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Recap

Representing program execution:

• Big Step Semantics

• Small Step Semantics

• Symbolic Execution

• Control-flow Graph



Today: Static analysis

Answers key questions about program properties 
over control-flow paths at compile-time (without 
running the program)



Static Analysis (Informally)

Symbolically “simulate” execution of program

• Forward (from program start to end)

• Backward (from program end to start)

Our plan:

• Examples first 

• Theory follows

• (And the theory is rich!)



Static Analysis Uses
Analysis for program correctness

• Ensures the program satisfies its specification (i.e., is correct)

• Make sure it does not crash, diverge or yield unacceptable results

Analysis for program optimization

• Optimizing and just in time compilers

• Make sure the optimization preserves the semantics of the 
program (i.e., produces the same outputs as the original one)

Analysis for program development

• Support debugging and refactoring

• Makes programmer’s life easier, with trustable hints
Static program analysis, Moller and Schwartzbacher, 2021



Example from last time

int x = input()

int y = 0

if x > 0

y = x + 1

else

y = -x

// Specification: 
// y  0 after the run

We know:

• Concrete execution

• Symbolic execution

• CFG 

We can infer what the 
specification is 
(mathematically). 



Example from last time

int x = input()

int y = 0

if x > 0

y = x + 1

else

y = -x

// Specification: 
// y  0 after the run



Do we need all the execution 
details to check the 

specification?



Sign Analysis
Sign analysis - compute sign of each variable v

Propagate information: 

• No known sign

• Minus or Zero or Plus

• Multiple Possible Signs

Mathematical foundation of the analysis:

• Lattice (partially ordered sets to keep track about the prevision 
of operations)

• Abstraction function (how we convert concrete values and 
states to abstract)

• Transfer function (how the abstract values propagate through 
the program)



Sign Analysis Example

Sign analysis - compute sign of each variable v

Base Lattice: P = flat lattice on {-,0,+}

Actual lattice records a value for each variable
• Example element: [a+, b0, c-]

- 0 +

TOP

BOT



Interpretation of Lattice Values

If value of v in lattice is:
• : no information about the sign of v
• − : variable v is negative
• 0 : variable v is 0 
• + : variable v is positive
• : v may be positive or negative or zero

What is abstraction function AF?
• AF([v1,…,vn]) = [sign(v1), …, sign(vn)]

• sign 𝑥 = ቐ
0 if v = 0
+ if v > 0
− if v < 0





Transfer Functions

Transfer function modifies a map x : (Varname -> Sign)

If n of the form v = c

• fn(x) = x[v+] if c is positive

• fn(x) = x[v0] if c is 0

• fn(x) = x[v-] if c is negative

If n of the form v1 = v2 * v3

• fn(x) = let ressign = x[v2]  x[v3] in  x [v1 ressign]

Init = for each variable assign TOP 
(uninitialized variables may have any sign)



Operation  on Lattice

  - 0 +

   0  

−  + 0 −

0 0 0 0 0 0

+  − 0 +

 0

  











Sign Analysis Example

b = -1 b = 1

a = 1

[a+][a+]

[a+, b+][a+, b-]

[a+, bTOP]

c = a*b

[a+, bTOP,c TOP]



Soundness in Example

b = -1 b = 1

a = 1

[a+][a+]

[a+, b+][a+, b-]

[a+, bTOP]

c = a*b

[a+, bTOP,c TOP]If the analysis returns that the sign of a is positive, then any 

and all concrete executions will have this property.

• Follows: at any program point, abstract state contains all 

possible concrete states 



Imprecision In Example

b = -1 b = 1

a = 1

[a+][a+]

[a+, b+][a+, b-]

[a+, bTOP]

c = a*b

Abstraction Imprecision:

[a1] abstracted as [a+]

Control Flow Imprecision:
[bTOP] summarizes results of all executions. 
(In any concrete execution state s, AF(s)[b]TOP)

[a+, bTOP, cTOP]



Imprecision In Example

b = -1 b = 1

a = 1

[a+][a+]

[a+, b+][a+, b-]

[a+, bTOP]

c = a*b

Abstraction Imprecision:

[a1] abstracted as [a+]

Control Flow Imprecision:
[bTOP] summarizes results of all executions. 
(In any concrete execution state s, AF(s)[b]TOP)



