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Previously, on CS 477

Propositional Logic:

• Syntax

• Semantics

• Proof

(Homework/Quiz #1 is out: due next Thursday)



Simple Imperative Programming 
Language

• I  Identifiers

•N  Numerals

•B ::= true | false 
| B & B | B or B | not B | E < E | E = E

•E::= N | I | E + E | E * E | E - E | - E

•S::= skip | S; S | I ::= E 
| if B then S else S fi | while B do S od
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Syntax -> Graphs

Reminder: Graph: (V, E) 
• V is a set of vertices (nodes)

• E⊆𝑉×𝑉 is a relation denoting “connected” nodes. Elements 𝑒∈𝐸are 
edges: pairs of connected vertices 𝑒= 𝑣1,𝑣2 . Can be directed or undirected. 

Common definitions: 
• Post(v) – successor vertices of v, Pre(v) – direct predecessor vertices of v

• Path: a sequence of vertices s.t.𝑣𝑖∈𝑃𝑟𝑒(𝑣𝑖+1). Cycle when the same vertex 
multiple times in the path, else simple. Length: number of vertices in a path. 

• Acyclic graphs: no cycles. 

• Tree: exists 𝑣𝑟𝑜𝑜𝑡(without predecessors) such that all other vertices reachable 
along unique paths

• Strongly connected component: all pairs of vertices mutually reachable

• Search: DFS, BFS; traversal: preorder, postorder, etc. 
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Syntax -> Graphs

•Parse Tree (from CS 374)

•Abstract Syntax Tree

•Control-flow Graph
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Flow Graphs

•Flow Graph: A triple G=(N,A,s), where (N,A) is a (finite) 
directed graph, s ∈N is a designated “initial” node, and 
there is a path from node s to every node n ∈N.

• An entry node in a flow graph has no predecessors.

• An exit node in a flow graph has no successors.

• There is exactly one entry node, s. We can modify a 
general DAG to ensure this. How?

• We can also transform the graph to have only one exit 
node. How?



Control Flow Graph (CFG)
•Flow Graph: A triple G=(N,A,s), where (N,A) is a (finite) 

directed graph, s ∈N is a designated “initial” node, and there is 
a path from node s to every node n ∈N.

•Control Flow Graph (CFG) is a flow graph that represents all 
paths (sequences of statements) that might be traversed 
during program execution.

• Nodes in CFG are program statements, and edge (S1,S2) denotes 
that statement S1 can be followed by S2 in execution. 

• In CFG, a node unreachable from s can be safely deleted. Why?

• Control flow graphs are usually sparse. I.e., | A |= O(| N |). In 
fact, if only binary branching is allowed | A | ≤ 2 | N |.



Control Flow Graph (CFG)

•Basic Block is a sequence of statements S1 ... Sn such 
that execution control must reach S1 before S2, and, if S1

is executed, then S2 . . . Sn are all executed in that order

•Unless some statement Si  causes the program to halt

•Leader is the first statement of a basic block

•Maximal Basic Block is a basic block with a maximum 
number of statements (n)



Control Flow Graph (CFG)
Let us refine our previous definition

•CFG is a directed graph in which:

• Each node is a single basic block

• There is an edge b1 → b2 if block b2 may be 
executed after block b1 in some execution

•We typically define it for a single procedure

•A CFG is a conservative approximation of the control 
flow! Why?



Example

Source Code

unsigned fib(unsigned n) {

int i ;

int f0 = 0, f1 = 1, f2;

if (n <= 1) return n;

for ( i = 2; i <= n; i ++) {

f2 = f0 + f1;

f0 = f1;

f1 = f2;

} 

return f2;

}

LLVM bitcode(ver 3.9.1)

define i32 @fib(i32 %0) {
%2 = icmp ult i32 %0, 2
br i1 %2, label %12, label %3

; <label>:3:                        
br label %4

; <label>:4:
%5 = phi i32 [ %8, %4 ], [ 1, %3 ]
%6 = phi i32 [ %5, %4 ], [ 0, %3 ]
%7 = phi i32 [ %9, %4 ], [ 2, %3 ]
%8 = add i32 %5, %6
%9 = add i32 %7, 1
%10 = icmp ugt i32 %9, %0
br i1 %10, label %11, label %4

; <label>:11:
br label %12

; <label>:12: 
%13 = phi i32 [%0, %1], [%8, %11]
ret i32 %13

}



Dominance in Flow Graphs
• Let d, d1, d2, d3, n be nodes in G.

