
CS 477: Dataflow Analysis and Abstract

Interpretation

Sasa Misailovic

Based on previous slides by Martin Vechev

University of Illinois at Urbana-Champaign

The Art of Sound* Approximation:

Static Program Analysis

• Define a function F such that F approximates F. This is

typically done manually and can be tricky but is done once

for a particular programming language.

• Then, use existing theorems which state that the least

fixed point of F , e.g. denote it V, approximates the least

fixed point of F, e.g. denote it P

• Finally, automatically compute a fixed point of F, that is a V

where F (V) = V

* For a reminder and discussion about soundness and precision, see these articles:

http://www.pl-enthusiast.net/2017/10/23/what-is-soundness-in-static-analysis/

https://cacm.acm.org/blogs/blog-cacm/236068-soundness-and-completeness-with-precision/fulltext

http://www.pl-enthusiast.net/2017/10/23/what-is-soundness-in-static-analysis/
https://cacm.acm.org/blogs/blog-cacm/236068-soundness-and-completeness-with-precision/fulltext

1. Select/define an abstract domain
• selected based on the type of properties you want to prove

2. Define abstract semantics for the language w.r.t. to the domain
• prove sound w.r.t concrete semantics

• involves defining abstract transformers

• that is, effect of statement / expression on the abstract domain

3. Iterate abstract transformers over the abstract domain
• until we reach a fixed point

Abstract Interpretation: step-by-step

The fixed point is the over-approximation of the program

FUNCTION APPROXIMATION

Approximating a Function

Given functions:

F: C  C

F : C  C

what does it mean for F to approximate F

(for the purpose of “classical” program analysis) ?

x  C : F(x) c F(x)

Approximating a Function

What about when:

F: C  C

F : A A

We need to connect the concrete C and the abstract A

We will connect them via two functions  and 

 : C A is called the abstraction function

 : A  C is called the concretization function

Connecting Concrete with Abstract



(C, c) (A, A)



Approximating Function: Definition 1

So we have the 2 functions:

F: C  C

F : A A

If we know that  and  form a Galois Connection,

then we can use the following definition of approximation:

z A : (F((z))) A F
(z)

For the course, it is not important to know precisely

what Galois Connections are.

The only point to keep in mind that is that they place

some restrictions on  and .

• For instance, they require  to be monotone.

Galois Connection



z

Visualizing Definition 1

(C, c) (A, A)

F(z)



x

F(x)

F

F

z A : (F((z))) A F
(z)



z

(C, c) (A, A)

F(z)


x

F(x)

F

F

Reminder: Why

Abstract

Domain?

Approximating a Function

This equation

z A : (F((z))) A F(z)

says that

• if we have some function in the abstract domain that we

think should approximate the concrete function,

• then to check that this is indeed true, we need to prove

• that for any abstract element, (1) concretizing it, (2)

applying the concrete function and (3) abstracting back

again is less than applying the function in the abstract

directly.



Z = [a0, b0+]

Visualizing Definition 1

(C, c) (A, A)

F(z)= [a+, b0+]



X ={ [a0, b0],

[a0, b1],…}

F(X) ={ [a1, b0],

[a1, b1],…}

F(x)  [[a=a+1]](x)

F(z) [[a=a+]](z)

z A : (F((z))) A F
(z)

(F((Z))) = [a+, b0+]

Least precise approximation

To approximate F, we can always define F(z) = T

This solution is always sound as: z A : (F((z))) A T

However, it is not practically useful as it is too imprecise

Most precise approximation

F(z) = (F((z))) is the best abstract function.

But, we often cannot implement best F(z) algorithmically.

However, we can come up with a F(z) that has the same

behavior as (F((z))) but a different implementation.

Any such F(z) is referred to as the best transformer.

Key Theorem I: Least Fixed Point Approximation

1. monotonic functions F: C  C and F : A A

2.  : C A and  : A  C forming a Galois Connection

3. z A : (F((z))) A F
(z) (that is, F approximates F)

 (lfp(F)) A lfp (F)

This is important as it goes from local function approximation to

global approximation. This is a key theorem in program analysis.

If we have:

then:

Least Fixed Point Approximation

The 3 premises to the theorem are usually proved

manually.

Once proved, we can now automatically compute a

least fixed point in the abstract and be sure that our

result is sound !

So what is F then ?

F is to be defined for the particular abstract domain A that we

work with. The domain A can be Sign, Parity, Interval, Octagon,

Polyhedra, and so on.

In our setting and commonly, we simply keep a map from every label

(program counter) in the program to an abstract element in A

Then F simply updates the mapping from labels to abstract

elements.

(’,action, )

 action(m(’))

T

F(m) =

if  is initial label

otherwise

F

F: (Lab  A)(Lab  A)

action : A A

action is the key ingredient here. It captures the effect of a language
statement on the abstract domain A. Once we define it, we have F

action is often referred to as the abstract transformer (cf. transfer

function in dataflow analyses).

What is (’,action, ) ?

foo (int i) {

1: int x := 5;

2: int y := 7;

3: if (0 ≤ i) {

4: y := y + 1;

5: i := i - 1;

6: goto 3;

}

7:}

Actions:

(1, x := 5, 2)

(2, y := 7, 3)

(3, 0 ≤ i, 4)

(3, 0 > i, 7)

(4, y = y + 1, 5)

(5, i := i – 1, 6)

(6, goto 3, 3)

Multiple (two) actions reach label 3

An action can be:

• b  BExp boolean expression in a conditional

• x:= a here, a  AExp

• skip

In performing an action, the assignment and the boolean expression

of a conditional is fully evaluated

{x2, y0}  {x4, y0}
x:=y+x

{x2, y0} 
if (x > 5) …

What is action ?