Example (almost as) from the last time

int x = input()

int y = 0

if x > 0

y = x + 1

else

y = 1

// Specification: 
// y > 0 after the run



Example from the last time

int x = input()

int y = 0

if x > 0

y = x + 1

else

y = -x

// Specification: 
// y  0 after the run



Interval Analysis

Interval analysis - compute the interval of each 
variable v

Propagate information: 

• [a,b]

• a is the lower bound of the interval

• b is the upper bound of the interval



Interval Analysis (informal)

Abstraction function:

AF(v1, … vn) = { [v1, v1], … [vn, vn] }

Transfer function:

For each expression or a statement, e.g., 

for z = x + y where x[xmin, xmax] and y[ymin, ymax]

• Lower bound: xmin + ymin

• Upper bound: xmax + ymax

for z = x * y where x[xmin, xmax] and y[ymin, ymax]

• Lower bound: min (xmin*ymin, xmin*ymax, xmax*ymin , xmax*ymax)

• Upper bound: max (xmin*ymin, xmin*ymax, xmax*ymin , xmax*ymax) 



Interval Lattice (for Integers)

Each variable takes a value 

from the following  domain  

(a complete lattice):

Infinite height



[0,0][-1,-1][-2,-2]

[-2,-1]

[-2,0]

[1,1] [2,2]

[-1,0] [0,1] [1,2]

[-1,1] [0,2]

[-2,1] [-1,2]

[-2,2]

……

[2,]

[1,]

[0,]

[-1,]

[-2,]

[- ,]

…

[- ,-2]

[-,-1]

[- ,0]

[-,1]

[- ,2]



Interval Analysis Example

b = -1 b = 1

a = 1

{ a [1,1] }

{ a [1,1],  b  [-1,-1] }

c = a*b

We again have imprecision:
Values of b and c cannot be zero in any concrete execution
And it is different from symbolic execution!

{ a [1,1] }

{ a [1,1],  b  [1,1] }

{ a [1,1],  b  [-1, 1] }



n=3
k=0

s = 0; 
a = 2; 
i = 0;

k == 0 

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s

Interval Analysis Another Example
(try at home)



General Sources of Imprecision

Abstraction Imprecision
• Concrete values (integers) abstracted as lattice values 

(-,0, and +) or [a,b]

• Lattice values less precise than execution values

• Abstraction function throws away information

Control Flow Imprecision
• One lattice value for all possible control flow paths

• Analysis result has a single lattice value to summarize results of 
multiple concrete executions

• Values from different execution paths are combined such that 
they result in lattice elements not present in any particular 
execution



Connecting Concrete with Abstract



(C, c) (A, A)





Why To Allow Imprecision?

Make analysis tractable

Unbounded sets of values in execution

• Typically abstracted by finite set of lattice values

Execution may visit unbounded set of states

• Abstracted by computing joins of different paths



Domain of Program States

∅

…



…
{1,{x42,y0,z0}} {1,{x2,y4,z1}}

0

1

3

4

n > 0

Size of Set:

Each element is a finite 

set of states, e.g., P



Reaching Definitions

A variable definition reaches the use of the 
same variable if the value written by the 
definition may be read by the use

Example Statements:
a = x+y

• It is a definition of a

• It is a use of x and y

b = a+1

• It is a definition of b and use of a



Reaching Definitions

A variable definition reaches a variable use if the value written by the 
definition may be read by the use

A definition d reaches point p if there is a path from the point after d to 
p such that d is not killed along that path.

Some basic terms: 
• Point: A location in a basic block just before or after some 

statement in the CFG.

• Path: A path from points p1 to pn is a sequence of points p1, p2, . . . 
pn such that (intuitively) some execution can visit these points in 
order.

• Kill of a Definition: A definition d of variable V is killed on a path if 
there is an unambiguous (re)definition of  V on that path.

• Kill of an Expression: An expression e is killed on a path if there is a 
possible definition of any of the variables of e on that path.



s = 0; 
a = 4; 
i = 0;

k == 0 

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s



Reaching Definitions (Declarative)

Dataflow variables (for each block B)
In(B) ≡ the set of definitions that reach the point before first 
statement in B
Out(B) ≡ the set of definitions that reach the point after last 
statement in B

Gen(B) ≡ the set of definitions made in B that are not killed in B.
Kill(B) ≡ the set of all definitions that are killed in B, i.e., 
1. on the path from entry to exit of B, if definition d  B; or
2. on the path from d to exit of B, if definition d ∈ B.