• d dominates n (“d dom n”) iff every path from s to n 
contains d

• d properly dominates n if d dominates n and d ≠ n

• d is the immediate dominator of n (“d idom n”) 
if d is the last proper dominator on any path from initial node to n,    

• DOM(x) denotes the set of dominators of x,

• Dominator tree: the children of each node d are the nodes n such 
that “d idom n” (immediately dominates)



Dominator Properties

•Lemma 1: DOM(s) = { s }.

•Lemma 2: s dom d, for all nodes d in G.

•Lemma 3: The dominance relation on nodes in a flow 
graph is a partial ordering

• Reflexive— n dom n is true for all n.

• Antisymmetric— If d domn, then cannot be n domd

• Transitive— d1 domd2 ∧d2 domd3 ⇒d1 domd3

•Lemma 4: The dominators of a node form a list.

•Lemma 5: Every node except s has a unique immediate 
dominator.



Postdominance

Def. Postdomination: nodep postdominatesa 

noded iff all paths to the exit node of the graph 

starting atd must go throughp

Def. Reverse Control Flow Graph (RCFG) of a CFG 

has the same nodes as CFG and has edge Y → X if X →

Y is an edge in CFG.

• p is a postdominatorof d iff p dominates d in the 

RCFG.  



Semantics

•Expresses the meaning of syntax

•Static semantics
•Meaning based only on the form of the 
expression without executing it

•Usually restricted to type checking / type 
inference
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Dynamic semantics

•Method of describing meaning of executinga program
•Several different types:

•Operational Semantics
•Axiomatic Semantics
•Denotational Semantics

•Different languages better suited to different types of 
semantics
•Different types of semantics serve different purposes
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Operational Semantics

•Start with a simple notion of machine
•Describe how to execute (implement) programs of 

language on virtual machine, by describing how to 
execute each program statement (ie, following the 
structureof the program)

•Meaning of program is how its execution changes the 
state of the machine
•Useful as basis for implementations
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Denotational Semantics
•Construct a function M assigning a mathematical 

meaning to each program construct

• Lambda calculus often used as the range of the 
meaning function

•Meaning function is compositional: meaning of 
construct built from meaning of parts

•Useful for proving properties of programs
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Axiomatic Semantics

•Also called Floyd-Hoare Logic

•Based on formal logic (first order predicate 
calculus)

•Axiomatic Semantics is a logical system built 
from axiomsand inference rules

•Mainly suited to simple imperative 
programming languages

18



Axiomatic Semantics

•Used to formally prove a property (post-
condition) of the state (the values of the 
program variables) after the execution of 
program, assuming another property (pre-
condition) of the state before execution

•Written :

{Precondition} Program{Postcondition}

Much more about it later in the course!
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(  ,  )
Modeling Program Environment

Sources: https://www.researchgate.net/figure/Example-of-Control-Flow-Graph_fig5_4065402 and https://freesvg.org/computer-station-vector-graphics
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Program Environment
Pair of code to execute + a valuation (aka state)

Code to execute: Next statement and program text that remains to be executed: 
Statement_1; Other_Statements

A valuation of program variables:

• Mapping m: Identifiers-> Value

Program statements (“S1; S2; … Sn”) transform the valuations. Execution is then: 
• m2 = [[S1]](m1)

• m3 = [[S2]](m2)

• …

• mn+1 = [[Sn]](mn)

• Also (𝑠1,𝑚1)՜(𝑠2,𝑚2)՜(𝑠3,𝑚3)՜ …  (𝑠𝑛,𝑚𝑛) (⋅,𝑚𝑛+1). 

