CS 477: Operational Program Semantics
 Sasa Misailovic

Based on previous slides by Gul Agha, Elsa Gunter, Madhusudan Parthasarathy, Mahesh Viswanathan, and Vikram Adve

University of Illinois at Urbana-Champaign

Previously, on CS 477

Propositional Logic:

- Syntax
- Semantics
- Proof
(Homework/Quiz \#1 is out: due next Thursday)

Simple Imperative Programming Language

- I \in Identifiers
- $\mathrm{N} \in$ Numerals
- $\mathrm{B}::=$ true | false
$|B \& B| B$ or $B|\operatorname{not} B| E<E \mid E=E$
- $\mathrm{E}::=\mathrm{N}|\mathrm{I}| \mathrm{E}+\mathrm{E}|\mathrm{E} * \mathrm{E}| \mathrm{E}-\mathrm{E} \mid-\mathrm{E}$
-S::= skip | S; S | I ::= E
| if B then S else S fi | while B do S od

Syntax -> Graphs

Reminder: Graph: (V, E)

- V is a set of vertices (nodes)
- $\mathrm{E} \subseteq V \times V$ is a relation denoting "connected" nodes. Elements $e \in E$ are edges: pairs of connected vertices $e=\left(v_{1}, v_{2}\right)$. Can be directed or undirected.
Common definitions:
- Post(v) - successor vertices of $\mathrm{v}, \operatorname{Pre}(\mathrm{v})$ - direct predecessor vertices of v
- Path: a sequence of vertices s.t. $v_{i} \in \operatorname{Pre}\left(v_{i+1}\right)$. Cycle when the same vertex multiple times in the path, else simple. Length: number of vertices in a path.
- Acyclic graphs: no cycles.
- Tree: exists $v_{\text {root }}$ (without predecessors) such that all other vertices reachable along unique paths
- Strongly connected component: all pairs of vertices mutually reachable
- Search: DFS, BFS; traversal: preorder, postorder, etc.

Syntax -> Graphs

- Parse Tree (from CS 374)
- Abstract Syntax Tree
- Control-flow Graph

Flow Graphs

- Flow Graph: A triple $\mathrm{G}=(\mathrm{N}, \mathrm{A}, \mathrm{s})$, where (N, A) is a (finite) directed graph, $s \in N$ is a designated "initial" node, and there is a path from node s to every node $n \in N$.
- An entry node in a flow graph has no predecessors.
- An exit node in a flow graph has no successors.
- There is exactly one entry node, s. We can modify a general DAG to ensure this. How?
- We can also transform the graph to have only one exit node. How?

Control Flow Graph (CFG)

- Flow Graph: A triple $\mathrm{G}=(\mathrm{N}, \mathrm{A}, \mathrm{s})$, where (N, A) is a (finite) directed graph, $s \in N$ is a designated "initial" node, and there is a path from node s to every node $n \in N$.
- Control Flow Graph (CFG) is a flow graph that represents all paths (sequences of statements) that might be traversed during program execution.
- Nodes in CFG are program statements, and edge ($\mathrm{S}_{1}, \mathrm{~S}_{2}$) denotes that statement S_{1} can be followed by S_{2} in execution.
- In CFG, a node unreachable from s can be safely deleted. Why?
- Control flow graphs are usually sparse. I.e., $|\mathrm{A}|=\mathrm{O}(|\mathrm{N}|)$. In fact, if only binary branching is allowed $|\mathrm{A}| \leq 2|\mathrm{~N}|$.

Control Flow Graph (CFG)

- Basic Block is a sequence of statements $S_{1} \ldots S_{n}$ such that execution control must reach S_{1} before S_{2}, and, if S_{1} is executed, then $\mathrm{S}_{2} \ldots \mathrm{~S}_{\mathrm{n}}$ are all executed in that order
- Unless some statement S_{i} causes the program to halt
- Leader is the first statement of a basic block
- Maximal Basic Block is a basic block with a maximum number of statements (n)

Control Flow Graph (CFG)

 Let us refine our previous definition- CFG is a directed graph in which:
- Each node is a single basic block
- There is an edge b1 \rightarrow b2 if block b2 may be executed after block b1 in some execution
- We typically define it for a single procedure
- A CFG is a conservative approximation of the control flow! Why?

Example

LLVM bitcode (ver 3.9.1)

