | I ::= E 
| if B then S else S fi | while B do S od
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Syntax -> Graphs

Reminder: Graph: (V, E) 
• V is a set of vertices (nodes)

• E ⊆ 𝑉 × 𝑉 is a relation denoting “connected” nodes. Elements 𝑒 ∈ 𝐸 are 
edges: pairs of connected vertices 𝑒 = 𝑣1, 𝑣2 . Can be directed or undirected. 

Common definitions: 
• Post(v) – successor vertices of v, Pre(v) – direct predecessor vertices of v

• Path: a sequence of vertices s.t. 𝑣𝑖 ∈ 𝑃𝑟𝑒(𝑣𝑖+1). Cycle when the same vertex 
multiple times in the path, else simple. Length: number of vertices in a path. 

• Acyclic graphs: no cycles. 

• Tree: exists 𝑣𝑟𝑜𝑜𝑡 (without predecessors) such that all other vertices reachable 
along unique paths

• Strongly connected component: all pairs of vertices mutually reachable

• Search: DFS, BFS; traversal: preorder, postorder, etc. 
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Syntax -> Graphs

•Parse Tree (from CS 374)

•Abstract Syntax Tree

•Control-flow Graph
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Flow Graphs

• Flow Graph: A triple G=(N,A,s), where (N,A) is a (finite) 
directed graph, s ∈ N is a designated “initial” node, and 
there is a path from node s to every node n ∈ N.

• An entry node in a flow graph has no predecessors.

• An exit node in a flow graph has no successors.

• There is exactly one entry node, s. We can modify a 
general DAG to ensure this. How?

• We can also transform the graph to have only one exit 
node. How?



Control Flow Graph (CFG)
• Flow Graph: A triple G=(N,A,s), where (N,A) is a (finite) 

directed graph, s ∈ N is a designated “initial” node, and there is 
a path from node s to every node n ∈ N.

• Control Flow Graph (CFG) is a flow graph that represents all 
paths (sequences of statements) that might be traversed 
during program execution.

• Nodes in CFG are program statements, and edge (S1,S2) denotes 
that statement S1 can be followed by S2 in execution. 

• In CFG, a node unreachable from s can be safely deleted. Why?

• Control flow graphs are usually sparse. I.e., | A |= O(| N |). In 
fact, if only binary branching is allowed | A | ≤ 2 | N |.



Control Flow Graph (CFG)

•Basic Block is a sequence of statements S1 ... Sn such 
that execution control must reach S1 before S2, and, if S1

is executed, then S2 . . . Sn are all executed in that order

•Unless some statement Si  causes the program to halt

• Leader is the first statement of a basic block

•Maximal Basic Block is a basic block with a maximum 
number of statements (n)



Control Flow Graph (CFG)
Let us refine our previous definition

•CFG is a directed graph in which:

• Each node is a single basic block

• There is an edge b1 → b2 if block b2 may be 
executed after block b1 in some execution

•We typically define it for a single procedure

•A CFG is a conservative approximation of the control 
flow! Why?



Example

Source Code

unsigned fib(unsigned n) {

int i;

int f0 = 0, f1 = 1, f2;

if (n <= 1) return n;

for (i = 2; i <= n; i++) {

f2 = f0 + f1;

f0 = f1;

f1 = f2;

} 

return f2;

}

LLVM bitcode (ver 3.9.1)

define i32 @fib(i32 %0) {
%2 = icmp ult i32 %0, 2
br i1 %2, label %12, label %3

; <label>:3:                        
br label %4

; <label>:4:
%5 = phi i32 [ %8, %4 ], [ 1, %3 ]
%6 = phi i32 [ %5, %4 ], [ 0, %3 ]
%7 = phi i32 [ %9, %4 ], [ 2, %3 ]
%8 = add i32 %5, %6
%9 = add i32 %7, 1
%10 = icmp ugt i32 %9, %0
br i1 %10, label %11, label %4

; <label>:11:
br label %12

; <label>:12: 
%13 = phi i32 [%0, %1], [%8, %11]
ret i32 %13

}



Dominance in Flow Graphs
• Let d, d1, d2, d3, n be nodes in G.