We can define the sequence (𝑠1,𝑚1),(𝑠2,𝑚2),𝑠3,𝑚3,… , 𝑠𝑛,𝑚𝑛,(⋅,𝑚𝑛+1)

or its projection (𝑚1,…𝑚𝑛) as the traceof execution
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Natural Semantics (“Big-step Semantics”)

•Aka Structural Operational Semantics, aka ¬Big Step 
Semanticsº

• Provide value for a program by rules and derivations, similar to 
type derivations

• Rule conclusions look like 

(C, m)  m 

“Evaluating a command C in the state m results in the new state m’ ”

or

(E, m)  v

“Evaluating an expression E in the state m results in the value v’”
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Simple Imperative Programming 
Language

• I  Identifiers

•N  Numerals

•B ::= true | false 
| B & B | B or B | not B | E < E | E = E

•E::= N | I | E + E | E * E | E - E | - E

•C::= skip | C;C | I ::= E 
| if B then C else C fi | while B do C od
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Natural Semantics of Atomic 
Expressions

• Identifiers: (k,m)  m(k)

•Numerals are values: (N,m)  N

•Booleans:  (true,m)  true

(false ,m)  false
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Booleans: 
(B, m)  false     (B, m)  true  (B , m)  b

(B & B , m)  false          (B & B , m)  b

(B, m)  true            (B, m)  false  (B , m)  b

(B or B , m)  true          (B or B , m)  b

(B, m)  true                 (B, m)  false

(not B, m)  false        (not B, m)  true
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Binary Relations
(E, m)  U     (E , m)  V   U rop V = b

(E rop E , m)  b

•By U rop V = b, we mean does (the meaning of) the 
relation rop hold on the meaning of U and V

•May be specified by a mathematical expression/equation 
or rules matching U and V
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Arithmetic Expressions

(E, m)  U     (E , m)  V   U op V = N

(E op E , m)  N

where N is the specified value for (mathematical) U op V
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Commands

Skip:                 (skip, m)  m

Assignment:           (E,m)  V

(k :=E,m)  m [k <-- V ]

Sequencing:    (C,m)  m’ (C ,m’ )  m’’

(C; C , m)  m’’

28



If Then Else Command

(B,m)  true   (C,m)  m 

(if B then C else C fi, m)  m 

(B,m)  false   (C ,m)  m 

(if B then C else C fi, m)  m 

29



Example: If Then Else Rule

(2,{x->7})2    (3,{x->7}) 3

(2+3, {x->7})5

(x,{x->7})7   (5,{x->7})5 (y:= 2 + 3, {x-> 7}

(x > 5, {x -> 7})true             {x- >7, y->5}

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7}) 

 ?
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Example: If Then Else Rule

(2,{x->7})2    (3,{x->7}) 3

(2+3, {x->7})5

(x,{x->7})7   (5,{x->7})5 (y:= 2 + 3, {x-> 7}

(x > 5, {x -> 7})?                 {x- >7, y->5}

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi,  {x -> 7}) 

 ? {x->7, y->5}
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Example: Arith Relation

(2,{x->7})2    (3,{x->7}) 3

? > ? = ? (2+3, {x->7})5

(x,{x->7})?   (5,{x->7})? (y:= 2 + 3, {x-> 7}

(x > 5, {x -> 7})?   {x- >7, y->5}

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7}) 

 ? {x->7, y->5}
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Example: Identifier(s)

(2,{x->7})2    (3,{x->7}) 3

7 > 5 = true                          (2+3, {x->7})5

(x,{x->7})7   (5,{x->7})5 (y:= 2 + 3, {x-> 7}

(x > 5, {x -> 7})?                {x- >7, y->5}

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7}) 

 ? {x->7, y->5}
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Example: Arith Relation

(2,{x->7})2    (3,{x->7}) 3

7 > 5 = true                      (2+3, {x->7})5

(x,{x->7})7   (5,{x->7})5 (y:= 2 + 3, {x-> 7}

(x > 5, {x -> 7})true             {x- >7, y->5}

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi,  {x -> 7}) 

 ? {x->7, y->5}
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Example: If Then Else Rule

(2,{x->7})2    (3,{x->7}) 3

7 > 5 = true                     (2+3, {x->7})5

(x,{x->7})7   (5,{x->7})5 (y:= 2 + 3, {x-> 7}

(x > 5, {x -> 7})true              ?                    

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7}) 

 ? {x->7, y->5}
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Example: Assignment

(2,{x->7})2    (3,{x->7}) 3

7 > 5 = true                       (2+3, {x->7})?