Source Code

```
unsigned fib(unsigned n) {
    int i;
    int f0 = 0, f1 = 1, f2;
    if (n <= 1) return n;
    for (i = 2; i <= n; i++) {
        f2 = f0 + f1;
        f0 = f1;
        f1 = f2;
    }
    return f2;
}
```

```
define i32 @fib(i32 %0) {
```

define i32 @fib(i32 %0) {
%2 = icmp ult i32 %0, 2
%2 = icmp ult i32 %0, 2
br i1 %2, label %12, label %3
br i1 %2, label %12, label %3
; <label>:3:
; <label>:3:
br label %4
br label %4
; <label>:4:
; <label>:4:
%5 = phi i32 [%8, %4], [1, %3]
%5 = phi i32 [%8, %4], [1, %3]
%6 = phi i32 [%5, %4], [0, %3]
%6 = phi i32 [%5, %4], [0, %3]
%6 = phi i32 [%5, %4], [0, %3]
%6 = phi i32 [%5, %4], [0, %3]
%8 = add i32 %5, %6
%8 = add i32 %5, %6
%9 = add i32 %7, 1
%9 = add i32 %7, 1
%10 = icmp ugt i32 %9, %0
%10 = icmp ugt i32 %9, %0
br i1 %10, label %11, label %4
br i1 %10, label %11, label %4
; <label>:11:
; <label>:11:
br label %12
br label %12
; <label>:12:
; <label>:12:
%13 = phi i32 [%0, %1], [%8, %11]
%13 = phi i32 [%0, %1], [%8, %11]
ret i32 %13
ret i32 %13
}

```
}
```


Dominance in Flow Graphs

- Let $\mathrm{d}, \mathrm{d} 1, \mathrm{~d} 2, \mathrm{~d} 3, \mathrm{n}$ be nodes in G .
- d dominates n ("d dom n ") iff every path from s to n contains d
- d properly dominates n if d dominates n and $d \neq n$
- d is the immediate dominator of n ("d idom n ") if d is the last proper dominator on any path from initial node to n,
- $\mathbf{D O M}(x)$ denotes the set of dominators of x,
- Dominator tree: the children of each node d are the nodes n such that "d idom n" (immediately dominates)

Dominator Properties

- Lemma 1: $\operatorname{DOM}(\mathrm{s})=\{\mathrm{s}\}$.
- Lemma 2: s dom d, for all nodes din G.
- Lemma 3: The dominance relation on nodes in a flow graph is a partial ordering
- Reflexive - n dom n is true for all n.
- Antisymmetric - If d dom n, then cannot be n dom d
- Transitive - d1 dom $d 2 \wedge d 2$ dom $d 3 \Rightarrow d 1$ dom d3
- Lemma 4: The dominators of a node form a list.
- Lemma 5: Every node except s has a unique immediate dominator.

Postdominance

Def. Postdomination: node ρ postdominates a node d iff all paths to the exit node of the graph starting at d must go through p

Def. Reverse Control Flow Graph (RCFG) of a CFG has the same nodes as CFG and has edge $Y \rightarrow X$ if $X \rightarrow$ Y is an edge in CFG.

- p is a postdominator of d iff p dominates d in the RCFG.

Semantics

- Expresses the meaning of syntax
- Static semantics
- Meaning based only on the form of the expression without executing it
- Usually restricted to type checking / type inference

Dynamic semantics

- Method of describing meaning of executing a program
- Several different types:
- Operational Semantics
- Axiomatic Semantics
- Denotational Semantics
- Different languages better suited to different types of semantics
- Different types of semantics serve different purposes

Operational Semantics

- Start with a simple notion of machine
- Describe how to execute (implement) programs of language on virtual machine, by describing how to execute each program statement (ie, following the structure of the program)
- Meaning of program is how its execution changes the state of the machine
- Useful as basis for implementations

Denotational Semantics

- Construct a function \mathcal{M} assigning a mathematical meaning to each program construct
- Lambda calculus often used as the range of the meaning function
- Meaning function is compositional: meaning of construct built from meaning of parts
- Useful for proving properties of programs

Axiomatic Semantics

-Also called Floyd-Hoare Logic
-Based on formal logic (first order predicate calculus)

- Axiomatic Semantics is a logical system built from axioms and inference rules
- Mainly suited to simple imperative programming languages

Axiomatic Semantics

- Used to formally prove a property (postcondition) of the state (the values of the program variables) after the execution of program, assuming another property (precondition) of the state before execution
-Written :

$$
\text { \{Precondition\} Program \{Postcondition\} }
$$

Much more about it later in the course!

Modeling Program Environment

Program Environment

Pair of code to execute + a valuation (aka state)
Code to execute: Next statement and program text that remains to be executed: Statement_1; Other_Statements
A valuation of program variables:

- Mapping m: Identifiers-> Value

Program statements (" $\mathrm{S}_{1} ; \mathrm{S}_{2} ; \ldots \mathrm{S}_{\mathrm{n}}$ ") transform the valuations. Execution is then:

- $m_{2}=\left[\left[S_{1}\right]\right]\left(m_{1}\right)$
- $m_{3}=\left[\left[S_{2}\right]\right]\left(m_{2}\right)$
- ...
- $m_{n+1}=\left[\left[S_{n}\right]\right]\left(m_{n}\right)$
- Also $\left(s_{1}, m_{1}\right) \rightarrow\left(s_{2}, m_{2}\right) \rightarrow\left(s_{3}, m_{3}\right) \rightarrow \ldots \rightarrow\left(s_{n}, m_{n}\right) \longrightarrow\left(\cdot, m_{n+1}\right)$. We can define the sequence $\left(s_{1}, m_{1}\right),\left(s_{2}, m_{2}\right),\left(s_{3}, m_{3}\right), \ldots,\left(s_{n}, m_{n}\right),\left(\cdot, m_{n+1}\right)$ or its projection $\left(m_{1}, \ldots m_{n}\right)$ as the trace of execution