The difference:
In(B), Out(B) are global dataflow properties (of the function).
Gen(B), Kill(B) are local properties of the basic block B alone.



Computing Reaching Definitions

Compute with sets of definitions

• represent sets using bit vectors data structure

• each definition has a position in bit vector 

At each basic block, compute

• definitions that reach the start of block

• definitions that reach the end of block

Perform computation by simulating execution of 
program until reach fixed point



1: s = 0; 
2: a = 4; 
3: i = 0;
k == 0 

4: b = 1; 5: b = 2;

0000000

11100001110000

1111100

1111100
1111100

1111111

1111111
1111111

1 2 3 4 5 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1110000

111100
0

1110100

1111100

0101111
1111100

1111111
i < n

1111111
return s6: s = s + a*b;

7: i = i + 1;



Formalizing Analysis

Each basic block has

• IN - set of definitions that reach beginning of block

• OUT - set of definitions that reach end of block

• GEN - set of definitions generated in block

• KILL - set of definitions killed in block

Example: 

• GEN[6: s = s + a*b; 7: i = i + 1;] = 0000011

• KILL[6: s = s + a*b; 7: i = i + 1;] = 1010000

Compiler scans each basic block to derive GEN and KILL 
sets



Formalizing the analysis:
Dataflow Equations
IN and OUT combine the properties from the neighboring 
blocks in CFG

IN[b] = OUT[b1] U ... U OUT[bn]
• where b1, ..., bn are predecessors of b in CFG

OUT[b] = (IN[b] - KILL[b]) U GEN[b]

IN[entry] = 0000000

Result: system of equations



Solving Equations

Use fixed point (worklist) algorithm

Initialize with solution of OUT[b] = 0000000

• Repeatedly apply equations
1.  IN[b] = OUT[b1] U ... U OUT[bn]

2.  OUT[b] = (IN[b] - KILL[b]) U GEN[b]

• Until reach fixed point* 

* Fixed point = equation application has no further 
effect

Use a worklist to track which equation applications 
may have a further effect



Reaching Definitions Algorithm
for all nodes n in N 

OUT[n] = emptyset; // OUT[n] = GEN[n];
IN[Entry] = emptyset; 
OUT[Entry] = GEN[Entry]; 
Changed = N - { Entry }; // N = all nodes in graph

while (Changed != emptyset)
choose a node n in Changed;
Changed = Changed - { n };  // in efficient impl. these are bitvector operations

IN[n] = emptyset;
for all nodes p in predecessors(n) 

IN[n] = IN[n] U OUT[p];

OUT[n] = GEN[n] U (IN[n] - KILL[n]);

if (OUT[n] changed)
for all nodes s in successors(n) 

Changed = Changed U { s };



Reaching Definitions: Convergence

Out[B] is finite

Out[B] never decreases for any B

⇒ must eventually stop changing

At most n iterations if n blocks

⇐ Definitions need to propagate only over 
acyclic paths



Basic Idea

Information about program represented using 
values from algebraic structure called lattice

Analysis produces lattice value for each program 
point

Two flavors of analysis

• Forward dataflow analysis [e.g., Reachability]

• Backward dataflow analysis [e.g. Live Variables]



Forward Dataflow Analysis

Analysis propagates values forward through control flow 
graph with flow of control

• Each node has a transfer function f

– Input – value at program point before node

– Output – new value at program point after node

• Values flow from program points after predecessor 
nodes to program points before successor nodes

• At join points, values are combined using a merge 
function 



Backward Dataflow Analysis

Analysis propagates values backward through control flow 
graph against flow of control

– Each node has a transfer function f

• Input – value at program point after node

• Output – new value at program point before node

– Values flow from program points before successor 
nodes to program points after predecessor nodes

– At split points, values are combined using a merge 
function



Partial Orders

Set P

Partial order relation  such that x,y,zP
• x  x (reflexive)

• x  y and y  x implies x  y (antisymmetric)

• x  y and y  z implies x  z (transitive)