(x,{x->7})7   (5,{x->7})5 (y:= 2 + 3, {x-> 7}

(x > 5, {x -> 7})true              ? {x- >7, y-
>5}

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7}) 

 ? {x->7, y->5}
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Example: Arith Op

? + ? = ?

(2,{x->7})?    (3,{x->7}) ?

7 > 5 = true                      (2+3, {x->7})?

(x,{x->7})7   (5,{x->7})5 (y:= 2 + 3, {x-> 7}

(x > 5, {x -> 7})true             ?                     .

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7}) 

 ? {x->7, y->5}
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Example: Numerals

2 + 3 = 5

(2,{x->7})2    (3,{x->7}) 3

7 > 5 = true                       (2+3, {x->7})?

(x,{x->7})7   (5,{x->7})5 (y:= 2 + 3, {x-> 7}

(x > 5, {x -> 7})true              ?{x->7, y->5}

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7})

 ? {x->7, y->5}

38



Example: Arith Op

2 + 3 = 5

(2,{x->7})2    (3,{x->7}) 3

7 > 5 = true                       (2+3, {x->7})5

(x,{x->7})7   (5,{x->7})5 (y:= 2 + 3, {x-> 7}

(x > 5, {x -> 7})true             ? {x->7, y->5}

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi,  {x -> 7}) 

 ? {x->7, y->5} 
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Example: Assignment

2 + 3 = 5

(2,{x->7})2    (3,{x->7}) 3

7 > 5 = true                       (2+3, {x->7})5

(x,{x->7})7   (5,{x->7})5 (y:= 2 + 3, {x-> 7}

(x > 5, {x -> 7})true            {x->7, y->5}

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7}) 

? {x->7, y->5}
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Example: If Then Else Rule

2 + 3 = 5

(2,{x->7})2    (3,{x->7}) 3

7 > 5 = true                       (2+3, {x->7})5

(x,{x->7})7   (5,{x->7})5 (y:= 2 + 3, {x-> 7}

(x > 5, {x -> 7})true              {x->7, y->5}

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7}) 

 {x->7, y->5} 
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While Command
(B, m)  false

(while B do C od, m)  m

(while B do C od, m)  m’’



While Command
(B, m)  false

(while B do C od, m)  m

(B,m) true  (C,m)m’ (while B do C od, m’ )m’’

(while B do C od, m)  m’’

1 2 3



Example: While Rule

(while x > 5 do x := x-5 od, {x -> 7})  {x->2}
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Example: While Rule

(x > 5, {x->2})  false       

(x > 5, {x->7})  true                  while x > 5 do x := x-5 od; 
(x := x-5, {x->7})  {x->2}                {x -> 2})  {x->2}

(while x > 5 do x := x-5 od, {x -> 7})  {x->2}

45
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While Command and Termination?
(B, m)  false

(while B do C od, m)  m

(B,m) true   (C,m)m’ (while B do C od, m’ )m’’

(while B do C od, m)  m’’

The rule assumes the loop terminates!
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While Command and Termination?
(B, m)  false

(while B do C od, m)  m

(B,m) true   (C,m)m’ (while B do C od, m’ )m’’

(while B do C od, m)  m’’

The rule assumes the loop terminates!

? ? ?

while (x>0) do x:=x+1 od, {x->1}  ? ? ?
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Interpretation Versus Compilation

•A compiler from language L1 to language L2 is a program 
that takes an L1 program and for each piece of code in L1 
generates a piece of code in L2 of same meaning
•An interpreter of L1 in L2 is an L2 program that executes 

the meaning of a given L1 program
•Compiler would examine the body of a loop once; an 

interpreter would examine it every time the loop was 
executed
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Interpreter 

•An Interpreterrepresents the operational semantics of a 
language L1 (source language) in the language of 
implementation L2 (target language)

•Built incrementally
• Start with literals
• Variables
• Primitive operations
• Evaluation of expressions
• Evaluation of commands/declarations

49



Interpreter

•Takes abstract syntax trees as input 
• In simple cases could be just strings

•One procedure for each syntactic category (nonterminal)
• eg one for expressions, another for commands

