
CS 477: Dataflow Analysis and Abstract 
Interpretation

Sasa Misailovic

Based on previous slides by Saman Amarasinghe, 
Martin Rinard, and by Vikram Adve and Martin Vechev

University of Illinois at Urbana-Champaign



Partial Orders

Set P

Partial order relation  such that x,y,zP
• x  x (reflexive)

• x  y and y  x implies x  y (antisymmetric)

• x  y and y  z implies x  z (transitive)

Can use partial order to define
• Upper and lower bounds

• Least upper bound

• Greatest lower bound



Upper Bounds

If S  P then

• xP is an upper bound of S if yS. y  x

• xP is the least upper bound of S if

• x is an upper bound of S, and 

• x  y for all upper bounds y of S

•  - join, least upper bound, lub, supremum, sup

•  S is the least upper bound of S

• x  y is the least upper bound of {x,y}



Lower Bounds

If S  P then

• xP is a lower bound of S if yS. x  y

• xP is the greatest lower bound of S if

• x is a lower bound of S, and 

• y  x for all lower bounds y of S

•  - meet, greatest lower bound, glb, infimum, inf

•  S is the greatest lower bound of S

• x  y is the greatest lower bound of {x,y}



Covering

x y if x  y and xy

x is covered by y (y covers x) if

• x  y, and

• x  z  y implies x  z

Conceptually, y covers x if there are no elements 
between x and y



Example

P = { 000, 001, 010, 011, 100, 101, 110, 111}
(standard boolean lattice, also called hypercube)

x  y is equivalent to (x bitwise-and y) = x

111

011

101

110

010

001

000

100

Hasse Diagram

• If y covers x

• Line from y to x

• y above x in diagram



Example: Same as

P = ℘ ({ a, b, c } )
(standard powerset lattice, also called hypercube)

x  y is equivalent to x  y = x

{a,b,c}

{a,b}

{a,c}

{b,c}

{b}

{a}

{}

{c}

Hasse Diagram

• If y covers x

• Line from y to x

• y above x in diagram



Lattices

Consider poset (P, ) and the operators  (meet) and  (join) 

If for all x,yP there exist x  y and x  y, 
then P is a lattice.

If for all S  P there exist S and S 
then P is a complete lattice.

All finite lattices are complete

Example of a lattice that is not complete: Integers Z
• For any x, yZ, x  y = max(x,y), x  y = min(x,y)
• But  Z and  Z do not exist
• Z  {, } is a complete lattice



Top and Bottom

Greatest element of P (if it exists) is top (⊤)

• a  L . a  ⊤ = ⊤

• Note: a  L . a ≤ ⊤ and ⊤ ∧ 𝑎 = 𝑎

Least element of P (if it exists) is bottom ()

• a  L . a ∧ =

• Note: a  L .  ≤ 𝑎 and  ∨ 𝑎 = 𝑎



Lattice (Recap) 

(P, , , ,  , ⊤)

– Set

– Partial order

– Meet

– Join

– Bottom

– Top



Connection Between , , and 

Theorem: The following 3 properties are equivalent:
• x  y

• x  y  y

• x  y  x

Let’s prove:
• x  y implies x  y  y and x  y  x

• x  y  y implies x  y

• x  y  x implies x  y

Then by transitivity, we can obtain 
• x  y  y implies x  y  x 

• x  y  x implies x  y  y



Connecting Lemma Proofs

Lemma: x  y implies x  y  y

Proof:

• x  y implies y is an upper bound of {x,y}.

• Any upper bound z of {x,y} must satisfy y  z.

• So y is least upper bound of {x,y} and x  y  y

Lemma: x  y implies x  y  x

Proof:

• x  y implies x is a lower bound of {x,y}.

• Any lower bound z of {x,y} must satisfy z  x.