• d dominates n (“d dom n”) iff every path from s to n 
contains d

• d properly dominates n if d dominates n and d ≠ n

• d is the immediate dominator of n (“d idom n”) 
if d is the last proper dominator on any path from initial node to n,    

• DOM(x) denotes the set of dominators of x,

• Dominator tree: the children of each node d are the nodes n such 
that “d idom n” (immediately dominates)



Dominator Properties

• Lemma 1: DOM(s) = { s }.

• Lemma 2: s dom d, for all nodes d in G.

• Lemma 3: The dominance relation on nodes in a flow 
graph is a partial ordering

• Reflexive— n dom n is true for all n.

• Antisymmetric — If d dom n, then cannot be n dom d

• Transitive — d1 dom d2 ∧ d2 dom d3 ⇒ d1 dom d3

• Lemma 4: The dominators of a node form a list.

• Lemma 5: Every node except s has a unique immediate 
dominator.



Postdominance

Def. Postdomination: node p postdominates a 

node d iff all paths to the exit node of the graph 

starting at d must go through p

Def. Reverse Control Flow Graph (RCFG) of a CFG 

has the same nodes as CFG and has edge Y → X if X →

Y is an edge in CFG.

• p is a postdominator of d iff p dominates d in the 

RCFG.  



Semantics

•Expresses the meaning of syntax

•Static semantics
•Meaning based only on the form of the 
expression without executing it

•Usually restricted to type checking / type 
inference
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Dynamic semantics

•Method of describing meaning of executing a program
•Several different types:
•Operational Semantics
•Axiomatic Semantics
•Denotational Semantics

•Different languages better suited to different types of 
semantics
•Different types of semantics serve different purposes
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Operational Semantics

•Start with a simple notion of machine
•Describe how to execute (implement) programs of 

language on virtual machine, by describing how to 
execute each program statement (ie, following the 
structure of the program)

•Meaning of program is how its execution changes the 
state of the machine
•Useful as basis for implementations
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Denotational Semantics
•Construct a function M assigning a mathematical 

meaning to each program construct

• Lambda calculus often used as the range of the 
meaning function

•Meaning function is compositional: meaning of 
construct built from meaning of parts

•Useful for proving properties of programs
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Axiomatic Semantics

•Also called Floyd-Hoare Logic

•Based on formal logic (first order predicate 
calculus)

•Axiomatic Semantics is a logical system built 
from axioms and inference rules

•Mainly suited to simple imperative 
programming languages
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Axiomatic Semantics

•Used to formally prove a property (post-
condition) of the state (the values of the 
program variables) after the execution of 
program, assuming another property (pre-
condition) of the state before execution

•Written :

{Precondition} Program {Postcondition}

Much more about it later in the course!
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(  ,  )
Modeling Program Environment

Sources: https://www.researchgate.net/figure/Example-of-Control-Flow-Graph_fig5_4065402 and https://freesvg.org/computer-station-vector-graphics
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Program Environment
Pair of code to execute + a valuation (aka state)

Code to execute: Next statement and program text that remains to be executed: 
Statement_1; Other_Statements

A valuation of program variables:

• Mapping m: Identifiers-> Value

Program statements (“S1; S2; … Sn”) transform the valuations. Execution is then: 
• m2 = [[S1]](m1)

• m3 = [[S2]](m2)

• …

• mn+1 = [[Sn]](mn)

• Also (𝑠1, 𝑚1) ՜ (𝑠2, 𝑚2) ՜ (𝑠3, 𝑚3) ՜ …  (𝑠𝑛, 𝑚𝑛) (⋅, 𝑚𝑛+1). 

We can define the sequence (𝑠1, 𝑚1), (𝑠2, 𝑚2), 𝑠3, 𝑚3 , … , 𝑠𝑛, 𝑚𝑛 , (⋅, 𝑚𝑛+1)

or its projection (𝑚1, … 𝑚𝑛) as the trace of execution

21



Natural Semantics (“Big-step Semantics”)

•Aka Structural Operational Semantics, aka “Big Step 
Semantics”

• Provide value for a program by rules and derivations, similar to 
type derivations

• Rule conclusions look like 

(C, m)  m’

“Evaluating a command C in the state m results in the new state m’ ”

or

(E, m)  v

“Evaluating an expression E in the state m results in the value v’”
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Simple Imperative Programming 
Language

