CS 477: Operational Program Semantics

Sasa Misailovic

Based on previous slides by Gul Agha, Elsa Gunter, Madhusudan Parthasarathy, Mahesh Viswanathan, and Vikram Adve

University of Illinois at Urbana-Champaign

Previously, on CS 477

Propositional Logic:

- Syntax
- Semantics
- Proof

(Homework/Quiz #1 is out: due next Thursday)

Simple Imperative Programming Language

- $I \in Identifiers$
- $N \in Numerals$
- B ::= true | false | B & B | B or B | not B | E < E | E = E
- E::= N | I | E + E | E * E | E E | E
- S::= skip | S; S | I ::= E | if B then S else S fi | while B do S od

Syntax -> Graphs

Reminder: Graph: (V, E)

- V is a set of vertices (nodes)
- $E \subseteq V \times V$ is a relation denoting "connected" nodes. Elements $e \in E$ are edges: pairs of connected vertices $e = (v_1, v_2)$. Can be directed or undirected.

Common definitions:

- Post(v) successor vertices of v, Pre(v) direct predecessor vertices of v
- Path: a sequence of vertices s.t. $v_i \in Pre(v_{i+1})$. Cycle when the same vertex multiple times in the path, else simple. Length: number of vertices in a path.
- Acyclic graphs: no cycles.
- Tree: exists v_{root} (without predecessors) such that all other vertices reachable along unique paths
- Strongly connected component: all pairs of vertices mutually reachable
- Search: DFS, BFS; traversal: preorder, postorder, etc.

Syntax -> Graphs

- Parse Tree (from CS 374)
- Abstract Syntax Tree
- Control-flow Graph

Flow Graphs

- Flow Graph: A triple G=(N,A,s), where (N,A) is a (finite) directed graph, s ∈ N is a designated "initial" node, and there is a path from node s to every node n ∈ N.
- An *entry node* in a flow graph has no predecessors.
- An *exit node* in a flow graph has no successors.
- There is exactly one entry node, s. We can modify a general DAG to ensure this. *How?*
- We can also transform the graph to have only one exit node. *How?*

Control Flow Graph (CFG)

- Flow Graph: A triple G=(N,A,s), where (N,A) is a (finite) directed graph, s ∈ N is a designated "initial" node, and there is a path from node s to every node n ∈ N.
- Control Flow Graph (CFG) is a flow graph that represents all *paths* (sequences of statements) that might be traversed during program execution.
- Nodes in CFG are program statements, and edge (S₁,S₂) denotes that statement S₁ can be followed by S₂ in execution.
- In CFG, a node unreachable from s can be safely deleted. *Why?*
- Control flow graphs are usually *sparse*. I.e., | A |= O(| N |). In fact, if only binary branching is allowed | A | ≤ 2 | N |.

Control Flow Graph (CFG)

- **Basic Block** is a sequence of statements $S_1 \dots S_n$ such that execution control must reach S_1 before S_2 , and, if S_1 is executed, then $S_2 \dots S_n$ are all executed in that order
 - Unless some statement S_i causes the program to halt
- Leader is the first statement of a basic block
- Maximal Basic Block is a basic block with a maximum number of statements (n)

Control Flow Graph (CFG) Let us refine our previous definition

- CFG is a directed graph in which:
- Each node is a single basic block
- There is an edge b1 → b2 if block b2 may be executed after block b1 in some execution
- We typically define it for a single procedure
- A CFG is a conservative approximation of the control flow! Why?

