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Transition Semantics Evaluation

* A sequence of transitions: trees of justification for
each step

U U Uy

(C,,m,) -->(C,,m,) --> (C;,m;) --> ... --> (skip, m) --> m

* Definition: let -->* be the transitive closure of -->
l.e., the smallest transitive relation containing -->

*We can define it for final states (C;,m,) -->* m or
intermediate states (C,,m,) -->* (C,,m,) .



Small-step vs Big-step

* We can express big-step in terms of small step:
(C, m) -->* m’ implies (C,m){ m’ .

* Can be proved by simple rule induction.

* We can’t go from big-step to express small-step: some
information about the execution is lost.



Reasoning: First Intuition

e All end-states reachable from a start state m:
S(P, m)={m'| (P,m)->"m'}

 What if we have a set of start states M?
S(P, M)={m'| dmyeM . (P,m) ->"m'}



Reasoning: First Intuition

* How do we give meaning to predicates, e.g.,
X = input();
y = X*X + 1;

assert y > 0;

* Let us collect state(s) at the location of the assertion:

Sassert(Mg) = m'| (P, mo) —" (assert y > 0, m’)}



Reasoning: First Intuition

* Executions that reach the assertion: S_qsert (M)
and those that satisfy the predicate in the assertion:

Sassert,sat(mo) ={m'| m'e Sa(mo) A m,(.V) >0}

* If the program is satisfying the assertion, how should the
two sets relate?

* |If there are violations of the assertion, what is the set we
report back to the user?



Reasoning: First Intuition

* How do we claim validity of the program (i.e. it satisfies
the assertion for all inputs — e.g. belonging to the set M)?

Extend the definition: Sygsert = Um em Sassert(Mo)

* How do we support other predicates?
Give meaning to predicates in terms of program state
(e.g., state m becomes the valuation)

* We wander into the First-order theory land (we will discuss
Presburger arithmetic later)



Extension: Abort

* Regular execution terminates when program in
configuration (skip, m)

e Add another command “abort”.

* If the computation ends in (abort, m), then there is no
transition from it => we reached the error state



Extensions: Parallel

e Statement C1 par C2: execute C1 and C2 in parallel
* We can apply multiple rules at the same time!

* (reflects nondeterminism; also hard to express using )

(C,m)-->(C”, m") (C,m)-->(C”, m")

(C par C’, m) --> (C” par C’,m’) (C par skip, m) --> (C”",m’)

(C’m)-->(C"m’) (C’m)-->(C"m’)

(C par C’, m) --> (C par C",m’) (skip par C’, m) --> (C”,m’)



Fun Example

* In what states can this program be after the parallel
section?

(Y:=1) par ( while (Y =0) do X := X + 1)



Extension: Parallel

* Add synchronization: await B protect C end

* Command C can only execute if the condition B is true, but it
executes as a full block (no interleavings).

(B,s) U (true, m1) (C, m1) -->* m’
(await B protect Cend, m) -->* m’

* Examples:
ex =1; ((x = 0) par (await x = @ protect x :=1 ; x := x + 1 end)
 (await true protect 1 := 1 ; 1 := k + 1 end)

par

(await true protect k := 2 ; k :=1 + 1 end)
From Hillary, 2014



Extension: Nondeterministic

*E.g., nondeterministic assignment x = E1 [] E2
* Nondeterministically assigns one of the two evaluated values to x

* How do we extend the semantics? (e.g., small step)



Symbolic Execution

*So far: we defined the execution of programs for
concrete numerical values

* There are many executions so the enumeration is often
not tractable

 We can abstract the concrete values of the variables and
use symbolic evaluation to execute for a group of states
at the same time



Symbolic Execution

Symbolic formulas syntax (with symbolic variables a):
P ::=true | false
| not P | P1 bop P2 | Aexpl rop Aexpr2
Aexp ::= o | n | Aexpl + Aexp2 | Aexpl * Aexp?2
| Aexpl — Aexp2 | Aexpl / Aexp?2

Memory store: X: Var — Aexp
Analysis state (P, 2):

* P is called path condition, and X a symbolic state.



Arithmetic And Relational Expressions

(E1, 2) U Aexp1l’ (E2, 2) U Aexp2’

(E1 op E2, 2) U Aexpl’ op Aexp2’

(E1, X) U Aexpl’ (E2, %) U Aexp2’ P= Aexpl’ rop Aexp2’

(EropE,X)UP
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Statements

Skip:

Assignment:

Sequencing:

(P, skip, ) U (P, )

(E, =) U Aexp
(P k:=E ) (P, [k<-- Aexp ])

pc)d@e )y (pc,x)lx”

(PC:C,2)lx”
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If Then Else Statement

(B,X)UPb SAT(PAPb) (PAPb,C 2 (P2
(if B then Celse C' fi, 2) U (P, ¥)

B,X2)UPb SAT(PA—Pb) (PA—=PbC,2)U (P, )

(if Bthen Celse C' fi, ) U (P, ¥)

Both are possibly satisfiable (due to symbolic abstraction)!

Execution is then not a sequence but a tree of instructions!

Static Symbolic execution: We “merge” the formulas of both branches and simplify

them. This will be clearer after we cover abstract interpretation next! o7



Example

int x = input()

int y =0
if x > ©

y =X+ 1
else

y = =X

// Question: Isy >0
// after the execution?

(See the lecture video)



Another Example

int x = input() j‘> int x = input()
int y = 1/x if x 1= 0

y =1/ x
// Question: can the code else

experience an error? abort



Symbolic Execution of Loops?

* Most practical tools just “unroll” the loop k times

* Enough for finding various bugs:
search under “Small scope hypothesis”

* A more general approach will require loop invariants
(predicates that hold at any point of loop execution)

e Often requires manual intervention by developer!

* We will discuss invariants later when we cover deductive
methods for reasoning about programs.



Symbolic Evaluaton for Loops: Rule

Together: Let us derive the rule for the finite loop
while, (condition) -- for a constant k>0

k>0 (,B)UP  SAT(PAP’)  (PAP’, Z, C; while, , Bdo C) U (P”, =)

(P, %, C; while, Bdo C) U (P”, ")

k=0 (Z,B)UP" SAT(PAP’)
(P, , C; while, Bdo C) U (PA = P, £7)




Symbolic Execution and Testing

* Generalizes testing by using symbolic values and having
means to explore all paths: exhaustive exploration

* Scalability is an issue (although the modern tools have
made it more practical)

* Concolic execution: combines testing (concrete execution)
with symbolic execution

e Use concrete execution to reach a certain point in the execution
(e.g., an important subcomputation)

* Use then symbolic execution to exhaustively explore the
executions within that smaller scope