• If Natural semantics used, tells how to compute final 
value from code
• If Transition semantics used, tells how to compute next 
¬stateº
• To get final value, put in a loop

50



Natural Semantics Interpreter 
Implementation
• Identifiers: (k,m)  m(k)

• Numerals are values: (N,m)  N

• Conditionals:

compute_exp ( Var(v) , m) = look_up v m

compute_exp ( Int (n) , _) = Num(n)

ƛ

compute_com ( IfExp (b,c1,c2) , m) =

if compute_exp ( b,m) = Bool(true)

then compute_com (c1,m)

else compute_com (c2,m)
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Natural Semantics Interpreter 
Implementation

• Loop: 

compute_com ( While( b,c ) , m) =

if compute_exp ( b,m) = Bool(false)

then m

else compute_com

(While( b,c ), compute_com( c,m))

•May fail to terminate - exceed stack limits
• Returns no useful information then

52



Transition Semantics 
(“Small-step Semantics”)

•Form of operational semantics

•Describes how each program construct transforms 
machine state by transitions

•Rules look like

(C, m) --> (C , m )   or    (C,m) --> m 

•C, /Ωis code remaining to be executed

•m, m represent the state/store/memory/environment 
• Partial mapping from identifiers to values

• Sometimes m (or C) not needed

• Indicates exactly one step of computation 53



Expressions and Values
•C, C used for commands; E, E for expressions; U,Vfor 

values

•Special class of expressions designated as values
• Eg 2, 3 are values, but 2+3 is only an expression

•Memory only holds values
• Other possibilities exist
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Evaluation Semantics

•Transitions successfully stops when E/Cis a 
value/memory

•Evaluation fails if no transition possible, but not at 
value/memory

•Value/memory is the final meaningof original 
expression/command (in the given state)

•Coarse semantics: final value / memory

•More fine grained: whole transition sequence
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Simple Imperative Programming 
Language

• I  Identifiers

•N  Numerals

•B ::= true | false | B & B | B or B | not B | E < E | E = E

•E::= N | I | E + E | E * E | E - E | - E

•C::= skip | C;C | I ::= E 
| if B then C else C fi | while B do C od
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Transition Semantics Evaluation

•A sequence of transitions: trees of  justification for 
each step

(C1,m1) --> (C2,m2) --> (C3,m3) --> … --> (skip, m) --> m



Transitions for Expressions

•Numerals are values

•Boolean values = {true, false}

•Identifiers: (k,m) --> (m(k), m)
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Arithmetic Expressions

(E, m) --> (E’’,m) 

(E op E , m) --> (E’’ op E ,m)

(E, m) --> (E ,m) 

(V op E, m) --> (V op E ,m)

(U op V, m) --> (N,m)   

where N is the specified value for (mathematical) “U op V”
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Boolean Operations: 
•Operators: (short-circuit)

(false & B, m) --> (false,m)                (B, m) --> (B”, m)

(true & B, m) --> (B,m)             (B & B , m) --> (B” & B , m)

(true or B, m) --> (true,m)                  (B, m) --> (B”, m)

(false or B, m) --> (B,m)           (B or B , m) --> (B” or B ,m)

(not true, m) --> (false,m)                   (B, m) --> (B , m)

(not false, m) --> (true,m)            (not B, m) --> (not B , m)
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Relations

(E, m) --> (E’’,m) 

(E rop E , m) --> (E’’ rop E ,m)

(E, m) --> (E ,m) 

(V rop E, m) --> (V rop E ,m)

(U rop V, m) --> (true,m) or (false,m) 

depending on whether U rop V holds or not
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Commands - in English
•skipmeans we’re done evaluating

•When evaluating an assignment, evaluate the 
expression first

• If the expression being assigned is already a value, 
update the memory with the new value for the 
identifier

•When evaluating a sequence, work on the first 
command in the sequence first

• If the first command evaluates to a new memory (i.e. it 
completes), evaluate remainder with the new memory
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Commands
(skip, m) --> m

(E,m) --> (E ,m)

(k:=E,m) --> (k:=E ,m) 

(k:=V,m) --> m[k <-- V ]

