CS 477: Operational Program
Semantics

Sasa Misailovic

Based on previous slides by Gul Agha, Elsa Gunter,
Madhusudan Parthasarathy, Mahesh Viswanathan, and Vikram Adve

University of lllinois at Urbana-Champaign

Previously, on CS 477

Propositional Logic:
* Syntax

* Semantics

* Proof

(Homework/Quiz #1 is out: due next Thursday)

Simple Imperative Programming
Language

| € |dentifiers
N € Numerals

*B ::=true | false
| B& B |BorB|notB |E<E|E=E

*E:=N|I|E+E|E*E|E-E|-E

eSi:=skip | S;S|I::=E
| if Bthen Selse Sfi | while Bdo S od

Syntax -> Graphs

Reminder: Graph: (V, E)
* Vis a set of vertices (nodes)

« ECV XV isarelation denoting “connected” nodes. Elements e € E are
edges: pairs of connected vertices e = (v, V,). Can be directed or undirected.

Common definitions:
* Post(v) — successor vertices of v, Pre(v) — direct predecessor vertices of v

* Path: a sequence of vertices s.t. v; € Pre(v;;41). Cycle when the same vertex
multiple times in the path, else simple. Length: number of vertices in a path.

* Acyclic graphs: no cycles.

* Tree: exists v,.,,¢ (Without predecessors) such that all other vertices reachable
along unique paths

 Strongly connected component: all pairs of vertices mutually reachable

* Search: DFS, BFS; traversal: preorder, postorder, etc.

Syntax -> Graphs

* Parse Tree (from CS 374)
* Abstract Syntax Tree

* Control-flow Graph

Flow Graphs

* Flow Graph: A triple G=(N,A,s), where (N,A) is a (finite)
directed graph, s € N is a designated “initial” node, and
there is a path from node s to every node n € N.

 Anentry node in a flow graph has no predecessors.
 An exit node in a flow graph has no successors.

 There is exactly one entry node, s. We can modify a
general DAG to ensure this.

 We can also transform the graph to have only one exit
node.

Control Flow Graph (CFG)

* Flow Graph: A triple G=(N,A,s), where (N,A) is a (finite)
directed graph, s € N is a designated “initial” node, and there is
a path from node s to every node n € N.

 Control Flow Graph (CFG) is a flow graph that represents all
paths (sequences of statements) that might be traversed
during program execution.

* Nodes in CFG are program statements, and edge (S,,S,) denotes
that statement S, can be followed by S, in execution.

 In CFG, a node unreachable from s can be safely deleted.

* Control flow graphs are usually sparse. l.e., | A [=0O(| N |). In
fact, if only binary branching is allowed | A| <2 | N |.

Control Flow Graph (CFG)

* Basic Block is a sequence of statements S, ... S such
that execution control must reach S, before S,, and, if S,
is executed, then S, ... S are all executed in that order

* Unless some statement S; causes the program to halt

e Leader is the first statement of a basic block

e Maximal Basic Block is a basic block with a maximum
number of statements (n)

Control Flow Graph (CFG)

*CFG is a directed graph in which:
 Each node is a single basic block

* Thereisan edge bl - b2 if block b2 may be
executed after block bl in some execution

* We typically define it for a single procedure

* A CFG is a conservative approximation of the control
flow!

Example

Source Code

LLVM bitcode (ver 3.9.1)

unsigned fib(unsigned n) {
int 1i;
int fo = 0, f1 = 1, f2;

if (n <= 1) return n;

for (i = 2; i <= n; i++) {
2 = fo + f1;
fo = f1;
1l = f2;

}

return f2;

define i32 @fib(i32 %0) {
%2 = icmp ult i32 %0, 2
br i1 %2, label %12, label %3

; <label>:3:
br label %4

; <label>:4:
%5 = phi i32 [%8, %4], [1, %3]
%6 = phi i32 [%5, %4], [9, %3]
%7 = phi i32 [%9, %4], [2, %3]
%8 = add i32 %5, %6
%9 = add i32 %7, 1
%10 = icmp ugt 132 %9, %0
br i1 %10, label %11, label %4

; <label>:11:
br label %12

; <label>:12:
%13 = phi 132 [%0, %1], [%8, %11]
ret i32 %13

Dominance in Flow Graphs

*letd, d1, d2, d3, n be nodes in G.