• I  Identifiers

•N  Numerals

•B ::= true | false 
| B & B | B or B | not B | E < E | E = E

•E::= N | I | E + E | E * E | E - E | - E

•C::= skip | C;C | I ::= E 
| if B then C else C fi | while B do C od
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Natural Semantics of Atomic 
Expressions

• Identifiers: (k,m)  m(k)

•Numerals are values: (N,m)  N

•Booleans:  (true,m)  true

(false ,m)  false
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Booleans: 
(B, m)  false     (B, m)  true  (B’, m)  b

(B & B’, m)  false          (B & B’, m)  b

(B, m)  true            (B, m)  false  (B’, m)  b

(B or B’, m)  true          (B or B’, m)  b

(B, m)  true                 (B, m)  false

(not B, m)  false        (not B, m)  true
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Binary Relations
(E, m)  U     (E’, m)  V   U rop V = b

(E rop E’, m)  b

•By U rop V = b, we mean does (the meaning of) the 
relation rop hold on the meaning of U and V

•May be specified by a mathematical expression/equation 
or rules matching U and V
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Arithmetic Expressions

(E, m)  U     (E’, m)  V   U op V = N

(E op E’, m)  N

where N is the specified value for (mathematical) U op V
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Commands

Skip:                 (skip, m)  m

Assignment:           (E,m)  V

(k :=E,m)  m [k <-- V ]

Sequencing:    (C,m)  m’ (C’,m’ )  m’’

(C; C’, m)  m’’
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If Then Else Command

(B,m)  true   (C,m)  m’

(if B then C else C’ fi, m)  m’

(B,m)  false   (C’,m)  m’

(if B then C else C’ fi, m)  m’
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Example: If Then Else Rule

(2,{x->7})2    (3,{x->7}) 3

(2+3, {x->7})5

(x,{x->7})7   (5,{x->7})5 (y:= 2 + 3, {x-> 7}

(x > 5, {x -> 7})true             {x- >7, y->5}

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7}) 

 ?
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Example: If Then Else Rule

(2,{x->7})2    (3,{x->7}) 3

(2+3, {x->7})5

(x,{x->7})7   (5,{x->7})5 (y:= 2 + 3, {x-> 7}

(x > 5, {x -> 7})?                 {x- >7, y->5}

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi,  {x -> 7}) 

 ? {x->7, y->5}
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Example: Arith Relation

(2,{x->7})2    (3,{x->7}) 3

? > ? = ? (2+3, {x->7})5

(x,{x->7})?   (5,{x->7})? (y:= 2 + 3, {x-> 7}

(x > 5, {x -> 7})?   {x- >7, y->5}

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7}) 

 ? {x->7, y->5}
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Example: Identifier(s)

(2,{x->7})2    (3,{x->7}) 3

7 > 5 = true                          (2+3, {x->7})5

(x,{x->7})7   (5,{x->7})5 (y:= 2 + 3, {x-> 7}

(x > 5, {x -> 7})?                {x- >7, y->5}

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7}) 

 ? {x->7, y->5}
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Example: Arith Relation

(2,{x->7})2    (3,{x->7}) 3

7 > 5 = true                      (2+3, {x->7})5

(x,{x->7})7   (5,{x->7})5 (y:= 2 + 3, {x-> 7}

(x > 5, {x -> 7})true             {x- >7, y->5}

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi,  {x -> 7}) 

 ? {x->7, y->5}
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Example: If Then Else Rule

(2,{x->7})2    (3,{x->7}) 3

7 > 5 = true                     (2+3, {x->7})5

(x,{x->7})7   (5,{x->7})5 (y:= 2 + 3, {x-> 7}

(x > 5, {x -> 7})true              ?                    

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7}) 

 ? {x->7, y->5}
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Example: Assignment

(2,{x->7})2    (3,{x->7}) 3

7 > 5 = true                       (2+3, {x->7})?

(x,{x->7})7   (5,{x->7})5 (y:= 2 + 3, {x-> 7}

(x > 5, {x -> 7})true              ? {x- >7, y-
>5}

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7}) 

 ? {x->7, y->5}
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Example: Arith Op

? + ? = ?

(2,{x->7})?    (3,{x->7}) ?

7 > 5 = true                      (2+3, {x->7})?

(x,{x->7})7   (5,{x->7})5 (y:= 2 + 3, {x-> 7}

(x > 5, {x -> 7})true             ?                     .