Natural Semantics ("Big-step Semantics")

- Aka Structural Operational Semantics, aka "Big Step Semantics"
- Provide value for a program by rules and derivations, similar to type derivations
- Rule conclusions look like

$$
(C, m) \Downarrow m^{\prime}
$$

"Evaluating a command C in the state m results in the new state m^{\prime} "

$$
\begin{gathered}
o r \\
(E, m) \Downarrow v
\end{gathered}
$$

"Evaluating an expression E in the state m results in the value v"

Simple Imperative Programming Language

- I \in Identifiers
- $\mathrm{N} \in$ Numerals
- $\mathrm{B}::=$ true | false
$|B \& B| B$ or $B|\operatorname{not} B| E<E \mid E=E$
-E::=N|I|E+E|E*E|E-E|-E
- C::= skip | C;C|I::=E
| if B then C else C fi \| while B do C od

Natural Semantics of Atomic Expressions

- Identifiers: $(\mathrm{k}, \mathrm{m}) \downarrow \mathrm{m}(\mathrm{k})$
- Numerals are values: $(N, m) \Downarrow N$
- Booleans: (true, m) \Downarrow true
(false ,m) \downarrow false

Boolean:

$\frac{(B, m) \Downarrow \text { false }}{\left(B \& B^{\prime}, m\right) \Downarrow \text { false }} \frac{(B, m) \Downarrow \text { true }\left(B^{\prime}, m\right) \Downarrow b}{\left(B \& B^{\prime}, m\right) \Downarrow b}$
$\frac{(B, m) \Downarrow \text { true }}{\left(B \text { or } B^{\prime}, m\right) \Downarrow \text { true }} \frac{(B, m) \Downarrow \text { false }\left(B^{\prime}, m\right) \Downarrow_{b}}{\left(B \text { or } B^{\prime}, m\right) \Downarrow_{b}}$ $\frac{(B, m) \Downarrow \text { true }}{(\text { not } B, m) \Downarrow \text { false }} \quad \frac{(B, m) \Downarrow \text { false }}{(\text { not } B, m) \Downarrow \text { true }}$

Binary Relations

- By U rop V = b, we mean does (the meaning of) the relation rop hold on the meaning of U and V
- May be specified by a mathematical expression/equation or rules matching U and V

Arithmetic Expressions

where N is the specified value for (mathematical) U op V

Commands

Skip: $\quad($ skip,$m) \Downarrow m$

Assignment:
$\frac{(E, m) \Downarrow V}{(k:=E, m) \Downarrow m[k<--V]}$

Sequencing: $\frac{(C, m) \Downarrow m^{\prime}\left(C^{\prime}, m^{\prime}\right) \Downarrow m^{\prime \prime}}{\left(C ; C^{\prime}, m\right) \Downarrow m^{\prime \prime}}$

If Then Else Command

$\frac{(B, m) \Downarrow \text { false } \quad\left(C^{\prime}, m\right) \Downarrow m^{\prime}}{\text { (if } B \text { then } C \text { else } C^{\prime} \text { fi, } m \text {) } \Downarrow^{\prime}}$

Example: If Then Else Rule

(if $x>5$ then $y:=2+3$ else $y:=3+4$ fi, $\{x->7\}$)
\Downarrow ?

Example: If Then Else Rule

$(x>5,\{x->7\}) \downarrow ?$
(if $x>5$ then $y:=2+3$ else $y:=3+4$ fi, $\{x->7\}$)
\Downarrow ?

Example: Arith Relation

? > ? $=$?
$(x,\{x->7\}) \downarrow ? \quad(5,\{x->7\}) \downarrow ?$
$(x>5,\{x->7\}) \downarrow$?
(if $x>5$ then $y:=2+3$ else $y:=3+4$ fi, $\{x->7\}$)

$$
\Downarrow ?
$$

Example: Identifier(s)

$7>5=$ true
$(x,\{x->7\}) \Downarrow 7 \quad(5,\{x->7\}) \downarrow 5$
$(x>5,\{x->7\}) \downarrow$?
(if $x>5$ then $y:=2+3$ else $y:=3+4$ fi, $\{x->7\}$)
\Downarrow ?

Example: Arith Relation

$$
7>5=\text { true }
$$

$(x,\{x->7\}) \Downarrow 7 \quad(5,\{x->7\}) \downarrow 5$
$(x>5,\{x->7\}) \backslash$ true
(if $x>5$ then $y:=2+3$ else $y:=3+4$ fi, $\{x->7\}$)
\Downarrow ?

Example: If Then Else Rule

$7>5=$ true
$(x,\{x->7\}) \Downarrow 7 \quad(5,\{x->7\}) \Downarrow 5 \quad(y:=2+3,\{x->7\}$
$(x>5,\{x->7\}) \backslash$ true
\Downarrow ?
(if $x>5$ then $y:=2+3$ else $y:=3+4$ fig, $\{x->7\}$)
\Downarrow ?