• So x is greatest lower bound of {x,y} and x  y  x



Connecting Lemma Proofs

Lemma: x  y  y implies x  y

Proof:

• y is an upper bound of {x,y} implies x  y

Lemma: x  y  x implies x  y

Proof:

• x is a lower bound of {x,y} implies x  y



Lattices as Algebraic Structures

We have previously defined  and  in terms of 

We will now define  in terms of  and 

• Start with  and  as arbitrary algebraic operations 
that satisfy associative, commutative, idempotence, 
and absorption laws

• We will define  using  and 

• We will show that  is a partial order

Intuitive concept of  and  as information combination 
operators (or, and) or set operations (union, intersection)



Algebraic Properties of Lattices

Assume arbitrary operations  and  such that
• (x  y)  z  x  (y  z) (associativity of )

• (x  y)  z  x  (y  z) (associativity of )

• x  y  y  x (commutativity of )

• x  y  y  x (commutativity of )

• x  x  x (idempotence of )

• x  x  x (idempotence of )

• x  (x  y)  x (absorption of  over )

• x  (x  y)  x (absorption of  over )



Connection Between  and 

Thm: x  y  y if and only if x  y  x

Proof (‘if’):  x  y  y   =>   x = x  y
x = x  (x  y) (by absorption)

= x  y (by assumption)

Proof (‘only if’):  x  y  x   =>   y = x  y
y = y  (y  x)(by absorption)

= y  (x  y)(by commutativity)

= y  x (by assumption)

= x  y (by commutativity)



Properties of 

Define: x  y if x  y  y

Thm : x  y is a partial order

Proof of transitive property. Must show that

x  y  y and y  z  z implies x  z  z
x  z = x  (y  z) (by assumption)

= (x  y)  z (by associativity)

= y  z (by assumption)

= z (by assumption)



Properties of 

Proof of asymmetry property. Must show that

x  y  y and y  x  x implies x  y

x = y  x (by assumption)

= x  y (by commutativity)

= y (by assumption)

Proof of reflexivity property. Must show that

x  x  x, which follows directly

x  x  x (by idempotence)



Properties of 

Induced operation  agrees with original 
definitions of  and , i.e., 

• x  y = sup {x, y}

• x  y = inf {x, y}



Proof of x  y = sup {x, y}

Consider any upper bound u for x and y.

Given x  u = u and y  u = u, must show 
x  y  u, i.e., (x  y)  u = u

u = x  u (by assumption)

= x  (y  u) (by assumption)

= (x  y)  u (by associativity)



Proof of x  y = inf {x, y}

• Consider any lower bound L for x and y.

• Given x  L = L and y  L = L, must show 
L  x  y, i.e., (x  y)  L = L

L = x  L (by assumption)

= x  (y  L) (by assumption)

= (x  y)  L (by associativity)



Semi-lattice (P, )
Set P and binary operation  such that x,y,zP

• x  x = x (idempotent)

• x  y =  y  x implies x  y (commutative)

• (x  y)  z = x  (y  z) (associative)

The operation  imposes a partial order on P

If ((L, ), , ) is a lattice, then 

• (L, ) is a meet semi-lattice

• (L, ) is a join semi-lattice

Give us more flexibility to define the analysis. 

• Since our analyses deal with complete lattices, we will represent 
the framework on them, but it can also be defined on semi-lattices

• Some dataflow analyses can be only represented on semi-lattices



Chains

A poset (S, ) is a chain if x,yS . y  x or x  y 

Height of a poset/lattice: the size of the maximum chain. 

(S, ) is finite if it has the finite height.

P satisfies the ascending chain condition if  for all sequences x1  x2

 …there exists n such that xn = xn+1 = …

• When a particular ascending chain has the property that xn = 
xn+1 = … we say that it stabilizes

• Then ascending chain condition means that all ascending chains 
stabilize



From one variable to more

If L is a poset then so is the Cartesian product L x L:

Let (𝐿1, ≤1) and (𝐿2, ≤2) be posets.  

