
CS 477: Operational Program
Semantics

Sasa Misailovic

Based on previous slides by Gul Agha, Elsa Gunter,
Madhusudan Parthasarathy, Mahesh Viswanathan, and Vikram Adve

University of Illinois at Urbana-Champaign

Transition Semantics Evaluation
•A sequence of transitions: trees of justification for
each step

(C1,m1) --> (C2,m2) --> (C3,m3) --> … --> (skip, m) --> m

•Definition: let -->* be the transitive closure of -->
i.e., the smallest transitive relation containing -->

•We can define it for final states (C1,m1) -->* m or
intermediate states (C1,m1) -->* (C2,m2) .

Small-step vs Big-step

•We can express big-step in terms of small step:

(C, m) -->* m’ implies (C, m) ⇓ m’ .

•Can be proved by simple rule induction.

•We can’t go from big-step to express small-step: some
information about the execution is lost.

83

Reasoning: First Intuition

•All end-states reachable from a start state m:

𝑆 𝑃, 𝑚 = 𝑚′ 𝑃,𝑚 →∗ 𝑚′ }

•What if we have a set of start states M?

𝑆 𝑃, 𝑀 = 𝑚′ ∃𝑚0 ∈ 𝑀 . 𝑃,𝑚 →∗ 𝑚′ }

84

Reasoning: First Intuition

•How do we give meaning to predicates, e.g.,

x = input();

y = x*x + 1;

assert y > 0;

• Let us collect state(s) at the location of the assertion:

Sassert(m0) = 𝑚′ 𝑃,𝑚0 →∗ (assert y > 0, 𝑚′) }

85

Reasoning: First Intuition

•Executions that reach the assertion: Sassert(𝑚0)
and those that satisfy the predicate in the assertion:

Sassert,sat 𝑚0 = 𝑚′ 𝑚′ ∈ Sa 𝑚0 ∧ 𝑚′ 𝑦 > 0 }

• If the program is satisfying the assertion, how should the
two sets relate?

• If there are violations of the assertion, what is the set we
report back to the user?

86

Reasoning: First Intuition

•How do we claim validity of the program (i.e. it satisfies
the assertion for all inputs – e.g. belonging to the set M)?

Extend the definition: Sassert = ∪𝑚0∈𝑀 Sassert(𝑚0)

•How do we support other predicates?
Give meaning to predicates in terms of program state
(e.g., state m becomes the valuation)
• We wander into the First-order theory land (we will discuss

Presburger arithmetic later)

87

Extension: Abort

•Regular execution terminates when program in
configuration (skip, m)

•Add another command “abort”.

• If the computation ends in (abort, m), then there is no
transition from it => we reached the error state

88

Extensions: Parallel

•Statement C1 par C2: execute C1 and C2 in parallel

•We can apply multiple rules at the same time!

• (reflects nondeterminism; also hard to express using )

(C,m) --> (C”, m’)

(C par skip, m) --> (C”,m’)

(C’,m) --> (C”,m’)

(skip par C’, m) --> (C”,m’)

(C,m) --> (C”, m’)

(C par C’, m) --> (C” par C’,m’)

(C’,m) --> (C”,m’)

(C par C’, m) --> (C par C”,m’)

Fun Example

• In what states can this program be after the parallel
section?

(Y := 1) par (while (Y = 0) do X := X + 1)

90

Extension: Parallel

• Add synchronization: await B protect C end

• Command C can only execute if the condition B is true, but it
executes as a full block (no interleavings).

(B, s) ⇓ (true, m1) (C, m1) -->∗ m′
(await B protect C end, m) -->* m’

• Examples:
• x = 1; ((x = 0) par (await x = 0 protect x := 1 ; x := x + 1 end)

• (await true protect l := 1 ; l := k + 1 end)
par
(await true protect k := 2 ; k := l + 1 end)

91From Hillary, 2014

Extension: Nondeterministic

•E.g., nondeterministic assignment x = E1 [] E2
• Nondeterministically assigns one of the two evaluated values to x

•How do we extend the semantics? (e.g., small step)

92

Symbolic Execution

•So far: we defined the execution of programs for
concrete numerical values

•There are many executions so the enumeration is often
not tractable

•We can abstract the concrete values of the variables and
use symbolic evaluation to execute for a group of states
at the same time

93

Symbolic Execution

Symbolic formulas syntax (with symbolic variables ):

P ::= true | false

| not P | P1 bop P2 | Aexp1 rop Aexpr2

Aexp ::=  | n | Aexp1 + Aexp2 | Aexp1 * Aexp2

| Aexp1 – Aexp2 | Aexp1 / Aexp2

Memory store: Σ: 𝑉𝑎𝑟 → 𝐴𝑒𝑥𝑝

Analysis state (P, Σ):

•P is called path condition, and Σ a symbolic state.

94

Arithmetic And Relational Expressions

(E1, )  Aexp1’ (E2, )  Aexp2’

(E1 op E2, )  Aexp1’ op Aexp2’

(E1, )  Aexp1’ (E2, )  Aexp2’ P= Aexp1’ rop Aexp2’

(E rop E’, )  P

95

Statements

Skip: (P, skip, )  (P, )

Assignment: (E, )  Aexp

(P, k := E, )  (P,  [k <-- Aexp])

Sequencing: (P, C, )  (P’, ’) (P’, C’, ’)  ’’

(P, C; C’, )  ’’

96

If Then Else Statement

(B, )  Pb SAT(P  Pb) (P  Pb, C, )  (P’, ’)

(if B then C else C’ fi, )  (P’, ’)

(B, )  Pb SAT(P   Pb) (P   Pb, C’, )  (P’, ’)

(if B then C else C’ fi, )  (P’, ’)

Both are possibly satisfiable (due to symbolic abstraction)!

Execution is then not a sequence but a tree of instructions!
Static Symbolic execution: We “merge” the formulas of both branches and simplify
them. This will be clearer after we cover abstract interpretation next!

97

Example

int x = input()

int y = 0

if x > 0

y = x + 1

else

y = -x

// Question: Is y  0
// after the execution?

98(See the lecture video)

Another Example

99

int x = input()

int y = 1/x

// Question: can the code
experience an error?

int x = input()

if x != 0

y = 1 / x

else

abort

Symbolic Execution of Loops?

•Most practical tools just “unroll” the loop k times

•Enough for finding various bugs:
search under “Small scope hypothesis”

•A more general approach will require loop invariants
(predicates that hold at any point of loop execution)

•Often requires manual intervention by developer!

•We will discuss invariants later when we cover deductive
methods for reasoning about programs.

100

Symbolic Evaluaton for Loops: Rule

Together: Let us derive the rule for the finite loop
whilek (condition) -- for a constant k > 0

k > 0 (, B)  P’ SAT(PP’) (PP’, , C; whilek-1 B do C)  (P’’, ’’)

(P, , C; whilek B do C)  (P’’, ’’)

k = 0 (, B)  P’ SAT(PP’)

(P, , C; whilek B do C)  (P  P’, ’’)

101

Symbolic Execution and Testing

•Generalizes testing by using symbolic values and having
means to explore all paths: exhaustive exploration

•Scalability is an issue (although the modern tools have
made it more practical)

•Concolic execution: combines testing (concrete execution)
with symbolic execution
• Use concrete execution to reach a certain point in the execution

(e.g., an important subcomputation)

• Use then symbolic execution to exhaustively explore the
executions within that smaller scope

102