Example

LLVM bitcode (ver 3.9.1)

define i32 @fib(i32 %0) { %2 = icmp ult i32 %0, 2br i1 %2, label %12, label %3 ; <label>:3: br label %4 : <label>:4: %5 = phi i32 [%8, %4], [1, %3] %6 = phi i32 [%5, %4], [0, %3] %7 = phi i32 [%9, %4], [2, %3] %8 = add i32 %5, %6 %9 = add i32 %7, 1 %10 = icmp ugt i32 %9, %0 br i1 %10, label %11, label %4 ; <label>:11: br label %12 ; <label>:12: %13 = phi i32 [%0, %1], [%8, %11] ret i32 %13 }

Source Code

```
unsigned fib(unsigned n) {
   int i;
   int f0 = 0, f1 = 1, f2;
   if (n <= 1) return n;
   for (i = 2; i <= n; i++) {</pre>
      f2 = f0 + f1;
      f0 = f1;
      f1 = f2;
   }
   return f2;
```

Dominance in Flow Graphs

- Let d, d1, d2, d3, n be nodes in G.
- d dominates n ("d dom n") iff every path from s to n contains d
- d **properly dominates** n if d dominates n and $d \neq n$
- d is the immediate dominator of n ("d idom n")
 if d is the last proper dominator on any path from initial node to n,
- DOM(x) denotes the set of dominators of x,
- **Dominator tree:** the children of each node d are the nodes n such that "d idom n" (immediately dominates)

Dominator Properties

- Lemma 1: DOM(s) = { s }.
- Lemma 2: s dom d, for all nodes d in G.
- Lemma 3: The dominance relation on nodes in a flow graph is a *partial ordering*
- *Reflexive n* dom *n* is true for all n.
- Antisymmetric If d dom n, then cannot be n dom d
- **Transitive** $d1 dom d2 \land d2 dom d3 \Rightarrow d1 dom d3$
- Lemma 4: The dominators of a node form a list.
- Lemma 5: Every node except s has a unique immediate dominator.

Postdominance

Def. Postdomination: node *p* postdominates a node *d* iff all paths to the exit node of the graph starting at *d* must go through *p*

Def. Reverse Control Flow Graph (RCFG) of a CFG has the same nodes as CFG and has edge $Y \rightarrow X$ if $X \rightarrow Y$ is an edge in CFG.

 p is a postdominator of d iff p dominates d in the RCFG.

Semantics

•Expresses the meaning of syntax

- Static semantics
 - •Meaning based only on the form of the expression without executing it
 - Usually restricted to type checking / type inference

Dynamic semantics

- Method of **describing meaning of executing** a program
- Several different types:
 - Operational Semantics
 - Axiomatic Semantics
 - Denotational Semantics
- Different languages better suited to different types of semantics
- Different types of semantics serve different purposes

Operational Semantics

- Start with a simple notion of machine
- Describe how to execute (implement) programs of language on virtual machine, by describing how to execute each program statement (ie, following the *structure* of the program)
- Meaning of program is how its execution changes the state of the machine
- Useful as basis for implementations

Denotational Semantics

- \bullet Construct a function $\mathcal M$ assigning a mathematical meaning to each program construct
- Lambda calculus often used as the range of the meaning function
- Meaning function is compositional: meaning of construct built from meaning of parts
- Useful for proving properties of programs

Axiomatic Semantics

- •Also called Floyd-Hoare Logic
- Based on formal logic (first order predicate calculus)
- Axiomatic Semantics is a logical system built from axioms and inference rules
- •Mainly suited to simple imperative programming languages

Axiomatic Semantics

- •Used to formally prove a property (*post-condition*) of the *state* (the values of the program variables) after the execution of program, assuming another property (*precondition*) of the state before execution
- Written :

{Precondition} Program {Postcondition}

Much more about it later in the course!