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7}) 

 ? {x->7, y->5}
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Example: Numerals

2 + 3 = 5

(2,{x->7})2    (3,{x->7}) 3

7 > 5 = true                       (2+3, {x->7})?

(x,{x->7})7   (5,{x->7})5 (y:= 2 + 3, {x-> 7}

(x > 5, {x -> 7})true              ?{x->7, y->5}

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7})

 ? {x->7, y->5}
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Example: Arith Op

2 + 3 = 5

(2,{x->7})2    (3,{x->7}) 3

7 > 5 = true                       (2+3, {x->7})5

(x,{x->7})7   (5,{x->7})5 (y:= 2 + 3, {x-> 7}

(x > 5, {x -> 7})true             ? {x->7, y->5}

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi,  {x -> 7}) 

 ? {x->7, y->5} 
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Example: Assignment

2 + 3 = 5

(2,{x->7})2    (3,{x->7}) 3

7 > 5 = true                       (2+3, {x->7})5

(x,{x->7})7   (5,{x->7})5 (y:= 2 + 3, {x-> 7}

(x > 5, {x -> 7})true            {x->7, y->5}

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7}) 

? {x->7, y->5}
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Example: If Then Else Rule

2 + 3 = 5

(2,{x->7})2    (3,{x->7}) 3

7 > 5 = true                       (2+3, {x->7})5

(x,{x->7})7   (5,{x->7})5 (y:= 2 + 3, {x-> 7}

(x > 5, {x -> 7})true              {x->7, y->5}

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7}) 

 {x->7, y->5} 
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While Command
(B, m)  false

(while B do C od, m)  m

(B,m) true   (C,m)m’ (while B do C od, m’ )m’’

(while B do C od, m)  m’’

1 2 3



Example: While Rule

(x > 5, {x->2})  false       

(x > 5, {x->7})  true                  while x > 5 do x := x-5 od; 
(x := x-5, {x->7})  {x->2}                {x -> 2})  {x->2}

(while x > 5 do x := x-5 od, {x -> 7})  {x->2}
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While Command
(B, m)  false

(while B do C od, m)  m

(B,m) true   (C,m)m’ (while B do C od, m’ )m’’

(while B do C od, m)  m’’

The rule assumes the loop terminates!
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While Command
(B, m)  false

(while B do C od, m)  m

(B,m) true   (C,m)m’ (while B do C od, m’ )m’’

(while B do C od, m)  m’’

The rule assumes the loop terminates!

? ? ?

while (x>0) do x:=x+1od, {x->1}  ? ? ?
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Interpretation Versus Compilation

•A compiler from language L1 to language L2 is a program 
that takes an L1 program and for each piece of code in L1 
generates a piece of code in L2 of same meaning
•An interpreter of L1 in L2 is an L2 program that executes 

the meaning of a given L1 program
•Compiler would examine the body of a loop once; an 

interpreter would examine it every time the loop was 
executed
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Interpreter 

•An Interpreter represents the operational semantics of a 
language L1 (source language) in the language of 
implementation L2 (target language)

•Built incrementally
• Start with literals
• Variables
• Primitive operations
• Evaluation of expressions
• Evaluation of commands/declarations
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Interpreter

•Takes abstract syntax trees as input 
• In simple cases could be just strings

•One procedure for each syntactic category (nonterminal)
• eg one for expressions, another for commands

• If Natural semantics used, tells how to compute final 
value from code
• If Transition semantics used, tells how to compute next 
“state”
• To get final value, put in a loop
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Natural Semantics Interpreter 
Implementation
• Identifiers: (k,m)  m(k)

• Numerals are values: (N,m)  N

• Conditionals:

compute_exp (Var(v), m) = look_up v m

compute_exp (Int(n), _) = Num (n)

…

compute_com (IfExp(b,c1,c2), m) =

if compute_exp (b,m) = Bool(true)

then compute_com (c1,m)

else compute_com (c2,m)
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Natural Semantics Interpreter 
Implementation

• Loop: 

compute_com (While(b,c), m) =

if compute_exp (b,m) = Bool(false)

then m

else compute_com

(While(b,c), compute_com(c,m))

•May fail to terminate - exceed stack limits
• Returns no useful information then
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