Example: Assignment

$$
\left.\begin{array}{cc}
7>5=\text { true } & (2+3,\{x->7\}) \downarrow ? \\
\frac{(x,\{x->7\}) \Downarrow 7}{(x>5,\{x->7\}) \backslash \text { true }} \quad(5,\{x->7\}) \Downarrow 5
\end{array}\right) \quad \begin{gathered}
(y:=2+3,\{x->7\} \\
\Downarrow ? \\
\hline
\end{gathered}
$$

(if $x>5$ then $y:=2+3$ else $y:=3+4$ fi, $\{x->7\}$)

$$
\Downarrow ?
$$

Example: Arith Op

? + ? = ?

$$
(2,\{x->7\}) \downarrow ? \quad(3,\{x->7\}) \downarrow ?
$$

$$
7>5=\text { true }
$$

$$
(2+3,\{x->7\}) \Downarrow ?
$$

$(x,\{x->7\}) \Downarrow 7 \quad(5,\{x->7\}) \downarrow 5$
$(y:=2+3,\{x->7\}$
$(x>5,\{x->7\}) \backslash$ true
\downarrow ?
(if $x>5$ then $y:=2+3$ else $y:=3+4$ fig, $\{x->7\}$)
\Downarrow ?

Example: Numerals

$$
\begin{aligned}
& 2+3=5 \\
& (2,\{x->7\}) \downarrow 2 \quad(3,\{x->7\}) \Downarrow 3 \\
& 7>5=\text { true } \\
& (2+3,\{x->7\}) \downarrow \text { ? } \\
& (x,\{x->7\}) \Downarrow 7 \quad(5,\{x->7\}) \downarrow 5 \\
& (y:=2+3,\{x->7\} \\
& (x>5,\{x->7\}) \backslash \text { true } \\
& \Downarrow \text { ? } \\
& \text { (if } x>5 \text { then } y:=2+3 \text { else } y:=3+4 \text { ai, }\{x->7\} \text {) } \\
& \Downarrow \text { ? }
\end{aligned}
$$

Example: Arith Op

$$
\begin{gathered}
2+3=5 \\
7>5=\text { true } \\
\frac{(2,\{x->7\}) \Downarrow_{2} \quad(3,\{x->7\}) \Downarrow_{3}}{(x,\{x->7\}) \Downarrow 7 \quad(5,\{x->7\}) \Downarrow_{5}} \frac{(2+3,\{x->7\}) \Downarrow_{5}}{(x:=2+3,\{x->7\}} \\
\frac{(x>5,\{x->7\}) \downarrow \text { true }}{\Downarrow} \downarrow ? \\
\hline \text { (if } x>5 \text { then } y:=2+3 \text { else } y:=3+4 \text { fig, }\{x->7\}) \\
\Downarrow ?
\end{gathered}
$$

Example: Assignment

$$
\begin{aligned}
& 2+3=5 \\
& (2,\{x->7\}) \Downarrow_{2} \quad(3,\{x->7\}) \downarrow 3 \\
& 7>5=\text { true } \\
& (2+3,\{x->7\}) \downarrow 5 \\
& (x,\{x->7\}) \downarrow 7 \quad(5,\{x->7\}) \downarrow ل_{5} \\
& (y:=2+3,\{x->7\} \\
& (x>5,\{x->7\}) \backslash \text { true } \\
& \Downarrow\{x->7, y->5\} \\
& \text { (if } x>5 \text { then } y:=2+3 \text { else } y:=3+4 \text { ai, }\{x->7\} \text {) } \\
& \downarrow \text { ? }
\end{aligned}
$$

Example: If Then Else Rule

$$
\begin{aligned}
& 2+3=5 \\
& (2,\{x->7\}) \downarrow_{2} \quad(3,\{x->7\}) \downarrow 3 \\
& 7>5=\text { true } \\
& (2+3,\{x->7\}) ل_{5} \\
& (x,\{x->7\}) \Downarrow 7 \quad(5,\{x->7\}) \downarrow ل_{5} \\
& (y:=2+3,\{x->7\} \\
& (x>5,\{x->7\}) \downarrow \text { true } \\
& \Downarrow\{x->7, y->5\} \\
& \text { (if } x>5 \text { then } y:=2+3 \text { else } y:=3+4 \text { fin, }\{x->7\} \text {) } \\
& \Downarrow\{x->7, y->5\}
\end{aligned}
$$

While Command

(B, m) \downarrow false

(while B do Cod, m) $\downarrow \mathrm{m}$
(while B do Cod, m) $\downarrow \mathrm{m}^{\prime \prime}$

While Command

(while B do C od, m) $\downarrow m$

Example: While Rule

(while $x>5$ do $x:=x-5$ od, $\{x->7\}) \Downarrow\{x->2\}$

Example: While Rule

(3) $(x>5,\{x->2\}) \Downarrow$ false
$(x>5,\{x->7\}) \downarrow$ true \quad while $x>5$ do $x:=x-5$ od;
2. $(x:=x-5,\{x->7\}) \Downarrow\{x->2\} \quad\{x->2\}) \Downarrow\{x->2\}$
(while $x>5$ do $x:=x-5$ od, $\{x->7\}) \Downarrow\{x->2\}$

While Command and Termination?

