
CS 477: Operational Program
Semantics

Sasa Misailovic

Based on previous slides by Gul Agha, Elsa Gunter,
Madhusudan Parthasarathy, Mahesh Viswanathan, and Vikram Adve

University of Illinois at Urbana-Champaign

Previously, on CS 477

Propositional Logic:

• Syntax

• Semantics

• Proof

(Homework/Quiz #1 is out: due next Thursday)

Simple Imperative Programming
Language

• I  Identifiers

•N  Numerals

•B ::= true | false
| B & B | B or B | not B | E < E | E = E

•E::= N | I | E + E | E * E | E - E | - E

•S::= skip | S; S | I ::= E
| if B then S else S fi | while B do S od

3

Syntax -> Graphs

Reminder: Graph: (V, E)
• V is a set of vertices (nodes)

• E ⊆ 𝑉 × 𝑉 is a relation denoting “connected” nodes. Elements 𝑒 ∈ 𝐸 are
edges: pairs of connected vertices 𝑒 = 𝑣1, 𝑣2 . Can be directed or undirected.

Common definitions:
• Post(v) – successor vertices of v, Pre(v) – direct predecessor vertices of v

• Path: a sequence of vertices s.t. 𝑣𝑖 ∈ 𝑃𝑟𝑒(𝑣𝑖+1). Cycle when the same vertex
multiple times in the path, else simple. Length: number of vertices in a path.

• Acyclic graphs: no cycles.

• Tree: exists 𝑣𝑟𝑜𝑜𝑡 (without predecessors) such that all other vertices reachable
along unique paths

• Strongly connected component: all pairs of vertices mutually reachable

• Search: DFS, BFS; traversal: preorder, postorder, etc.

4

Syntax -> Graphs

•Parse Tree (from CS 374)

•Abstract Syntax Tree

•Control-flow Graph

5

Flow Graphs

• Flow Graph: A triple G=(N,A,s), where (N,A) is a (finite)
directed graph, s ∈ N is a designated “initial” node, and
there is a path from node s to every node n ∈ N.

• An entry node in a flow graph has no predecessors.

• An exit node in a flow graph has no successors.

• There is exactly one entry node, s. We can modify a
general DAG to ensure this. How?

• We can also transform the graph to have only one exit
node. How?

Control Flow Graph (CFG)
• Flow Graph: A triple G=(N,A,s), where (N,A) is a (finite)

directed graph, s ∈ N is a designated “initial” node, and there is
a path from node s to every node n ∈ N.

• Control Flow Graph (CFG) is a flow graph that represents all
paths (sequences of statements) that might be traversed
during program execution.

• Nodes in CFG are program statements, and edge (S1,S2) denotes
that statement S1 can be followed by S2 in execution.

• In CFG, a node unreachable from s can be safely deleted. Why?

• Control flow graphs are usually sparse. I.e., | A |= O(| N |). In
fact, if only binary branching is allowed | A | ≤ 2 | N |.

Control Flow Graph (CFG)

•Basic Block is a sequence of statements S1 ... Sn such
that execution control must reach S1 before S2, and, if S1

is executed, then S2 . . . Sn are all executed in that order

•Unless some statement Si causes the program to halt

• Leader is the first statement of a basic block

•Maximal Basic Block is a basic block with a maximum
number of statements (n)

Control Flow Graph (CFG)
Let us refine our previous definition

•CFG is a directed graph in which:

• Each node is a single basic block

• There is an edge b1 → b2 if block b2 may be
executed after block b1 in some execution

•We typically define it for a single procedure

•A CFG is a conservative approximation of the control
flow! Why?

Example

Source Code

unsigned fib(unsigned n) {

int i;

int f0 = 0, f1 = 1, f2;

if (n <= 1) return n;

for (i = 2; i <= n; i++) {

f2 = f0 + f1;

f0 = f1;

f1 = f2;

}

return f2;

}

LLVM bitcode (ver 3.9.1)

define i32 @fib(i32 %0) {
%2 = icmp ult i32 %0, 2
br i1 %2, label %12, label %3

; <label>:3:
br label %4

; <label>:4:
%5 = phi i32 [%8, %4], [1, %3]
%6 = phi i32 [%5, %4], [0, %3]
%7 = phi i32 [%9, %4], [2, %3]
%8 = add i32 %5, %6
%9 = add i32 %7, 1
%10 = icmp ugt i32 %9, %0
br i1 %10, label %11, label %4

; <label>:11:
br label %12

; <label>:12:
%13 = phi i32 [%0, %1], [%8, %11]
ret i32 %13

}

Dominance in Flow Graphs
• Let d, d1, d2, d3, n be nodes in G.