Then (𝐿∗, ≤∗) is also a poset, where 
𝐿∗ = 𝑙1, 𝑙2 𝑙1 ∈ 𝐿1, 𝑙2 ∈ 𝐿2} and 𝑙11, 𝑙21 ≤∗ 𝑙12, 𝑙22

iff 𝑙11 ≤1 𝑙12 and 𝑙21 ≤2 𝑙22

This construction extends immediately on lattices, so that for S ⊆ 𝐿∗,
we define ⊥∗= ⊥1, ⊥2 , we define

𝑔𝑙𝑏 𝑌 = 𝑔𝑙𝑏 𝑙1 𝑙1,− ∈ Y , 𝑔𝑙𝑏 𝑙2 ,− , 𝑙2 ∈ 𝑌}
and same for 𝑙𝑢𝑏 and ⊤∗

⊥

See Nielsen, Nielsen and Hankin book



From one variable to more

Total function space (S -> L) :

Let (𝐿, ≤) be a poset, 𝑆 a set and 𝑓 total function. Then (𝐿𝑓 , ≤𝑓) is 
also a poset, where 

𝐿𝑓 = {𝑓: 𝑆 → 𝐿} and 𝑓′ ≤𝑓 𝑓′′ iff ∀𝑠 ∈ 𝑆 . 𝑓′ 𝑠 ≤ 𝑓′′ 𝑠 .

To extend to lattices, we define ⊥𝑓= 𝜆𝑠 . ⊥ and
𝑔𝑙𝑏 𝑌 = 𝜆𝑠 . 𝑔𝑙𝑏0 𝑓(𝑠) 𝑓 ∈ 𝑌 } and same for 𝑙𝑢𝑏 and ⊤𝑓

Monotone Function Space (L1 -> L2) : 

Let (𝐿1, ≤1) and (𝐿2, ≤2) be posets and 𝑓 monotone. Then (𝐿𝑓 , ≤𝑓)
is also a poset, where ⊥𝑓= 𝜆𝑠 . ⊥2 and

𝐿𝑓 = {𝑓: 𝐿1 → 𝐿2} and 𝑓′ ≤𝑓 𝑓′′ iff ∀𝑙1 ∈ 𝐿1 . 𝑓′ 𝑙1 ≤2 𝑓′′(𝑙1)



Application to Dataflow Analysis

Dataflow information will be lattice values

• Transfer functions operate on lattice values

• Solution algorithm will generate increasing 
sequence of values at each program point

• Ascending chain condition will ensure termination

We will use  to combine values at control-flow 
join points



Transfer Functions

Transfer function f: PP is defined for each 
node in control flow graph

• Maps lattice elements to lattice elements

The function f models effect of the node on the 
program information



Transfer Functions

Each dataflow analysis problem has a set F of transfer 
functions f: PP .  This set F contains:  

• Identity function belongs to the set,  iF

• F must be closed under composition:             
f,gF. the function h = x.f(g(x)) F

• Each f F must be monotonic:
x  y implies f(x)  f(y)

• Sometimes all f F are distributive*:                       
f(x  y) = f(x)  f(y)

• Note that Distributivity implies monotonicity

*One can also define distributivity in terms of  (“meet”): f(x  y) = f(x)  f(y)



Distributivity Implies Monotonicity

Proof.*

Assume distributivity: f(x  y) = f(x)  f(y)

Must show: x  y = y implies f(x)  f(y) = f(y)

f(y) = f(x  y) (by assumption)

= f(x)  f(y) (by distributivity)

*For f(x  y) = f(x)  f(y),  show x  y = x => f(x)  f(y) = f(x);  f(x) = f(x  y) = f(x)  f(y)



Knaster-Tarsky Fixed-point Theorem
Let:
• (L, , , , ⊤, ⊥) be a complete lattice
• f : L → L be a monotonic function
• fix ( f ) is the set of fixed points of f

The set fix ( f ) with relation , and operators ,  is forming 
a complete lattice. 
• There will be a least fixed-point and greatest fixed point

Consequences:
• f has at least one fixpoint
• That fixpoint is the largest element in the chain 

⊥, f(⊥), f(f(⊥)), f(f(f(⊥))), … , fn(⊥)



Putting the Pieces Together…



Forward Dataflow Analysis
Simulates execution of program forward with flow of control

Tuple (G, (L, ≤), F, I) – (graph, (lattice), transfer fs., initial val.)