* d dominates n (“ ”) iff every path from s to n
contains d

* d properly dominates n if d dominatesnand d # n

2

 d is the immediate dominator of n (“
if d is the last proper dominator on any path from initial node to n,

 DOM(x) denotes the set of dominators of x,

e Dominator tree: the children of each node d are the nodes n such
that “d idom n” (immediately dominates)

Dominator Properties

Lemma 1: DOM(s) ={s }.
e Lemma 2: s dom d, for all nodes d in G.

e Lemma 3: The dominance relation on nodes in a flow
graph is a partial ordering

* Reflexive— n dom n is true for all n.

* Antisymmetric — If d dom n, then cannot be n dom d
* Transitive — d1 dom d2 A d2 dom d3 = d1 dom d3
*Lemma 4: The dominators of a hode form a list.

 Lemma 5: Every node except s has a unique immediate
dominator.

Postdominance

Def. Postdomination: node p postdominates a
node diff all paths to the exit node of the graph
starting at d must go through p

Def. Reverse Control Flow Graph (RCFG) of a CFG
has the same nodes as CFG and has edgeY — X if X —
Y is an edge in CFG.

* pisapostdominator of d iff p dominates d in the
RCFG.

Semantics

*Expresses the meaning of syntax

eStatic semantics

*Meaning based only on the form of the
expression without executing it

*Usually restricted to type checking / type
inference

14

Dynamic semantics

* Method of describing meaning of executing a program

* Several different types:
* Operational Semantics
* Axiomatic Semantics
* Denotational Semantics

* Different languages better suited to different types of
semantics
* Different types of semantics serve different purposes

15

Operational Semantics

e Start with a simple notion of machine

* Describe how to execute (implement) programs of
language on virtual machine, by describing how to
execute each program statement (ie, following the
structure of the program)

* Meaning of program is how its execution changes the
state of the machine
* Useful as basis for implementations

16

Denotational Semantics

* Construct a function M assigning a mathematical
meaning to each program construct

* Lambda calculus often used as the range of the
meaning function

* Meaning function is compositional: meaning of
construct built from meaning of parts

* Useful for proving properties of programs

17

Axiomatic Semantics

*Also called Floyd-Hoare Logic

*Based on formal logic (first order predicate
calculus)

*Axiomatic Semantics is a logical system built
from axioms and inference rules

*Mainly suited to simple imperative
programming languages

18

Axiomatic Semantics

*Used to formally prove a property (post-
condition) of the state (the values of the
program variables) after the execution of
program, assuming another property (pre-
condition) of the state before execution

* Written :
{Precondition} Program {Postcondition}

Much more about it later in the course!

19

Modeling Program Environmen

- . Source Program:
Source Program:
s . N . Source Program:
int binsearch(int x, int v[], int n) ?nt binsearch(int x, int v[], int n) =
{ i y i ;
int low, high, mid; 1 igi iog’_ high, mid; int binsearch(int x, int v[], int n)
1| low = 0; ; T M m
high = n - 1; :é?kl‘e (Tow i’: high) | 2 int low, high, mid; e
while (low <= high) |2 ; 1| low = 0;
{) . high = n - 1;
) : . mid = (low + high)/2; g [
5 rjnéd = 4lorw + high) /2; 3 if (x < v[mid]) while (low <= high) |2 n-> 100
(x < x[mld]_) ‘ high = mid - 1; |4 {
high = mid - 1; |[g ! mid = (low + high)/2;
5| else if (x > v(mid]) 5|else if {x > vimidl) s 3| if (x < vImid)) low ->0
low = mid + 1; |6 7| else return mid; nigh = mid - 1; |4
7| else return mid; i 5| else if (x > v[mid]) hl h -> O
) i return -1; |8 low = mid + 1; |s g
return -1; |8 Vo 7 | else return mid; -
blo } -
return -1; |8 mld > O
blo
N PC
Regl Reg2
Reg3 Reg4
Mem’
Real machine yhaie Liow <= nagh))< n ->100
mid (low + high)/2;
100 "4 3| if (x < vimidl) low ->0
/ high = mid - 1; |4
5| else if (x > v[mid]) H
0 /2 low = mid + 1; |¢ hlgh -> 99
7| else return mid;
} .
O u' return -1; |8 mld -> 0

Virtual machine Mathematical Program Environment

Sources: https://www.researchgate.net/figure/Example-of-Control-Flow-Graph fig5 4065402 and https://freesvg.org/computer-station-vector-graphics

Program Environment

Pair of code to execute + a valuation (aka state)

Code to execute: Next statement and program text that remains to be executed:
Statement_1; Other_Statements