(C,m) --> (C”,m )                (C,m) --> m 

(C;C’, m) --> (C”;C’,m’)     (C;C’, m) --> (C’,m’ )



If Then Else Command - in English

•If the boolean guard in an if_then_else is 
true, then evaluate the first branch

•If it is false, evaluate the second branch

•If the boolean guard is not a value, then 
start by evaluating it first.
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If Then Else Command
•Base Cases:

(if true then C else C fi, m) -->

(if false then C else C fi, m) -->  

•Recursive Case:

(B,m) --> (B ,m)

(if B then C else C fi, m) --> (if B then C else C fi, m) 

65

(C, m)

(Cô, m)



While Command

(while B  do C od, m)  -->

(if B then ( C ; while B  do C od )
else skip fi, m)                  .   

In English: Expand a While into a check of the boolean 
guard, with the true case being to execute the body and 
then try the while loop again, and the false case being to 
stop.
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Example Evaluation

•First step:

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi,  {x -> 7}) --> ? 

67



Example Evaluation

•First step:

(x > 5, {x -> 7}) --> ?

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7}) --> ?
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Example Evaluation
•First step:

(x,{x -> 7}) --> (7, {x -> 7}) 

(x > 5, {x -> 7}) --> ?

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7}) --> ?
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Example Evaluation
•First step:

(x,{x -> 7}) --> (7, {x -> 7}) 

(x > 5, {x -> 7}) --> (7 > 5, {x -> 7})

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7})

--> ?
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Example Evaluation

•First step:

(x,{x -> 7}) --> (7, {x -> 7})

(x > 5, {x -> 7}) --> (7 > 5, {x -> 7})

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7})

--> (if 7 > 5 then y:=2 + 3 else y:=3 + 4 fi,  {x -> 7})
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Example Evaluation
•Second Step:

(7 > 5, {x -> 7}) --> (true, {x -> 7}) 

(if 7 > 5 then y:=2 + 3 else y:=3 + 4 fi, {x -> 7}) 

--> (if true then y:=2 + 3 else y:=3 + 4 fi,  {x -> 7})

•Third Step:

(if true then y:=2 + 3 else y:=3 + 4 fi, {x -> 7})

-->(y:=2+3, {x->7})

72



Example Evaluation

•Fourth Step:

(2+3, {x-> 7}) --> (5, {x -> 7})

(y:=2+3, {x->7}) --> (y:=5, {x->7})

ÅFifth Step:

(y:=5, {x->7}) --> {y -> 5, x -> 7}
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Example Evaluation
•Bottom Line:

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi,         {x -> 7})

--> (if 7 > 5 then y:=2 + 3 else y:=3 + 4 fi,     {x -> 7})

-->(if true then y:=2 + 3 else y:=3 + 4 fi,       {x -> 7})

-->(y:=2+3,                                                 {x -> 7})

--> (y:=5,                                                    {x -> 7}) 

-->                          {y -> 5, x -> 7}
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Adding Local Declarations

•Add to expressions:

•E::= … | let x = Ein E | fun x -> E | E  E 
• Recall: fun x -> Eis a value

•Could handle local binding using state, but have 
assumption that evaluating expressions does not alter 
the environment

•We will use substitution here instead

•Notation: E [ E / x ] means replace all free occurrence 
of x by E in E
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Calling Conventions (Common Strategies)

•Call by value (eager evaluation): First evaluate the 
argument, then use its value

•Call by name: Refer to the computation by its name; 
evaluate every time it is called

•Call by need (lazy evaluation): Refer to the computation 
by its name, but once evaluated, store (“memoize”) the 
result for future reuse



Transition Semantics Evaluation
•A sequence of transitions: trees of  justification for 
each step

(C1,m1) --> (C2,m2) --> (C3,m3) --> … --> (skip, m) --> m

•Definition: let -->* be the transitive closure of -->
i.e., the smallest transitive relation containing -->



Church-Rosser Property
•Church-Rosser Property:  If E-->* E1 and E-->* E2, if there 

exists a value V such that E1 -->* V, then E2 -->* V

•Also called confluenceor diamond property

•Example:      

E= 2 + 3 + 4

E1 = 5 + 4     E2 = 2 + 7

V =9



Does It always Hold?