$(B, m) \Downarrow$ true $\quad(C, m) \Downarrow m^{\prime} \quad\left(\right.$ while B do C od, $\left.m^{\prime}\right) \Downarrow m^{\prime \prime}$
(while B do C od, m) $\downarrow \mathrm{m}^{\prime \prime}$

The rule assumes the loop terminates!

While Command and Termination?

$$
\begin{gathered}
\frac{(B, m) \Downarrow \text { false }}{(\text { while } B \text { do Cod, m) } \Downarrow \mathrm{m}} \\
\frac{(B, m) \Downarrow \text { true }(C, m) \Downarrow m^{\prime} \quad\left(\text { while B do C od, } \mathrm{m}^{\prime}\right) \Downarrow \mathrm{m}^{\prime \prime}}{(\text { while } B \text { do C od, } \mathrm{m}) \Downarrow \mathrm{m}^{\prime \prime}}
\end{gathered}
$$

The rule assumes the loop terminates!
? ? ?
while $(x>0)$ do $x:=x+1$ od, $\{x->1\} \Downarrow$? ? ?

Interpretation Versus Compilation

- A compiler from language L 1 to language L 2 is a program that takes an L1 program and for each piece of code in L1 generates a piece of code in L2 of same meaning
- An interpreter of L1 in L2 is an L2 program that executes the meaning of a given L1 program
- Compiler would examine the body of a loop once; an interpreter would examine it every time the loop was executed

Interpreter

- An Interpreter represents the operational semantics of a language L1 (source language) in the language of implementation L2 (target language)
- Built incrementally
- Start with literals
- Variables
- Primitive operations
- Evaluation of expressions
- Evaluation of commands/declarations

Interpreter

- Takes abstract syntax trees as input
- In simple cases could be just strings
- One procedure for each syntactic category (nonterminal)
- eg one for expressions, another for commands
- If Natural semantics used, tells how to compute final value from code
- If Transition semantics used, tells how to compute next "state"
- To get final value, put in a loop

Natural Semantics Interpreter Implementation

- Identifiers: $(k, m) \Downarrow m(k)$
- Numerals are values: $(N, m) \Downarrow N$
- Conditionals: $\quad \frac{(B, m) \Downarrow \text { true }(C, m) \Downarrow m^{\prime}}{\left(\text { (if } B \text { then } C \text { else } C^{\prime} \text { fi, } m\right) \Downarrow m^{\prime}} \quad \frac{(B, m) \Downarrow \text { false } \quad\left(C^{\prime}, m\right) \Downarrow m^{\prime}}{\left.\text { (if } B \text { then } C \text { else } C^{\prime} \text { fi, } m\right) \Downarrow m^{\prime}}$

```
compute_exp (Var(v), m) = look_up v m
compute_exp (Int(n), _) = Num (n)
```

```
compute_com (IfExp(b,c1,c2), m) =
    if compute_exp (b,m) = Bool(true)
    then compute_com (c1,m)
    else compute_com (c2,m)
```


Natural Semantics Interpreter Implementation

- Loop: $\frac{(B, m) \Downarrow \text { false }}{\text { (while } B \text { do } C \text { od, } m) \Downarrow m}$
$\frac{(B, m) \Downarrow \text { true }(C, m) \Downarrow m^{\prime}\left(\text { while } B \text { do } C \text { od, } m^{\prime}\right) \Downarrow m^{\prime \prime}}{(\text { while } B \text { do } C \text { od, } m) \Downarrow m^{\prime}}$
compute_com (While(b, c), m) =
if compute_exp (b,m) = Bool(false)
then m
else compute_com
(While(b, c), compute_com(c,m))
- May fail to terminate - exceed stack limits
- Returns no useful information then

Transition Semantics ("Small-step Semantics")

- Form of operational semantics
- Describes how each program construct transforms machine state by transitions
- Rules look like

$$
(C, m) \text {--> }\left(C^{\prime}, m^{\prime}\right) \text { or }(C, m) \text {--> } m^{\prime}
$$

$\bullet C, C^{\prime}$ is code remaining to be executed

- m, m' represent the state/store/memory/environment
- Partial mapping from identifiers to values
- Sometimes m (or C) not needed
- Indicates exactly one step of computation

Expressions and Values

- C, C'used for commands; E, E 'for expressions; U, V for values
- Special class of expressions designated as values
- Eg 2, 3 are values, but 2+3 is only an expression
- Memory only holds values
- Other possibilities exist

Evaluation Semantics

- Transitions successfully stops when E / C is a value/memory
- Evaluation fails if no transition possible, but not at value/memory
- Value/memory is the final meaning of original expression/command (in the given state)
- Coarse semantics: final value / memory
- More fine grained: whole transition sequence