For each node n  G, we have

• inn – value at program point before n

• outn – value at program point after n

• fn  F – transfer function for n (given inn, computes outn)

• Signature of inn, outn, fn : L  L

Requires that solution satisfies

• n.                  outn = fn(inn)

• n  n0.           inn =  { outm . m in pred(n) }

• inn0 = I, summarizes information at the start of program



Dataflow Equations

Compiler processes program to obtain a set of dataflow 
equations

outn :=        fn(inn)

inn :=   { outm . for each m in pred(n) }

Conceptually separates analysis problem from program



Worklist Algorithm for Solving 
Forward Dataflow Equations

for each n do outn := fn()

inn0 := I; outn0 := fn0(I)
worklist := N - { n0 }

while worklist   do
remove a node n from worklist
inn :=  { outm . m in pred(n) }
outn := fn(inn)
if outn changed then 

worklist := worklist  succ(n)



Correctness Argument

Why does the result satisfy dataflow equations?

• Whenever it processes a node n, algorithm sets outn := fn(inn) 

Therefore, the algorithm ensures that outn = fn(inn) 

• Whenever outm changes, it puts succ(m) on worklist. Consider 
any node n  succ(m). It will eventually come off worklist and 
algorithm will set 

inn :=  { outm . m in pred(n) }

to ensure that inn =  { outm . m in pred(n) }

• So final solution will satisfy dataflow equations 

• Need also to ensure that the dataflow equalities correspond to 
the states in the program execution (this comes later!)



Termination Argument

Why does algorithm terminate?

Sequence of values taken on by INn or OUTn is a chain. If 
values stop increasing, worklist empties and algorithm 
terminates.

If lattice has ascending chain property, algorithm terminates

• Algorithm terminates for finite lattices

• For lattices with infinite length, use widening operator

• Detect lattice values that may be part of infinitely ascending 
chain

• Artificially raise value to least upper bound of chain



Termination Argument (Details)

• For finite lattice (L, ≤)

• Start: each node n ∈ CFG has an initial IN set, called IN0[n]

• When F is monotone, for each n, successive values of IN[n] form 
a non-decreasing sequence.

• Any chain starting at x ∈ L has at most cx elements

• x=IN[n] can increase in value at most cx times

• Then C = max
𝑛∈𝐶𝐹𝐺

c𝐼𝑁[𝑛] is finite

• On every iteration, at least one IN[.] set must increase in value

• If loop executes N × C times, all IN[.] sets would be ⊤

• The algorithm terminates in O(N × C) steps
(but this is conservative)



Speed of Convergence

How quickly does the transfer function stabilize over backedge?

If the lattice has ascending chain property, then ∀ 𝑓 ∈ 𝐹, ∀ 𝑥 ∈

𝐿 𝑓[𝑘] stabilizes, where 

𝑓 𝑘 = ሥ

𝑖=0..𝑘

𝑓𝑖 𝑥 𝑤ℎ𝑒𝑟𝑒 𝑓0 = 𝑥, 𝑓𝑖 = 𝑓 ∘ 𝑓𝑖−1(𝑥)

F is bounded if for all f, the chain {𝑓 𝑘 } is finite, k, bounded if  klength

K-boundness: 𝑓𝑘 ≥ 𝑓[𝑘] (if L has height k, then F will be k-bounded)

Fast: (2-bounded) 𝑓 ∘ 𝑓 ≥ 𝑓 ∧ 𝑥

Rapid (1-semibound):  ∀ 𝑓 ∈ 𝐹, ∀ 𝑥, 𝑦 ∈ 𝐿 . 𝑓 𝑥 ≤ 𝑦 ∧ 𝑥 ∧ 𝑓 𝑦
which ends up being ∀ 𝑓 ∈ 𝐹, ∀ 𝑥 ∈ 𝐿 . 𝑥 ≤ 𝑓 𝑥 ∧ 𝑓(⊤)



Speed of Convergence

Loop Connectedness d(G): for a reducible CFG G, it is the maximum 
number of back edges in any acyclic path in G. 

