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Forward Dataflow Analysis
Simulates execution of program forward with flow of control

Tuple (G, (L, ≤), F, I) – (graph, (lattice), transfer fs., initial val.)

For each node n  G, we have

• inn – value at program point before n

• outn – value at program point after n

• fn  F – transfer function for n (given inn, computes outn)

• Signature of inn, outn, fn : L L

Requires that solution satisfies

• n.                  outn = fn(inn)

• n  n0.           inn =  { outm . m in pred(n) }

• inn0 = I, summarizes information at the start of program



Dataflow Equations

Compiler processes program to obtain a set of dataflow 
equations

outn :=        fn(inn)

inn :=   { outm . for each m in pred(n) }

Conceptually separates analysis problem from program



Worklist Algorithm for Solving 
Forward Dataflow Equations

for each n do outn := fn()

inn0 := I; outn0 := fn0(I)
worklist := N - { n0 }

while worklist   do
remove a node n from worklist
inn :=  { outm . m in pred(n) }
outn := fn(inn)
if outn changed then 

worklist := worklist  succ(n)



Correctness Argument

Why does the result satisfy dataflow equations?

• Whenever it processes a node n, algorithm sets outn := fn(inn) 

Therefore, the algorithm ensures that outn = fn(inn) 

• Whenever outm changes, it puts succ(m) on worklist. Consider 
any node n  succ(m). It will eventually come off worklist and 
algorithm will set 

inn :=  { outm . m in pred(n) }

to ensure that inn =  { outm . m in pred(n) }

• So final solution will satisfy dataflow equations 

• Need also to ensure that the dataflow equalities correspond to 
the states in the program execution (this comes later!)



Termination Argument

Why does algorithm terminate?

Sequence of values taken on by INn or OUTn is a chain. If 
values stop increasing, worklist empties and algorithm 
terminates.

If lattice has ascending chain property, algorithm terminates

• Algorithm terminates for finite lattices

• For lattices with infinite length, use widening operator

• Detect lattice values that may be part of infinitely ascending 
chain

• Artificially raise value to least upper bound of chain



Termination Argument (Details)

• For finite lattice (L, ≤)

• Start: each node n ∈ CFG has an initial IN set, called IN0[n]

• When F is monotone, for each n, successive values of IN[n] form 
a non-decreasing sequence.

• Any chain starting at x ∈ L has at most cx elements

• x=IN[n] can increase in value at most cx times

• Then C = max
𝑛∈𝐶𝐹𝐺

c𝐼𝑁[𝑛] is finite

• On every iteration, at least one IN[.] set must increase in value

• If loop executes N × C times, all IN[.] sets would be ⊤

• The algorithm terminates in O(N × C) steps
(but this is conservative)



Speed of Convergence

How quickly does the transfer function stabilize over backedge?

If the lattice has ascending chain property, then ∀ 𝑓 ∈ 𝐹, ∀ 𝑥 ∈

𝐿 𝑓[𝑘] stabilizes, where 

𝑓 𝑘 = ሥ

𝑖=0..𝑘

𝑓𝑖 𝑥 𝑤ℎ𝑒𝑟𝑒 𝑓0 = 𝑥, 𝑓𝑖 = 𝑓 ∘ 𝑓𝑖−1(𝑥)

F is bounded if for all f, the chain {𝑓 𝑘 } is finite, k, bounded if  klength

K-boundness: 𝑓𝑘 ≥ 𝑓[𝑘] (if L has height k, then F will be k-bounded)

Fast: (2-bounded) 𝑓 ∘ 𝑓 ≥ 𝑓 ∧ 𝑥

Rapid (1-semibound):  ∀ 𝑓 ∈ 𝐹, ∀ 𝑥, 𝑦 ∈ 𝐿 . 𝑓 𝑥 ≤ 𝑦 ∧ 𝑥 ∧ 𝑓 𝑦
which ends up being ∀ 𝑓 ∈ 𝐹, ∀ 𝑥 ∈ 𝐿 . 𝑥 ≤ 𝑓 𝑥 ∧ 𝑓(⊤)



Speed of Convergence

Loop Connectedness d(G): for a reducible CFG G, it is the maximum 
number of back edges in any acyclic path in G. 