•No. Languages with side-effects tend not be Church-

Rosser with the combination of call-by-name and call-by-

value

•Alonzo Church and Barkley Rosser proved in 1936 the -

calculus does have it

•Benefit of Church-Rosser: can check equality of terms by 

evaluating them (Given evaluation strategy might not 

terminate, though)



Extension: Abort 

•Regular execution terminates when program in 
configuration (skip, m)

•Add another command “abort”. 

• If the computation ends in (abort, m), then there is no 
transition from it => we reached the error state
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Extensions: Parallel

•Statement C1 par C2: execute C1 and C2 in parallel

•We can apply multiple rules at the same time!

• (reflects nondeterminism; also hard to express using )

(C,m) --> (C”, m ) 

(C par skip, m) --> (C”,m’)

(C’,m) --> (C”,m ) 

(skip par C’, m) --> (C”,m’)

(C,m) --> (C”, m ) 

(C par C’, m) --> (C” par C’,m’)

(C’,m) --> (C”,m ) 

(C par C’, m) --> (C par C”,m’)



Extension: Nondeterministic

•E.g., nondeterministic assignment x = E1 [] E2 
• Nondeterministically assigns one of the two evaluated values to x

•How do we extend the semantics? (e.g., small step)

•What are our configurations?
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Symbolic Execution

Symbolic formulas syntax (with symbolic variables ):

P ::= true | false 

| not P | P1 bop P2 | Aexp1 rop Aexpr2 

Aexp ::=   | n | Aexp1 + Aexp2 | Aexp1 * Aexp2 

| Aexp1 – Aexp2 | Aexp1 / Aexp2 

Memory store: Σ:𝑉𝑎𝑟՜𝐴𝑒𝑥𝑝

Analysis state (P, Σ): 

•P is called path condition, and Σa symbolic state. 
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Arithmetic And Relational Expressions

(E1, )  Aexp1’     (E2, )  Aexp2’  

(E1 op E2, )  Aexp1’ op Aexp2’

(E1, )  Aexp1’     (E2, )  Aexp2’     P= Aexp1’ rop Aexp2’

(E rop E , )  P
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Statements

Skip:                 (P, skip, )  (P, )

Assignment:             (E, )  Aexp

(P, k := E, )  (P,  [k <-- Aexp ])

Sequencing:     (P, C, )  (P’, ’) (P’, C , ’ )  ’’

(P, C; C , )  ’’
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If Then Else Statement

(B, )  Pb SAT(P  Pb) (P  Pb, C, )  (P’,  )

(if B then C else C fi, )  (P’,  )

(B, )  Pb SAT(P   Pb)      (P   Pb, C , )  (P’,  )

(if B then C else C fi, )  (P’,  )

Both are possibly satisfiable(due to symbolic abstraction)! 

Execution is then not a sequence but a tree of instructions!
Static Symbolic execution: We “merge” the formulas of both branches and simplify 
them. This will be clearer after we cover abstract interpretation next! 

89



Example

int x = input()

int y = 0

if x > 0

y = x + 1

else

y = - x

// Question: Is y  0 
// after the execution?

90(See the lecture video)



Another Example
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int x = input()

int y = 1/x

// Question: can the code 
experience an error?

int x = input()

if x != 0

y = 1 / x

else 

abort



Symbolic Execution of Loops?

•Most practical tools just “unroll” the loop k times 

•Enough for finding various bugs:
search under “Small scope hypothesis”

•A more general approach will require loop invariants
(predicates that hold at any point of loop execution)

•Often requires manual intervention by developer!

•We will discuss invariants later when we cover deductive 
methods for reasoning about programs. 
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Symbolic Evaluaton for Loops: Rule

Together: Let us derive the rule for the finite loop
whilek (condition)   -- for a constant k > 0

93(See the lecture video)



Symbolic Execution and Testing

•Generalizes testing by using symbolic values and having 
means to explore all paths: exhaustive exploration

• Scalability is an issue (although the modern tools have made 
it more practical)

• Concolic execution: combines testing with symbolic execution
• Use concrete execution to reach a certain point in the execution (e.g., 

an important subcomputation)

• Use then symbolic execution to exhaustively explore the executions 
within that smaller scope
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