• d dominates n (“d dom n”) iff every path from s to n
contains d

• d properly dominates n if d dominates n and d ≠ n

• d is the immediate dominator of n (“d idom n”)
if d is the last proper dominator on any path from initial node to n,

• DOM(x) denotes the set of dominators of x,

• Dominator tree: the children of each node d are the nodes n such
that “d idom n” (immediately dominates)

Dominator Properties

• Lemma 1: DOM(s) = { s }.

• Lemma 2: s dom d, for all nodes d in G.

• Lemma 3: The dominance relation on nodes in a flow
graph is a partial ordering

• Reflexive— n dom n is true for all n.

• Antisymmetric — If d dom n, then cannot be n dom d

• Transitive — d1 dom d2 ∧ d2 dom d3 ⇒ d1 dom d3

• Lemma 4: The dominators of a node form a list.

• Lemma 5: Every node except s has a unique immediate
dominator.

Postdominance

Def. Postdomination: node p postdominates a

node d iff all paths to the exit node of the graph

starting at d must go through p

Def. Reverse Control Flow Graph (RCFG) of a CFG

has the same nodes as CFG and has edge Y → X if X →

Y is an edge in CFG.

• p is a postdominator of d iff p dominates d in the

RCFG.

Semantics

•Expresses the meaning of syntax

•Static semantics
•Meaning based only on the form of the
expression without executing it

•Usually restricted to type checking / type
inference

14

Dynamic semantics

•Method of describing meaning of executing a program
•Several different types:
•Operational Semantics
•Axiomatic Semantics
•Denotational Semantics

•Different languages better suited to different types of
semantics
•Different types of semantics serve different purposes

15

Operational Semantics

•Start with a simple notion of machine
•Describe how to execute (implement) programs of

language on virtual machine, by describing how to
execute each program statement (ie, following the
structure of the program)

•Meaning of program is how its execution changes the
state of the machine
•Useful as basis for implementations

16

Denotational Semantics
•Construct a function M assigning a mathematical

meaning to each program construct

• Lambda calculus often used as the range of the
meaning function

•Meaning function is compositional: meaning of
construct built from meaning of parts

•Useful for proving properties of programs

17

Axiomatic Semantics

•Also called Floyd-Hoare Logic

•Based on formal logic (first order predicate
calculus)

•Axiomatic Semantics is a logical system built
from axioms and inference rules

•Mainly suited to simple imperative
programming languages

18

Axiomatic Semantics

•Used to formally prove a property (post-
condition) of the state (the values of the
program variables) after the execution of
program, assuming another property (pre-
condition) of the state before execution

•Written :

{Precondition} Program {Postcondition}

Much more about it later in the course!

19

(,)
Modeling Program Environment

Sources: https://www.researchgate.net/figure/Example-of-Control-Flow-Graph_fig5_4065402 and https://freesvg.org/computer-station-vector-graphics

Reg1 Reg2

Reg3 Reg4

PC

CPU

Mem

ALU

Mem

(,)Mem’

low -> 0

high -> 0

mid -> 0

n -> 100

low -> 0

high -> 99

mid -> 0

n -> 100

0

0

100

Real machine

Virtual machine
Mathematical Program Environment

Program Environment
Pair of code to execute + a valuation (aka state)

Code to execute: Next statement and program text that remains to be executed:
Statement_1; Other_Statements

A valuation of program variables:

• Mapping m: Identifiers-> Value

Program statements (“S1; S2; … Sn”) transform the valuations. Execution is then:
• m2 = [[S1]](m1)

• m3 = [[S2]](m2)

• …

• mn+1 = [[Sn]](mn)

• Also (𝑠1, 𝑚1) ՜ (𝑠2, 𝑚2) ՜ (𝑠3, 𝑚3) ՜ … (𝑠𝑛, 𝑚𝑛) (⋅, 𝑚𝑛+1).