Simple Imperative Programming

 Language- I \in Identifiers
- $\mathrm{N} \in$ Numerals
- $\mathrm{B}::=$ true \mid false $|\mathrm{B} \& \mathrm{~B}| \mathrm{B}$ or $\mathrm{B} \mid$ not $\mathrm{B}|\mathrm{E}<\mathrm{E}| \mathrm{E}=\mathrm{E}$
- $\mathrm{E}::=\mathrm{N}|\mathrm{I}| \mathrm{E}+\mathrm{E}|\mathrm{E} * \mathrm{E}| \mathrm{E}-\mathrm{E} \mid-\mathrm{E}$
- C::= skip | C; C | I ::= E
| if B then C else C fi \| while B do C od

Transition Semantics Evaluation

- A sequence of transitions: trees of justification for each step

Transitions for Expressions

- Numerals are values
-Boolean values = \{true, false $\}$
-Identifiers: (k,m) --> (m(k), m)

Arithmetic Expressions

$\frac{(E, m)-->\left(E^{\prime \prime}, m\right)}{\left(E \text { op } E^{\prime}, m\right)-->\left(E^{\prime \prime} \text { op } E^{\prime}, m\right)}$
$\frac{(E, m)-->\left(E^{\prime}, m\right)}{(V \text { op } E, m)-->\left(V \text { op } E^{\prime}, m\right)}$
$(U$ op $V, m)-->(N, m)$
where N is the specified value for (mathematical) " U op V "

Boolean Operations:

- Operators: (short-circuit)
(false \& B, m) --> (false,m)
(true \& B, m) --> (B,m)
$\frac{(B, m)-->\left(B^{\prime \prime}, m\right)}{\left(B \& B^{\prime}, m\right)-->\left(B^{\prime \prime} \& B^{\prime}, m\right)}$
(true or B, m) --> (true,m)
(B, m) --> ($\left.B^{\prime \prime}, m\right)$
(false or B, m) --> (B,m)
(B or B^{\prime}, m) --> ($B^{\prime \prime}$ or B^{\prime}, m)
(not true, m) --> (false,m)
(not false, m) --> (true,m)

Relations

$\frac{(E, m)-->\left(E^{\prime \prime}, m\right)}{\left(E \operatorname{rop} E^{\prime}, m\right)-->\left(E^{\prime \prime} \operatorname{rop} E^{\prime}, m\right)}$

$$
\frac{(E, m)-->\left(E^{\prime}, m\right)}{(V \text { rop } E, m)-->\left(V \text { rop } E^{\prime}, m\right)}
$$

(U rop V, m) --> (true, m) or (false, m) depending on whether U rop V holds or not

Commands - in English

- skip means we're done evaluating
-When evaluating an assignment, evaluate the expression first
- If the expression being assigned is already a value, update the memory with the new value for the identifier
-When evaluating a sequence, work on the first command in the sequence first
- If the first command evaluates to a new memory (i.e. it completes), evaluate remainder with the new memory

Commands

$$
\begin{gathered}
(\text { skip, } m)-->m \\
\frac{(E, m)-->\left(E^{\prime}, m\right)}{(k:=E, m)-->\left(k:=E^{\prime}, m\right)} \\
(k:=V, m)-->m[k<--V]
\end{gathered}
$$

$$
\frac{(C, m)-->\left(C^{\prime \prime}, m^{\prime}\right)}{\left(C ; C^{\prime}, m\right)-->\left(C^{\prime \prime} ; C^{\prime}, m^{\prime}\right)} \frac{(C, m)-->m^{\prime}}{\left(C ; C^{\prime}, m\right)-->\left(C^{\prime}, m^{\prime}\right)}
$$

If Then Else Command - in English

-If the boolean guard in an if_then_else is true, then evaluate the first branch
-If it is false, evaluate the second branch
-If the boolean guard is not a value, then start by evaluating it first.

If Then Else Command

- Base Cases:
(if true then C else $\mathrm{C}^{\prime} \mathrm{fi}, \mathrm{m}$) --> (C, m)
(if false then C else $\left.C^{\prime} f i, m\right)$--> $\left(C^{\prime}, m\right)$
- Recursive Case:

$$
(B, m) \text {--> }\left(B^{\prime}, m\right)
$$

(if B then C else C' fi, m) --> (if B^{\prime} then C else $\mathrm{C}^{\prime} \mathrm{fi}, \mathrm{m}$)

While Command

> (while B do C od, m) --> (if B then (C ; while B do C od) else skip fi, m)

In English: Expand a While into a check of the boolean guard, with the true case being to execute the body and then try the while loop again, and the false case being to stop.

Example Evaluation

- First step:
(if $x>5$ then $y:=2+3$ else $y:=3+4$ fi, $\{x->7\}$) --> ?

Example Evaluation

- First step:

$$
(x>5,\{x->7\}) \text {--> ? }
$$

(if $x>5$ then $y:=2+3$ else $y:=3+4$ fi, $\{x->7\}$) --> ?

Example Evaluation

- First step:
$\frac{(x,\{x->7\})-->(7,\{x->7\})}{(x>5,\{x->7\})-->?}$
(if $x>5$ then $y:=2+3$ else $y:=3+4$ fi, $\{x->7\}$) --> ?