Modeling Program Environment

Mathematical Program Environment

Sources: https://www.researchgate.net/figure/Example-of-Control-Flow-Graph_fig5_4065402 and https://freesvg.org/computer-station-vector-graphics

Program Environment

Pair of code to execute + a valuation (aka state)

Code to execute: Next statement and program text that remains to be executed: Statement_1; Other_Statements

A valuation of program variables:

• Mapping m: Identifiers-> Value

Program statements (" S_1 ; S_2 ; ... S_n ") transform the valuations. Execution is then:

- $m_2 = [[S_1]](m_1)$
- $m_3 = [[S_2]](m_2)$
- ...
- $m_{n+1} = [[S_n]](m_n)$
- Also $(s_1, m_1) \rightarrow (s_2, m_2) \rightarrow (s_3, m_3) \rightarrow \dots \rightarrow (s_n, m_n) \rightarrow (\cdot, m_{n+1})$. We can define the sequence $(s_1, m_1), (s_2, m_2), (s_3, m_3), \dots, (s_n, m_n), (\cdot, m_{n+1})$ or its projection (m_1, \dots, m_n) as the trace of execution

Natural Semantics ("Big-step Semantics")

- Aka Structural Operational Semantics, aka "Big Step Semantics"
- Provide value for a program by rules and derivations, similar to type derivations
- Rule conclusions look like

(C, m) ∜ m'

"Evaluating a command C in the state m results in the new state m'"

or (E, m) ↓ v

"Evaluating an expression E in the state m results in the value v"

Simple Imperative Programming Language

- $I \in Identifiers$
- $N \in Numerals$
- B ::= true | false | B & B | B or B | not B | E < E | E = E
- E::= N | I | E + E | E * E | E E | E
- C::= skip | C;C | I ::= E
 - | if B then C else C fi | while B do C od

Natural Semantics of Atomic Expressions

- Identifiers: (k,m) ↓ m(k)
- Numerals are values: (N,m) UN
- Booleans: (true,m) ↓ true (false ,m) ↓ false

Booleans: $(B, m) \Downarrow false$ $(B, m) \Downarrow true (B', m) \Downarrow b$ $(B \& B', m) \Downarrow false$ (B & B', m) ↓ b (B, m) \Downarrow true $(B, m) \Downarrow false (B', m) \Downarrow b$ $(B \text{ or } B', m) \Downarrow b$ (B or B', m) \Downarrow true (B, m) ↓ true $(B, m) \Downarrow false$ (not B, m) ↓ false (not B, m) \Downarrow true

Binary Relations $(E, m) \Downarrow U \quad (E', m) \Downarrow V \quad U \text{ rop } V = b$ $(E \text{ rop } E', m) \Downarrow b$

- By U rop V = b, we mean does (the meaning of) the relation rop hold on the meaning of U and V
- May be specified by a mathematical expression/equation or rules matching U and V

Arithmetic Expressions

$$(E, m) \Downarrow U \quad (E', m) \Downarrow V \quad U \text{ op } V = N$$
$$(E \text{ op } E', m) \Downarrow N$$

where N is the specified value for (mathematical) U op V

Commands

-

Skip: $(skip, m) \Downarrow m$

Assignment:
$$(E,m) \Downarrow V$$

 $(k := E,m) \Downarrow m [k < -- V]$

Sequencing:
$$(C,m) \Downarrow m'$$
 $(C',m') \Downarrow m''$
 $(C; C', m) \Downarrow m''$

If Then Else Command

(B,m) \Downarrow true (C,m) \Downarrow m' (if B then C else C' fi, m) \Downarrow m'

(B,m) \Downarrow false (C',m) \Downarrow m' (if B then C else C' fi, m) \Downarrow m'

Example: If Then Else Rule

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7}) ↓?

Example: If Then Else Rule

 $(x > 5, \{x \rightarrow 7\})$ \Downarrow ?

(if x > 5 then y:= 2 + 3 else y:= 3 + 4 fi, $\{x \rightarrow 7\}$) $\bigcup ?$

Example: Arith Relation

? > ? = ?

$$(x,\{x->7\})$$
 \Downarrow ? $(5,\{x->7\})$ \Downarrow ?
 $(x > 5, \{x -> 7\})$ \Downarrow ?
(if x > 5 then y:= 2 + 3 else y:= 3 + 4 fi, $\{x -> 7\}$)
 \downarrow ?