We can define the sequence (𝑠1, 𝑚1), (𝑠2, 𝑚2), 𝑠3, 𝑚3 , … , 𝑠𝑛, 𝑚𝑛 , (⋅, 𝑚𝑛+1)

or its projection (𝑚1, … 𝑚𝑛) as the trace of execution

21

Natural Semantics (“Big-step Semantics”)

•Aka Structural Operational Semantics, aka “Big Step
Semantics”

• Provide value for a program by rules and derivations, similar to
type derivations

• Rule conclusions look like

(C, m)  m’

“Evaluating a command C in the state m results in the new state m’ ”

or

(E, m)  v

“Evaluating an expression E in the state m results in the value v’”

22

Simple Imperative Programming
Language

• I  Identifiers

•N  Numerals

•B ::= true | false
| B & B | B or B | not B | E < E | E = E

•E::= N | I | E + E | E * E | E - E | - E

•C::= skip | C;C | I ::= E
| if B then C else C fi | while B do C od

23

Natural Semantics of Atomic
Expressions

• Identifiers: (k,m)  m(k)

•Numerals are values: (N,m)  N

•Booleans: (true,m)  true

(false ,m)  false

24

Booleans:
(B, m)  false (B, m)  true (B’, m)  b

(B & B’, m)  false (B & B’, m)  b

(B, m)  true (B, m)  false (B’, m)  b

(B or B’, m)  true (B or B’, m)  b

(B, m)  true (B, m)  false

(not B, m)  false (not B, m)  true

25

Binary Relations
(E, m)  U (E’, m)  V U rop V = b

(E rop E’, m)  b

•By U rop V = b, we mean does (the meaning of) the
relation rop hold on the meaning of U and V

•May be specified by a mathematical expression/equation
or rules matching U and V

26

Arithmetic Expressions

(E, m)  U (E’, m)  V U op V = N

(E op E’, m)  N

where N is the specified value for (mathematical) U op V

27

Commands

Skip: (skip, m)  m

Assignment: (E,m)  V

(k :=E,m)  m [k <-- V]

Sequencing: (C,m)  m’ (C’,m’)  m’’

(C; C’, m)  m’’

28

If Then Else Command

(B,m)  true (C,m)  m’

(if B then C else C’ fi, m)  m’

(B,m)  false (C’,m)  m’

(if B then C else C’ fi, m)  m’

29

Example: If Then Else Rule

(2,{x->7})2 (3,{x->7}) 3

(2+3, {x->7})5

(x,{x->7})7 (5,{x->7})5 (y:= 2 + 3, {x-> 7}

(x > 5, {x -> 7})true {x- >7, y->5}

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7})

 ?

30

Example: If Then Else Rule

(2,{x->7})2 (3,{x->7}) 3

(2+3, {x->7})5

(x,{x->7})7 (5,{x->7})5 (y:= 2 + 3, {x-> 7}

(x > 5, {x -> 7})? {x- >7, y->5}

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7})

 ? {x->7, y->5}

31

Example: Arith Relation

(2,{x->7})2 (3,{x->7}) 3

? > ? = ? (2+3, {x->7})5

(x,{x->7})? (5,{x->7})? (y:= 2 + 3, {x-> 7}

(x > 5, {x -> 7})? {x- >7, y->5}

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7})

 ? {x->7, y->5}

32

Example: Identifier(s)

(2,{x->7})2 (3,{x->7}) 3

7 > 5 = true (2+3, {x->7})5

(x,{x->7})7 (5,{x->7})5 (y:= 2 + 3, {x-> 7}

(x > 5, {x -> 7})? {x- >7, y->5}

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7})

 ? {x->7, y->5}

33

Example: Arith Relation

(2,{x->7})2 (3,{x->7}) 3

7 > 5 = true (2+3, {x->7})5

(x,{x->7})7 (5,{x->7})5 (y:= 2 + 3, {x-> 7}

(x > 5, {x -> 7})true {x- >7, y->5}

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7})

 ? {x->7, y->5}

34

Example: If Then Else Rule

(2,{x->7})2 (3,{x->7}) 3

7 > 5 = true (2+3, {x->7})5

(x,{x->7})7 (5,{x->7})5 (y:= 2 + 3, {x-> 7}

(x > 5, {x -> 7})true  ?

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7})

 ? {x->7, y->5}

35

Example: Assignment

(2,{x->7})2 (3,{x->7}) 3

7 > 5 = true (2+3, {x->7})?

(x,{x->7})7 (5,{x->7})5 (y:= 2 + 3, {x-> 7}

(x > 5, {x -> 7})true  ? {x- >7, y-
>5}

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7})

 ? {x->7, y->5}

36

Example: Arith Op

? + ? = ?