Can use partial order to define
• Upper and lower bounds

• Least upper bound

• Greatest lower bound



Upper Bounds

If S  P then

• xP is an upper bound of S if yS. y  x

• xP is the least upper bound of S if

• x is an upper bound of S, and 

• x  y for all upper bounds y of S

•  - join, least upper bound, lub, supremum, sup

•  S is the least upper bound of S

• x  y is the least upper bound of {x,y}



Lower Bounds

If S  P then

• xP is a lower bound of S if yS. x  y

• xP is the greatest lower bound of S if

• x is a lower bound of S, and 

• y  x for all lower bounds y of S

•  - meet, greatest lower bound, glb, infimum, inf

•  S is the greatest lower bound of S

• x  y is the greatest lower bound of {x,y}



Covering

x y if x  y and xy

x is covered by y (y covers x) if

• x  y, and

• x  z  y implies x  z

Conceptually, y covers x if there are no elements 
between x and y



Example

P = { 000, 001, 010, 011, 100, 101, 110, 111}
(standard boolean lattice, also called hypercube)

x  y is equivalent to (x bitwise-and y) = x

111

011

101

110

010

001

000

100

Hasse Diagram

• If y covers x

• Line from y to x

• y above x in diagram



Lattices

Consider poset (P,) and the operators  (meet) and  (join) 

If for all x,yP there exist x  y and x  y, 
then P is a lattice.

If for all S  P there exist S and S 
then P is a complete lattice.

All finite lattices are complete

Example of a lattice that is not complete: Integers Z
• For any x, yZ, x  y = max(x,y), x  y = min(x,y)
• But  Z and  Z do not exist
• Z  {, } is a complete lattice



Top and Bottom

Greatest element of P (if it exists) is top (⊤)

• a  L . a  ⊤ = ⊤

• Note: a  L . a ≤ ⊤ and ⊤ ∧ 𝑎 = 𝑎

Least element of P (if it exists) is bottom ()

• a  L . a ∧ =

• Note: a  L .  ≤ 𝑎 and  ∨ 𝑎 = 𝑎



Connection Between , , and 

The following 3 properties are equivalent:

• x  y

• x  y  y

• x  y  x

Let’s prove:

• x  y implies x  y  y and x  y  x

• x  y  y implies x  y

• x  y  x implies x  y

Then by transitivity, we can obtain 

• x  y  y implies x  y  x 

• x  y  x implies x  y  y



Connecting Lemma Proofs

Thm: x  y implies x  y  y

Proof:

• x  y implies y is an upper bound of {x,y}.

• Any upper bound z of {x,y} must satisfy y  z.

• So y is least upper bound of {x,y} and x  y  y

Thm: x  y implies x  y  x

Proof:

• x  y implies x is a lower bound of {x,y}.

• Any lower bound z of {x,y} must satisfy z  x.

• So x is greatest lower bound of {x,y} and x  y  x



Connecting Lemma Proofs

Thm: x  y  y implies x  y

Proof:

• y is an upper bound of {x,y} implies x  y

Thm: x  y  x implies x  y

Proof:

• x is a lower bound of {x,y} implies x  y



Lattices as Algebraic Structures

We have defined  and  in terms of 

We will now define  in terms of  and 

• Start with  and  as arbitrary algebraic operations 
that satisfy associative, commutative, idempotence, 
and absorption laws

• We will define  using  and 

• We will show that  is a partial order

Intuitive concept of  and  as information combination 
operators (or, and) or set operations (union, intersection)



Algebraic Properties of Lattices

Assume arbitrary operations  and  such that
• (x  y)  z  x  (y  z) (associativity of )

• (x  y)  z  x  (y  z) (associativity of )

• x  y  y  x (commutativity of )

• x  y  y  x (commutativity of )

• x  x  x (idempotence of )

• x  x  x (idempotence of )

• x  (x  y)  x (absorption of  over )

• x  (x  y)  x (absorption of  over )



Connection Between  and 

x  y  y if and only if x  y  x

Proof (‘if’):  x  y  y   =>   x = x  y
x = x  (x  y) (by absorption)

= x  y (by assumption)

Proof (‘only if’):  x  y  x   =>   y = x  y
y = y  (y  x) (by absorption)

= y  (x  y) (by commutativity)

= y  x (by assumption)

= x  y (by commutativity)



Properties of 

Define: x  y if x  y  y

Proof of transitive property. Must show that

x  y  y and y  z  z implies x  z  z

x  z = x  (y  z) (by assumption)

= (x  y)  z (by associativity)

= y  z (by assumption)

= z (by assumption)



Properties of 

Proof of asymmetry property. Must show that

x  y  y and y  x  x implies x  y

x = y  x (by assumption)

= x  y (by commutativity)

= y (by assumption)

Proof of reflexivity property. Must show that

x  x  x, which follows directly

x  x  x (by idempotence)



Properties of 

Induced operation  agrees with original 
definitions of  and , i.e., 

• x  y = sup {x, y}

• x  y = inf {x, y}



Proof of x  y = sup {x, y}

Consider any upper bound u for x and y.