Kam & Ullman, 1976: 

• The depth-first version of the iterative algorithm halts in at most 
d(G) + 3 passes over the graph

• If the lattice L has ⊤, at most d(G) + 2 passes are needed

In practice:

• d(G) < 3, so the algorithm makes less than 6 passes over the graph

For mode details, see also Properties of data flow frameworks, 
Marlowe and Ryder (1990)



General Worklist Algorithm 
(Reminder)

for each n do outn := fn()

inn0 := I; outn0 := fn0(I)
worklist := N - { n0 }

while worklist   do
remove a node n from worklist
inn :=  { outm . m in pred(n) }
outn := fn(inn)
if outn changed then 

worklist := worklist  succ(n)



Reaching Definitions Algorithm
(Reminder)

for all nodes n in N 
OUT[n] = emptyset; // OUT[n] = GEN[n];

IN[Entry] = emptyset; 
OUT[Entry] = GEN[Entry]; 
Changed = N - { Entry }; // N = all nodes in graph

while (Changed != emptyset)
choose a node n in Changed;
Changed = Changed - { n };

IN[n] = emptyset;
for all nodes p in predecessors(n) 
IN[n] = IN[n] U OUT[p];

OUT[n] = GEN[n] U (IN[n] - KILL[n]);

if (OUT[n] changed)
for all nodes s in successors(n) 
Changed = Changed U { s };



Reaching Definitions 

for all nodes n in N 
OUT[n] = emptyset; 

IN[Entry] = emptyset; 
OUT[Entry] = GEN[Entry]; 
Changed = N - { Entry }; 

while (Changed != emptyset)
choose a node n in Changed;
Changed = Changed - { n };

IN[n] = emptyset;
for all nodes p in predecessors(n) 

IN[n] = IN[n] U OUT[p];

OUT[n] = GEN[n] U (IN[n] - KILL[n]);

if (OUT[n] changed)
for all nodes s in succ(n) 

Changed = Changed U { s };

General Worklist

for each n do outn := fn()

inn0 := I; outn0 := fn0(I)

worklist := N - { n0 }

while worklist   do

remove a node n from worklist

inn :=  { outm . m in pred(n) }

outn := fn(inn)

if outn changed then 

worklist := worklist  succ(n)



Reaching Definitions

P = powerset of set of all definitions in program (all 
subsets of set of definitions in program)

 =  (order is )

 = 

I = inn0 = 

F = all functions f of the form f(x) = a  (x-b)
• b is set of definitions that node kills

• a is set of definitions that node generates

General pattern for many transfer functions
• f(x) = GEN  (x-KILL)



Does Reaching Definitions Framework 
Satisfy Properties?

 satisfies conditions for 
• Reflexivity: x  x
• Antisymmetry: x  y and y  x implies y = x 
• Transitivity: x  y and y  z implies x  z 

F satisfies transfer function conditions
• Identity: x. (x-) = x.xF
• Distributivity: Will show f(x  y) = f(x)  f(y)   

f(x)  f(y) = (a  (x – b))  (a  (y – b))
= a  (x – b)  (y – b) = a  ((x  y) – b)
= f(x  y)



Does Reaching Definitions Framework 
Satisfy Properties?

What about composition of F?

Given f1(x) = a1  (x-b1) and f2(x) = a2  (x-b2)
we must show f1(f2(x)) can be expressed as a  (x - b)

f1(f2(x)) = a1  ((a2  (x-b2)) - b1)

= a1  ((a2 - b1)  ((x-b2) - b1))

= (a1  (a2 - b1))  ((x-b2) - b1))

= (a1  (a2 - b1))  (x-(b2  b1))

• Let a = (a1  (a2 - b1)) and b = b2  b1

• Then f1(f2(x)) = a  (x – b)



General Result

All GEN/KILL transfer function frameworks satisfy 
the three properties:

• Identity

• Distributivity

• Composition

And all of them converge rapidly



Meet Over Paths* Solution
What solution would be ideal for a forward dataflow problem?