A valuation of program variables:
* Mapping m: ldentifiers-> Value

Program statements (“S;; S,; ... S,”) transform the valuations. Execution is then:

*m,= [[51]](m1)
* m3g = [[Sz]](mz)

* My = [[S])(my)

* Also (51,mq) = (S2,my) = (S3,M3) = ... —(Sp,My) —(,Mpy1)-
We can define the sequence (s1,m;), (55, m5), (S35, m3), ... ,(S, M), (-, My 41)
or its projection (m4, ... m,) as the of execution

Natural Semantics (“Big-step Semantics”)

 Aka Structural Operational Semantics, aka “Big Step
Semantics”

* Provide value for a program by rules and derivations, similar to
type derivations

* Rule conclusions look like
(C,m)Um’
“Evaluating a command C in the state m results in the new state m’ ”
or
(E, m)Uv
“Evaluating an expression E in the state m results in the value v’”

22

Simple Imperative Programming
Language

| € |dentifiers
N € Numerals

*B ::=true | false
| B& B |BorB|notB |E<E|E=E

*E:=N|I|E+E|E*E|E-E|-E

eCi=skip| CGC|I::=E
| if B then C else C fi | while B do C od

23

Natural Semantics of Atomic
EXPressions

« Identifiers: (k,m) U m(k)
* Numerals are values: (N,m) UN

*Booleans: (true,m) U true

(false ,m) U false

24

Booleans:

(B, m) U false B,m)Utrue (B, m)Ub
(B & B, m) U false (B& B, m)Ub
__(B,m) U true (B, m) false (B, m){ b
(B or B', m) U true (BorB, m)Ub
(B, m) U true (B, m) U false

(not B, m) U false (not B, m) U true

25

Binary Relations

(Emldu (E,mUV Uropv=>b
(EropE’, m) Vb

*By U rop V =b, we mean does (the meaning of) the
relation rop hold on the meaning of U and V

* May be specified by a mathematical expression/equation
or rules matching U and V

26

Arithmetic Expressions

(EmUu (E,mUV UopV=N
(EopE’, m) U N

where N is the specified value for (mathematical) U op V

27

Commands

Skip:

Assignment:

Sequencing:

(skip, m) Um

(E,m) Uv

(k :=E,;m) U m [k<-—-V]

(Cm)Um (C,m)Um”

(C:C", m) U m”

28

If Then Else Command

(B,m) U true (C,m) U m’

(if Bthen Celse C' fi, m) U m’

(B,m) U false (C’)m)Um’

(if B then Celse C' fi, m) U m’

29

Example: If Then Else Rule

(if x>5theny:=2+3elsey:=3+4fi, {x->7})
U?

30

Example: If Then Else Rule

(x>5, {x->7H?

(ifx>5theny:=2+3elsey:=3+4fi, {x->7})
U?

31

Example: Arith Relation

?>7?=7
(x,{x->7Y? (5,{x->7})1?
(x>5, {x->7H?

(if x>5theny:=2+3elsey:=3+4fi, {x->7})
U?

32

Example: ldentifier(s)

7/ >5 =true
(x,{x->7W7 (5,{x->7})U5
(x> 5, {x->7H?

(if x>5theny:=2+3elsey:=3+4fi, {x->7})
U?

33

Example: Arith Relation

/>5=true
(x,{x->7W7 (5,{x->7})U5
(x > 5, {x -> 7})true

(ifx>5theny:=2+3elsey:=3+4fi, {x->7})
U?

34

Example: If Then Else Rule

7/ >5 =true
(x,{x->7W7 (5{x>7HU5 (y:i=2+3, {x->7}
(x> 5, {x -> 7})true U»

(if x>5theny:=2+3elsey:=3+4fi, {x->7})
U?

35

Example: Assignment

7 >5 =true (2+3, {x—>7})U?
(x,{x->7NWU7 (5,{x->7WU5 (y:i=2+3, {x-> 7}
(x > 5, {x -> 7)true U7

(if x>5theny:=2+3elsey:=3+4fi, {x->7})
U?

36

Example: Arith Op

?+7?=7
(2,{x->7HU? (3,{x->7}) U?
7 >5 =true (2+3, {x—>7})U?
(x,{x->7W7 (5{x>7HU5 (y:=2+3, {x->7}
(x > 5, {x -> 7})true U?

(if x>5theny:=2+3elsey:=3+4fi, {x->7})
U?