Example Evaluation

- First step:

$$
\frac{(x,\{x->7\})-->(7,\{x->7\})}{\frac{(x>5,\{x->7\})-->(7>5,\{x->7\})}{(\text { if } x>5 \text { then } y:=2+3 \text { else } y:=3+4 \text { fi, }\{x->7\})}}
$$

Example Evaluation

- First step:
$\frac{(x,\{x->7\})-->(7,\{x->7\})}{(x>5,\{x->7\})-->(7>5,\{x->7\})}$
(if $x>5$ then $y:=2+3$ else $y:=3+4$ fin, $\{x->7\}$)
--> (if $7>5$ then $y:=2+3$ else $y:=3+4$ fin, $\{x->7\})$

Example Evaluation

- Second Step:

$$
(7>5,\{x->7\})-->(\text { true, }\{x->7\})
$$

(if $7>5$ then $y:=2+3$ else $y:=3+4$ fi, $\{x->7\}$)
--> (if true then $y:=2+3$ else $y:=3+4$ fi, $\{x->7\})$

- Third Step:
(if true then $y:=2+3$ else $y:=3+4$ fi, $\{x->7\}$)

$$
-->(y:=2+3,\{x->7\})
$$

Example Evaluation

- Fourth Step:

- Fifth Step:

$$
(y:=5,\{x->7\})-->\{y->5, x->7\}
$$

Example Evaluation

- Bottom Line:
(if $x>5$ then $y:=2+3$ else $y:=3+4$ fi, $\quad\{x->7\}$)
--> (if $7>5$ then $y:=2+3$ else $y:=3+4$ fi, $\quad\{x->7\})$
-->(if true then $y:=2+3$ else $y:=3+4 \mathrm{fi}, \quad\{x->7\})$
-->(y:=2+3,

$$
\{x->7\})
$$

--> (y:=5,

$$
\{x->7\})
$$

-->

$$
\{y->5, x->7\}
$$

Adding Local Declarations

- Add to expressions:
- $E::=\ldots \mid$ let $x=E$ in $E^{\prime} \mid$ fun $x->E \mid E E^{\prime}$
- Recall: fun $x->E$ is a value
- Could handle local binding using state, but have assumption that evaluating expressions does not alter the environment
- We will use substitution here instead
- Notation: $E\left[E^{\prime} / x\right.$] means replace all free occurrence of x by E 'in E

Calling Conventions (Common Strategies)

- Call by value (eager evaluation): First evaluate the argument, then use its value
- Call by name: Refer to the computation by its name; evaluate every time it is called
- Call by need (lazy evaluation): Refer to the computation by its name, but once evaluated, store ("memoize") the result for future reuse

Transition Semantics Evaluation

- A sequence of transitions: trees of justification for each step
$\left(C_{1}, m_{1}\right)-->\left(C_{2}, m_{2}\right)-->\left(C_{3}, m_{3}\right)-->\ldots$... $-\gg($ skip, m) $-->m$
- Definition: let -->* be the transitive closure of --> i.e., the smallest transitive relation containing -->

Church-Rosser Property

-Church-Rosser Property: If E-->* E_{1} and $\mathrm{E}-\mathrm{-}^{*} \mathrm{E}_{2}$, if there exists a value V such that $E_{1}->^{*} V$, then $E_{2}->^{*} V$

- Also called confluence or diamond property
- Example:

Does It always Hold?

- No. Languages with side-effects tend not be ChurchRosser with the combination of call-by-name and call-byvalue
- Alonzo Church and Barkley Rosser proved in 1936 the λ calculus does have it
- Benefit of Church-Rosser: can check equality of terms by evaluating them (Given evaluation strategy might not terminate, though)

Extension: Abort

- Regular execution terminates when program in configuration (skip, m)
- Add another command "abort".
- If the computation ends in (abort, m), then there is no transition from it => we reached the error state

Extensions: Parallel

- Statement C1 par C2: execute C1 and C2 in parallel
-We can apply multiple rules at the same time!
- (reflects nondeterminism; also hard to express using \Downarrow)

$$
\begin{aligned}
& \frac{(C, m)-->\left(C^{\prime \prime}, m^{\prime}\right)}{\left(C \text { par } C^{\prime}, m\right)-->\left(C^{\prime \prime} \operatorname{par} C^{\prime}, m^{\prime}\right)} \\
& \frac{(C, m)-->\left(C^{\prime \prime}, m^{\prime}\right)}{(C \text { par skip, } m)-->\left(C^{\prime \prime}, m^{\prime}\right)} \\
& \frac{\left(C^{\prime}, m\right) ~-->\left(C^{\prime \prime}, m^{\prime}\right)}{\left(C \text { par } C^{\prime}, m\right) ~-->\left(C \text { par } C^{\prime \prime}, m^{\prime}\right)}
\end{aligned} \frac{\left(C^{\prime}, m\right) ~-->\left(C^{\prime \prime}, m^{\prime}\right)}{\left(\text { skip par } C^{\prime}, m\right)-->\left(C^{\prime \prime}, m^{\prime}\right)}
$$

Extension: Nondeterministic

- E.g., nondeterministic assignment x = E1 [] E2
- Nondeterministically assigns one of the two evaluated values to x
- How do we extend the semantics? (e.g., small step)
-What are our configurations?