Consider a path p = n0, n1, …, nk, n to a node n (note 
that for all i, ni  pred(ni+1))

The solution must take this path into account:
fp () = (fnk(fnk-1(…fn1(fn0()) …))  inn

So the solution must have the property that
{fp () . p is  a path to n}  in(n)

and ideally
{fp () . p is  a path to n} = in(n)

* Name exists for historical reasons; this will be a join-over-paths in our formulation for 
this problem. One can reformulate this with  (“meet”) instead

See Nielsen, Nielsen and Hankin book for more on “join” and Dragon book for the classical “meet” formalization



Soundness Proof of Analysis Algorithm

Property to prove:

For  all paths p to n,  fp ()  in(n)

Proof is by induction on length of p

• Uses monotonicity of transfer functions

• Uses following lemma

Lemma (we discussed the algorithm before):

Worklist algorithm produces a solution such that

out(n)  =  fn(in(n))
if n  pred(m) then out(n)  in(m)



Proof

Base case: p is of length 1

• Then p = n0 and fp() =  = in(n0)

Induction step:

• Assume theorem for all paths of length k

• Show for an arbitrary path p of length k+1



Induction Step Proof

p = n0, …, nk, n

Must show fk(fk-1(…f1(f0()) …))  in(n)

• By induction (fk-1(…f1(f0()) …))  in(nk)

• Apply fk to both sides, by monotonicity we get
fk(fk-1(…f1(f0()) …))  fk(in(nk)) 

• By lemma, fk(in(nk)) = out(nk)

• By lemma, out(nk) in(n)

• By transitivity,  fk(fk-1(…f1(f0()) …))  in(n)



Distributivity

Distributivity preserves precision

If framework is distributive, then worklist 
algorithm produces the meet over paths 
solution

• For all n:

{fp () . p is  a path to n} = inn



Soundness Proof of Analysis Algorithm

Connections between MOP and worklist solution:

• [Kildall, 1973] The iterative worklist algorithm: (1) converges and 
(2) computes a MFP (in our “join” case the least fixed point; in 
classical paper “meet”, it computes the maximum fixed point) 
solution of the set of equations using the worklist algorithm

• [Kildall, 1973] If F is distributive, MOP = MFP
 {fp () . p is  a path to n} = inn

• [Kam & Ullman, 1977] If F is monotone, MOP MFP
(i.e. MFP is more conservative)

Note: if you reformulate the framework formulas with the “meet” operator,
in that case MFP  MOP



Lack of Distributivity Example

Constant Calculator:  Flat Lattice on Integers

Actual lattice records a value for each variable
• Example element: [a3, b2, c5]

Transfer function:

• If n of the form v = c, then fn(x) = x[vc]

• If n of the form v1 = v2+v3, fn(x) = x[v1x[v2] + x[v3]]

-1 10

TOP

BOT

-2 2 ……



Lack of Distributivity Anomaly

a = 2
b = 3

a = 3
b = 2

[a3, b2][a2, b3]

[aTOP, bTOP]

c = a+b

[aTOP, bTOP, c TOP]

Lack of Distributivity Imprecision: 
[aTOP, bTOP, c5] more precise

What is the meet over all paths solution?



Make Analysis Distributive

Keep combinations of values on different paths

a = 2
b = 3

a = 3
b = 2

{[a3, b2]}{[a2, b3]}

{[a2, b3], [a3, b2]} 

c = a+b

{[a2, b3,c5], [a3, b2,c5]} 



Discussion of the Solution

It basically simulates all combinations of values in all 
executions

• Exponential blowup

• Nontermination because of infinite ascending chains

Terminating solution: 

• Use widening operator to eliminate blowup         
(can make it work at granularity of variables)

• However, loses precision in many cases

• Not trivial to select optimal point to do widening



Augmented Execution States

Abstraction functions for some analyses require 
augmented execution states

• Reaching definitions: states are augmented 
with definition that assigned each value