Kam & Ullman, 1976: 

• The depth-first version of the iterative algorithm halts in at most 
d(G) + 3 passes over the graph

• If the lattice L has ⊤, at most d(G) + 2 passes are needed

In practice:

• d(G) < 3, so the algorithm makes less than 6 passes over the graph

For mode details, see also Properties of data flow frameworks, 
Marlowe and Ryder (1990)



General Worklist Algorithm 
(Reminder)

for each n do outn := fn()

inn0 := I; outn0 := fn0(I)
worklist := N - { n0 }

while worklist   do
remove a node n from worklist
inn :=  { outm . m in pred(n) }
outn := fn(inn)
if outn changed then 

worklist := worklist  succ(n)



Reaching Definitions Algorithm
(Reminder)

for all nodes n in N 
OUT[n] = emptyset; // OUT[n] = GEN[n];

IN[Entry] = emptyset; 
OUT[Entry] = GEN[Entry]; 
Changed = N - { Entry }; // N = all nodes in graph

while (Changed != emptyset)
choose a node n in Changed;
Changed = Changed - { n };

IN[n] = emptyset;
for all nodes p in predecessors(n) 
IN[n] = IN[n] U OUT[p];

OUT[n] = GEN[n] U (IN[n] - KILL[n]);

if (OUT[n] changed)
for all nodes s in successors(n) 
Changed = Changed U { s };



Reaching Definitions 

for all nodes n in N 
OUT[n] = emptyset; 

IN[Entry] = emptyset; 
OUT[Entry] = GEN[Entry]; 
Changed = N - { Entry }; 

while (Changed != emptyset)
choose a node n in Changed;
Changed = Changed - { n };

IN[n] = emptyset;
for all nodes p in predecessors(n) 

IN[n] = IN[n] U OUT[p];

OUT[n] = GEN[n] U (IN[n] - KILL[n]);

if (OUT[n] changed)
for all nodes s in succ(n) 

Changed = Changed U { s };

General Worklist

for each n do outn := fn()

inn0 := I; outn0 := fn0(I)

worklist := N - { n0 }

while worklist   do

remove a node n from worklist

inn :=  { outm . m in pred(n) }

outn := fn(inn)

if outn changed then 

worklist := worklist  succ(n)



Reaching Definitions

P = powerset of set of all definitions in program (all 
subsets of set of definitions in program)

 =  (order is )

 = 

I = inn0 = 

F = all functions f of the form f(x) = a  (x-b)
• b is set of definitions that node kills

• a is set of definitions that node generates

General pattern for many transfer functions
• f(x) = GEN  (x-KILL)



Does Reaching Definitions Framework 
Satisfy Properties?

 satisfies conditions for 
• Reflexivity: x  x
• Antisymmetry: x  y and y  x implies y = x 
• Transitivity: x  y and y  z implies x  z 

F satisfies transfer function conditions
• Identity: x. (x- ) = x.xF
• Distributivity: Will show f(x  y) = f(x)  f(y)   

f(x)  f(y) = (a  (x – b))  (a  (y – b))
= a  (x – b)  (y – b) = a  ((x  y) – b)
= f(x  y)



Does Reaching Definitions Framework 
Satisfy Properties?

What about composition of F?

Given f1(x) = a1  (x-b1) and f2(x) = a2  (x-b2)
we must show f1(f2(x)) can be expressed as a  (x - b)

f1(f2(x)) = a1  ((a2  (x-b2)) - b1)

= a1  ((a2 - b1)  ((x-b2) - b1))

= (a1  (a2 - b1))  ((x-b2) - b1))

= (a1  (a2 - b1))  (x-(b2  b1))

• Let a = (a1  (a2 - b1)) and b = b2  b1

• Then f1(f2(x)) = a  (x – b)



General Result

All GEN/KILL transfer function frameworks satisfy 
the three properties:

• Identity

• Distributivity

• Composition

And all of them converge rapidly