Given x  u = u and y  u = u, must show 
x  y  u, i.e., (x  y)  u = u

u = x  u (by assumption)

= x  (y  u) (by assumption)

= (x  y)  u (by associativity)



Proof of x  y = inf {x, y}

• Consider any lower bound L for x and y.

• Given x  L = L and y  L = L, must show 
L  x  y, i.e., (x  y)  L = L

L = x  L (by assumption)

= x  (y  L) (by assumption)

= (x  y)  L (by associativity)



Semi-lattice (P, )
Set P and binary operation  such that x,y,zP

• x  x = x (idempotent)
• x  y =  y  x implies x  y (commutative)
• (x  y)  z = x  (y  z) (associative)

The operation  imposes a partial order on P

If ((L, ), , ) is a lattice, then 
• (L, ) is a meet semi-lattice
• (L, ) is a join semi-lattice

Give us more flexibility to define the analysis. 
• Since our analyses deal with complete lattices, we will represent 

the framework on them, but it can also be defined on semi-lattices
• Some dataflow analyses can be only represented on semi-lattices



Chains

A poset (S, ) is a chain if x,yS. y  x or x  y 

Height of a poset/lattice: the size of the maximum chain. 

(S, ) is finite if it has the finite height.

P satisfies the ascending chain condition if  for all sequences x1  x2

 …there exists n such that xn = xn+1 = …

• When a particular ascending chain has the property that xn = 
xn+1 = … we say that it stabilizes

• Then ascending chain condition means that all ascending chains 
stabilize



From one variable to more

If L is a poset then so is the Cartesian product LxL:

Let (𝐿1, ≤1) and (𝐿2, ≤2) be posets.  Then (𝐿∗, ≤∗) is also a poset, 
where 
𝐿∗ = 𝑙1, 𝑙2 𝑙1 ∈ 𝐿1, 𝑙2 ∈ 𝐿2} and 𝑙11, 𝑙21 ≤∗ 𝑙12, 𝑙22 iff 
𝑙11 ≤1 𝑙12 and 𝑙21 ≤2 𝑙22

This construction extends immediately on lattices, so that for S ⊆ 𝐿∗,
we define ⊥∗= ⊥1, ⊥2 , we define

𝑔𝑙𝑏(𝑌) = (𝑔𝑙𝑏 𝑙1 𝑙1,− ∈ Y, 𝑔𝑙𝑏 𝑙2 ,− , 𝑙2 ∈ 𝑌) and same for 
𝑙𝑢𝑏 and ⊤∗

⊥

See Nielsen, Nielsen and Hankin book



From one variable to more

Total function space (S -> L) :

Let (𝐿, ≤) be a poset, 𝑆 a set and 𝑓 total function. Then (𝐿𝑓 , ≤𝑓) is 
also a poset, where 

𝐿𝑓 = {𝑓: 𝑆 → 𝐿} and 𝑓′ ≤𝑓 𝑓′′ iff ∀𝑠 ∈ 𝑆 . 𝑓′ 𝑠 ≤ 𝑓′′ 𝑠 .

To extend to lattices, we define ⊥𝑓= 𝜆𝑠 . ⊥ and
𝑔𝑙𝑏 𝑌 = 𝜆𝑠 . 𝑔𝑙𝑏0 𝑓(𝑠) 𝑓 ∈ 𝑌) and same for 𝑙𝑢𝑏 and ⊤𝑓

Monotone Function Space (L1 -> L2) : 

Let (𝐿1, ≤1) and (𝐿2, ≤2) be posets and 𝑓 monotone. Then (𝐿𝑓 , ≤𝑓)
is also a poset, where ⊥𝑓= 𝜆𝑠 . ⊥2 and

𝐿𝑓 = {𝑓: 𝐿1 → 𝐿2} and 𝑓′ ≤𝑓 𝑓′′ iff ∀𝑙1 ∈ 𝐿1 . 𝑓′ 𝑙1 ≤2 𝑓′′(𝑙1)