Example: Identifier(s)

7 > 5 = true

$$(x,\{x->7\})$$
↓7 $(5,\{x->7\})$ ↓5
 $(x > 5, \{x -> 7\})$ ↓?
(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7})
↓?

Example: Arith Relation

7 > 5 = true

$$(x,\{x->7\})$$
↓7 $(5,\{x->7\})$ ↓5
 $(x > 5, \{x -> 7\})$ ↓true
(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, $\{x -> 7\}$)
↓?

Example: If Then Else Rule

Example: Assignment

$$7 > 5 = true$$
 $(2+3, \{x->7\}) \Downarrow ?$ $(x,\{x->7\}) \lor 7$ $(5,\{x->7\}) \lor 5$ $(y:= 2 + 3, \{x->7\})$ $(x > 5, \{x -> 7\}) \lor true$ $\Downarrow ?$

Example: While Rule

$$(x > 5, \{x->7\}) \Downarrow \text{ true} \qquad (x > 5, \{x->2\}) \Downarrow \text{ false} \\ (x > 5, \{x->7\}) \Downarrow \text{ true} \qquad \text{while } x > 5 \text{ do } x := x-5 \text{ od}; \\ (x := x-5, \{x->7\}) \Downarrow \{x->2\} \qquad \{x -> 2\}) \Downarrow \{x->2\} \\ (\text{while } x > 5 \text{ do } x := x-5 \text{ od}, \{x -> 7\}) \Downarrow \{x->2\}$$

While Command (B, m)↓false (while B do C od, m)↓m

(B,m) \Downarrow true (C,m) \Downarrow m' (while B do C od, m') \Downarrow m''

(while B do C od, m) \Downarrow m"

The rule assumes the loop terminates!

While Command (B, m)↓false (while B do C od, m)↓m

(B,m)↓true (C,m)↓m' (while B do C od, m')↓m'' (while B do C od, m)↓m''

The rule assumes the loop terminates! ???

while (x>0) do x:=x+1od, $\{x->1\} \Downarrow ???$

Interpretation Versus Compilation

- A **compiler** from language L1 to language L2 is a program that takes an L1 program and for each piece of code in L1 generates a piece of code in L2 of same meaning
- An **interpreter** of L1 in L2 is an L2 program that executes the meaning of a given L1 program
- Compiler would examine the body of a loop once; an interpreter would examine it every time the loop was executed

Interpreter

- An *Interpreter* represents the operational semantics of a language L1 (source language) in the language of implementation L2 (target language)
- Built incrementally
 - Start with literals
 - Variables
 - Primitive operations
 - Evaluation of expressions
 - Evaluation of commands/declarations

Interpreter

- Takes abstract syntax trees as input
 - In simple cases could be just strings
- One procedure for each syntactic category (nonterminal)
 - eg one for expressions, another for commands
- If Natural semantics used, tells how to compute final value from code
- If Transition semantics used, tells how to compute next "state"
 - To get final value, put in a loop

Natural Semantics Interpreter Implementation

• Identifiers: $(k,m) \Downarrow m(k)$

...

• Numerals are values: (N,m) \Downarrow N

• Conditionals: $(B,m) \Downarrow \text{true} (C,m) \Downarrow m'$ (if B then C else C' fi, m) $\Downarrow m'$ (if B then C else C' fi, m) $\Downarrow m'$

compute_com (IfExp(b,c1,c2), m) =
 if compute_exp (b,m) = Bool(true)
 then compute_com (c1,m)
 else compute_com (c2,m)

Natural Semantics Interpreter Implementation

 Loop: (B, m) ↓ false (while B do C od, m) ↓ m
 (B,m) ↓ true (C,m) ↓ m' (while B do C od, m') ↓ m'' (while B do C od, m) ↓ m''
 compute_com (While(b,c), m) = if compute_exp (b,m) = Bool(false) then m else compute_com

(While(b,c), compute_com(c,m))

- May fail to terminate exceed stack limits
 - Returns no useful information then