37

Example: Numerals

2+3=5
(2,{x->7W2 (3,{x->7}) U3
7 >5 =true (2+3, {x—>7})U?
(x,{x->7W7 (5{x>7HU5 (y:i=2+3, {x->7}
(x > 5, {x -> 7})true U?

(if x>5theny:=2+3elsey:=3+4fi, {x->7})
U?

38

Example: Arith Op

2+3=5
(2,{x->7HU2 (3,{x->7}) U3
7 >5 =true (2+3, {x—>7})U5
(x,{x->7W7 (5{x>7HU5 (y:i=2+3, {x->7}
(x > 5, {x -> 7})true U?

(ifx>5theny:=2+3elsey:=3+4fi, {x->7})
U?

39

Example: Assignment

2+3=5
(2,{x->7W2 (3,{x->7}) U3
7 >5 =true (2+3, {x—>7})U5
(x,{x->7W7 (5{x>7HU5 (y:i=2+3, {x->7}
(x > 5, {x -> 7})true U {x->7, y->5}

(if x>5theny:=2+3elsey:=3+4fi, {x->7})
U?

40

Example: If Then Else Rule

2+3=5
(2,{x->7HU2 (3,{x->7}) U3
7 >5 =true (2+3, {x—>7})U5
(x,{x->7W7 (5{x>7HU5 (y:i=2+3, {x->7}
(x > 5, {x -> 7})true U {x->7, y->5}

(if x>5theny:=2+3elsey:=3+4fi, {x->7})
U {x->7, y->5}

41

While Command

(B, m) U false
(while Bdo Cod, m) U m

@ (B,m)UtrL%> (C,m) U m’ twhile Bdo Cod, m”) m”

(while B do C od, m) U m”

Example: While Rule

@ @ (x > 5, {x->2}) U false

(x > 5, {x->7}) U true while x > 5 do x := x-5 od;
- (2) (x:=x5, (x->7) U {x>2) x->2}) U {x->2}

(while x>5 do x := x-5 od, {x -> 7}) { {x->2}

43

While Command

(B, m) U false
(while Bdo Cod, m) U m

(B,m)Utrue (C,m)Um’ (whileBdoCod, m’)Um”

(whileBdo Cod, m) U m”

The rule assumes the loop terminates!

44

While Command

(B, m) U false
(while Bdo Cod, m) U m

(B,m)Utrue (C,m)Um’ (whileBdoCod, m’)Um”

(while B do C od, m) U m”

The rule assumes the loop terminates!
29 ?

while (x>0) do x:=x+1od, {x->1} J 22 ?

45

Interpretation Versus Compilation

* A compiler from language L1 to language L2 is a program
that takes an L1 program and for each piece of code in L1
generates a piece of code in L2 of same meaning

* An interpreter of L1 in L2 is an L2 program that executes
the meaning of a given L1 program

* Compiler would examine the body of a loop once; an
interpreter would examine it every time the loop was
executed

46

Interpreter

* An Interpreter represents the operational semantics of a
language L1 (source language) in the language of
implementation L2 (target language)

* Built incrementally
e Start with literals
* Variables
* Primitive operations
* Evaluation of expressions
* Evaluation of commands/declarations

47

Interpreter

* Takes abstract syntax trees as input
* In simple cases could be just strings

* One procedure for each syntactic category (nonterminal)
* eg one for expressions, another for commands

* If Natural semantics used, tells how to compute final
value from code

e If Transition semantics used, tells how to compute next
“state”
* To get final value, put in a loop

48

Natural Semantics Interpreter
mplementatior

« Identifiers: (k,m) U m(k)
« Numerals are values: (N,m) U N

* Conditionals: (Bm) U true (Cm) U m’ (Bm) U false (C',m) U m’
(if Bthen Celse C” fi, m) U m’ (if Bthen Celse C” fi, m) U m’

compute_exp (Var(v), m) = look up v m
compute_exp (Int(n),) = Num (n)

compute com (IfExp(b,cl,c2), m) =
if compute_exp (b,m) = Bool(true)
then compute _com (cl,m)
else compute com (c2,m)

49

Natural Semantics Interpreter
Implementation

(8, m) U false (Bm)Utrue (Cm)Um’ (while Bdo Cod, m’) m”

* Loop:
P (while Bdo Cod, m) U m (while Bdo C od, m) U m”’

compute com (While(b,c), m) =
if compute exp (b,m) = Bool(false)
then m
else compute com
(While(b,c), compute com(c,m))

* May fail to terminate - exceed stack limits
* Returns no useful information then

50