• Available expressions: states are augmented 
with expression for each value



Other Examples of Gen/Kill Analyses

(Optional)



Analysis: Available Expressions

An expression x+y is available at a point p if 

1. Every path from the initial node to p must evaluate 
x+y before reaching p, 

2. There are no assignments to x or y after the 
expression evaluation but before p.

Available Expression information can be used to do 
global (across basic blocks) Subexpression Elimination

• If expression is available at use, no need to 
reevaluate it

• Beyond SSA-form analyses



Example: Available Expression

a = b + c

d = e + f

f = a + c

g = a + c

j = a + b + c + d

b = a + d

h = c + f



Is the Expression Available?

a = b + c

d = e + f

f = a + c

g = a + c

j = a + b + c + d

b = a + d

h = c + f

YES!



Is the Expression Available?

a = b + c

d = e + f

f = a + c

g = a + c

j = a + b + c + d

b = a + d

h = c + f

YES!



a = b + c

d = e + f

f = a + c

Is the Expression Available?

g = a + c

j = a + b + c + d

b = a + d

h = c + f

NO!



Is the Expression Available?

a = b + c

d = e + f

f = a + c

g = a + c

j = a + b + c + d

b = a + d

h = c + f

NO!



Available Expressions

P = powerset of set of all expressions in program (all 
subsets of set of expressions)
 =  (order is )
 = P 
I = inn0 = 
F = all functions f of the form f(x) = a  (x-b)

• b is set of expressions that node kills
• a is set of expressions that node generates

Another GEN/KILL analysis



Concept of Conservatism

Reaching definitions use  as join
• Optimizations must take into account all 

definitions that reach along ANY path

Available expressions use  as join
• Optimization requires expression to be 

available along ALL paths

Optimizations must conservatively take all 
possible executions into account.



Analysis: Variable Liveness

A variable v is live at point p if 

• v is used along some path starting at p, and 

• no definition of v along the path before the use.

When is a variable v dead at point p?

• No use of  v on any path from p to exit node, or

• If all paths from p redefine v before using v.



What Use is Liveness Information?

Register allocation.

• If a variable is dead, can reassign its register

Dead code elimination.

• Eliminate assignments to variables not read later.

• But must not eliminate last assignment to variable (such as 
instance variable) visible outside CFG.

• Can eliminate other dead assignments.

• Handle by making all externally visible variables live on exit 
from CFG



Conceptual Idea of Analysis

• Simulate execution

• But start from exit and go backwards in CFG

• Compute liveness information from end to 

beginning of basic blocks



Liveness Example

a = x+y;

t = a;

c = a+x;

x == 0 

b = t+z;

c = y+1; 

1100100

1110000

• Assume a,b,c visible 

outside method

• So they are live on exit

• Assume x,y,z,t not 

visible outside method

• Represent Liveness 

Using Bit Vector
– order is abcxyzt

1100111

1000111

1100100

0101110

a b c x y z t

a b c x y z t

a b c x y z t

a b c x y z t



Backward Dataflow Analysis

• Simulates execution of program backward against the 
flow of control

• For each node n, we have

– inn – value at program point before n

– outn – value at program point after n

– fn – transfer function for n (given outn, computes inn)

• Require that solution satisfies

– n. inn = fn(outn)

– n  Nfinal. outn =  { inm . m in succ(n) }

– n  Nfinal = outn = O

– Where O summarizes information at end of program



Worklist Algorithm for Solving 

Backward Dataflow Equations

for each n do inn := fn()

for each n  Nfinal do outn := O; inn := fn(outn)

worklist := N - Nfinal

while worklist   do

remove a node n from worklist

outn :=  { inm . m in succ(n) }

inn := fn(outn)

if inn changed then 

worklist := worklist  pred(n)



Live Variables

P = powerset of set of all variables in program 
(all subsets of set of variables in program)

 =  (order is )

 = 

O = 

F = all functions f of the form f(x) = a  (x-b)

• b is set of variables that node kills

• a is set of variables that node reads