(2,{x->7})? (3,{x->7}) ?

7 > 5 = true (2+3, {x->7})?

(x,{x->7})7 (5,{x->7})5 (y:= 2 + 3, {x-> 7}

(x > 5, {x -> 7})true ? .

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7})

 ? {x->7, y->5}

37

Example: Numerals

2 + 3 = 5

(2,{x->7})2 (3,{x->7}) 3

7 > 5 = true (2+3, {x->7})?

(x,{x->7})7 (5,{x->7})5 (y:= 2 + 3, {x-> 7}

(x > 5, {x -> 7})true  ?{x->7, y->5}

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7})

 ? {x->7, y->5}

38

Example: Arith Op

2 + 3 = 5

(2,{x->7})2 (3,{x->7}) 3

7 > 5 = true (2+3, {x->7})5

(x,{x->7})7 (5,{x->7})5 (y:= 2 + 3, {x-> 7}

(x > 5, {x -> 7})true ? {x->7, y->5}

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7})

 ? {x->7, y->5}

39

Example: Assignment

2 + 3 = 5

(2,{x->7})2 (3,{x->7}) 3

7 > 5 = true (2+3, {x->7})5

(x,{x->7})7 (5,{x->7})5 (y:= 2 + 3, {x-> 7}

(x > 5, {x -> 7})true  {x->7, y->5}

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7})

? {x->7, y->5}

40

Example: If Then Else Rule

2 + 3 = 5

(2,{x->7})2 (3,{x->7}) 3

7 > 5 = true (2+3, {x->7})5

(x,{x->7})7 (5,{x->7})5 (y:= 2 + 3, {x-> 7}

(x > 5, {x -> 7})true  {x->7, y->5}

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7})

 {x->7, y->5}

41

While Command
(B, m)  false

(while B do C od, m)  m

(B,m) true (C,m)m’ (while B do C od, m’)m’’

(while B do C od, m)  m’’

1 2 3

Example: While Rule

(x > 5, {x->2})  false

(x > 5, {x->7})  true while x > 5 do x := x-5 od;
(x := x-5, {x->7})  {x->2} {x -> 2})  {x->2}

(while x > 5 do x := x-5 od, {x -> 7})  {x->2}

43

1

2

3

While Command
(B, m)  false

(while B do C od, m)  m

(B,m) true (C,m)m’ (while B do C od, m’)m’’

(while B do C od, m)  m’’

The rule assumes the loop terminates!

44

While Command
(B, m)  false

(while B do C od, m)  m

(B,m) true (C,m)m’ (while B do C od, m’)m’’

(while B do C od, m)  m’’

The rule assumes the loop terminates!

? ? ?

while (x>0) do x:=x+1od, {x->1}  ? ? ?

45

Interpretation Versus Compilation

•A compiler from language L1 to language L2 is a program
that takes an L1 program and for each piece of code in L1
generates a piece of code in L2 of same meaning
•An interpreter of L1 in L2 is an L2 program that executes

the meaning of a given L1 program
•Compiler would examine the body of a loop once; an

interpreter would examine it every time the loop was
executed

46

Interpreter

•An Interpreter represents the operational semantics of a
language L1 (source language) in the language of
implementation L2 (target language)

•Built incrementally
• Start with literals
• Variables
• Primitive operations
• Evaluation of expressions
• Evaluation of commands/declarations

47

Interpreter

•Takes abstract syntax trees as input
• In simple cases could be just strings

•One procedure for each syntactic category (nonterminal)
• eg one for expressions, another for commands

• If Natural semantics used, tells how to compute final
value from code
• If Transition semantics used, tells how to compute next
“state”
• To get final value, put in a loop

48

Natural Semantics Interpreter
Implementation
• Identifiers: (k,m)  m(k)

• Numerals are values: (N,m)  N

• Conditionals:

compute_exp (Var(v), m) = look_up v m

compute_exp (Int(n), _) = Num (n)

…

compute_com (IfExp(b,c1,c2), m) =

if compute_exp (b,m) = Bool(true)

then compute_com (c1,m)

else compute_com (c2,m)

49

Natural Semantics Interpreter
Implementation

• Loop:

compute_com (While(b,c), m) =

if compute_exp (b,m) = Bool(false)

then m

else compute_com

(While(b,c), compute_com(c,m))

•May fail to terminate - exceed stack limits
• Returns no useful information then

50