Symbolic Execution

Symbolic formulas syntax (with symbolic variables α): P ::= true | false
| not P | P1 bop P2 | Aexp1 rop Aexpr2
Aexp ::= $\alpha|n| A \exp 1+A \exp 2 \mid A \exp 1$ * $A \exp 2$
| Aexp1 - Aexp2 | Aexp1 / Aexp2

Memory store: $\Sigma: \operatorname{Var} \rightarrow$ Aexp
Analysis state ($\mathrm{P}, \mathrm{\Sigma}$):

- P is called path condition, and Σ a symbolic state.

Arithmetic And Relational Expressions

$$
(E 1, \Sigma) \Downarrow A \exp 1^{\prime} \quad(E 2, \Sigma) \Downarrow A \exp 2^{\prime}
$$

$(E 1$ op $E 2, \Sigma) \Downarrow$ Aexp1' op Aexp2'
$(E 1, \Sigma) \Downarrow A \exp 1^{\prime} \quad(E 2, \Sigma) \Downarrow$ Aexp2 $^{\prime} \quad \mathrm{P}=A \exp 1^{\prime}$ rop Aexp2'

$$
\left(E \text { rop } E^{\prime}, \Sigma\right) \Downarrow P
$$

Statements

Skip: $(\mathrm{P}$, skip,$\Sigma) \Downarrow(\mathrm{P}, \Sigma)$

Assignment: $\frac{(E, \Sigma) \Downarrow \operatorname{Aexp}}{(P, k:=E, \Sigma) \Downarrow(P, \Sigma[k<--A \exp])}$

Sequencing: $\frac{(\mathrm{P}, \mathrm{C}, \Sigma) \Downarrow\left(\mathrm{P}^{\prime}, \Sigma^{\prime}\right)\left(\mathrm{P}^{\prime}, \mathrm{C}^{\prime}, \Sigma^{\prime}\right) \Downarrow \Sigma^{\prime \prime}}{\left(\mathrm{P}, \mathrm{C} ; \mathrm{C}^{\prime}, \Sigma\right) \Downarrow \Sigma^{\prime \prime}}$

If Then Else Statement

$$
(\mathrm{B}, \Sigma) \Downarrow \mathrm{Pb} \quad \mathrm{SAT}(\mathrm{P} \wedge \mathrm{~Pb}) \quad(\mathrm{P} \wedge \mathrm{~Pb}, \mathrm{C}, \Sigma) \Downarrow\left(\mathrm{P}^{\prime}, \Sigma^{\prime}\right)
$$

(if B then C else C' fi, Σ) $\downarrow\left(P^{\prime}, \Sigma^{\prime}\right)$
$(\mathrm{B}, \Sigma) \Downarrow \mathrm{Pb} \quad \mathrm{SAT}(\mathrm{P} \wedge \neg \mathrm{Pb}) \quad\left(\mathrm{P} \wedge \neg \mathrm{Pb}, \mathrm{C}^{\prime}, \Sigma\right) \Downarrow\left(\mathrm{P}^{\prime}, \Sigma^{\prime}\right)$ (if B then C else $\left.C^{\prime} f i, \Sigma\right) \Downarrow\left(P^{\prime}, \Sigma^{\prime}\right)$

Both are possibly satisfiable (due to symbolic abstraction)!
Execution is then not a sequence but a tree of instructions!
Static Symbolic execution: We "merge" the formulas of both branches and simplify them. This will be clearer after we cover abstract interpretation next!

Example

int $\mathrm{x}=$ input()
int $y=0$
if x > 0

$$
y=x+1
$$

else

$$
y=-x
$$

// Question: Is $y \geq 0$
// after the execution?

Another Example

int $x=$ input()
int $y=1 / x$
// Question: can the code experience an error?
int $\mathrm{x}=$ input()
if x ! $=0$

$$
y=1 / x
$$

else
abort

Symbolic Execution of Loops?

- Most practical tools just "unroll" the loop k times
- Enough for finding various bugs: search under "Small scope hypothesis"
- A more general approach will require loop invariants (predicates that hold at any point of loop execution)
- Often requires manual intervention by developer!
- We will discuss invariants later when we cover deductive methods for reasoning about programs.

Symbolic Evaluaton for Loops: Rule

Together: Let us derive the rule for the finite loop while $_{\mathrm{k}}$ (condition) -- for a constant $\mathrm{k}>0$

Symbolic Execution and Testing

- Generalizes testing by using symbolic values and having means to explore all paths: exhaustive exploration
- Scalability is an issue (although the modern tools have made it more practical)
- Concolic execution: combines testing with symbolic execution
- Use concrete execution to reach a certain point in the execution (e.g., an important subcomputation)
- Use then symbolic execution to exhaustively explore the executions within that smaller scope