Defining action

action captures the abstract semantics of the language for a

particular abstract domain.

We will see precise definitions for some actions in the Interval

domain. Defining action for complex domains such as Octagon

can be quite tricky.

Cheat Sheet: Connecting Math and Analysis

Mathematical Concept Use in Static Analysis

Complete Lattice Defines Abstract Domain and ensure joins exist.

Joins () Combines facts arriving at a program point

Bottom () Used for initialization of all but initial elements

Top (T) Used for initialization of initial elements

Widening () Used to guarantee analysis termination

Function Approximation Critical to make sure abstract semantics

approximate the concrete semantics

Fixed Points This is what is computed by the analysis

Tarski’s Theorem Ensures fixed points exist.

Checkpoint

So far, we have seen a bunch of mathematical

concepts such as lattices, functions, fixed points,

function approximation, etc.

Next, we will see how to put these together in

order to build static analyzers.

Domain of Program States

Our starting point is a domain where each

element of the domain is a set of states. The

domain of states is a complete lattice:

((), , , , ∅, )

 = Label  Store

Domain of Program States

∅

…



…
{1,{x42,y0,z0}} {1,{x2,y4,z1}}

0

1

2

3

n > 0

Size of Set:

Each element is a finite

set of states, e.g., P

{1,{x2,y4,z1},
2,{x3,y4,z1}}

{1,{x42,y0,z0},
1,{x42,y43,z44}}

Representing P

Let P be the set of reachable states of a
program P. (we discussed this in the Operational semantics lecture)

Def. Let function F be (where I is an initial set of
states):

F(S) = I  { c’ | c  S  c  c’ }

Then, P is a fixed point of F: i.e., F(P) = P

(in fact, P is the least fixed point of F)

Starting Point: Domain of States

∅

…



…
{1,{x42,y0,z0}} {1,{x2,y4,z1}}

0

1

3

4

n > 0

Size of Set:

Each element is a finite

set of states, e.g., P

Static analysis computes

overapproximation of P

1. select/define an abstract domain
• selected based on the type of properties you want to prove

2. define abstract semantics for the language w.r.t. to the domain
• prove sound w.r.t concrete semantics

• involves defining abstract transformers

• that is, effect of statement / expression on the abstract domain

3. iterate abstract transformers over the abstract domain
• until we reach a fixed point

Abstract Interpretation: step-by-step

The fixed point is the over-approximation of the program

1. select/define an abstract domain
• selected based on the type of properties you want to prove

Abstract Interpretation: Step 1

If we are interested in properties that involve the range of

values that a variable can take, we can abstract the set of

states into a map which captures the range of values that a

variable can take.

Interval Domain

Reminder: Interval Arithmetics

Intervals: X = [Xmin, Xmax] and Y = [Ymin, Ymax]

Operations:

X + Y = [Xmin + Ymin, Xmax + Ymax]

X * Y = [min (Xmin * Ymin, Xmin* Ymax, Xmax * Ymin, Xmax*Ymax),

max (Xmin * Ymin, Xmin* Ymax, Xmax * Ymin, Xmax*Ymax)]

The definition of subtraction can then be X + [-1, -1] * Y

The definition for division X / Y is similar to multiplication, but defined
properly only when 0 is not in the range Y.

Interval Domain

Each variable takes a value

from the following domain

(a complete lattice):

Infinite height



[0,0][-1,-1][-2,-2]

[-2,-1]

[-2,0]

[1,1] [2,2]

[-1,0] [0,1] [1,2]

[-1,1] [0,2]

[-2,1] [-1,2]

[-2,2]

……

[2,]

[1,]

[0,]

[-1,]

[-2,]

[- ,]

…

[- ,-2]

[-,-1]

[- ,0]

[-,1]

[- ,2]

Interval Domain: Lets Define it

Let the interval domain on integers be a lattice: (Li, i , i, i , i , [-,])

We denote Z = Z  {-,}
The set Li = {[x,y] | x,y  Z, x  y }  {i}

For a set S  Z, min(S) returns the minimum number in S, max(S)
returns the maximum number in S.

Operations (i , i, i):

• [a,b] i [c,d] if c  a and b  d

• [a,b] i [c,d] = [min(a,c), max(b,d)]

• [a,b] i [c,d] = meet(max(a,c), min(b,d))
where meet(x,y) returns [x,y] if x  y and i otherwise

Intervals: Applied to Programs

The Li domain simply defines intervals, but to apply it to programs we

need to take into account program labels (program counters) and program

variables.

Therefore, for programs, we use the domain Lab  (Var  Li)

That is, at each label and for each variable, we will keep the range for that

variable. This domain is also a complete lattice.

The operators of Li i,i ,i are lifted directly to both domains:

• Var  Li

• Lab  (Var  Li)

i: ()  (Lab  (Var  Li))
i: (Lab  (Var  Li))  ()

Using i,we abstract a set of states into a map from program labels

to interval ranges for each variable.

Using i,we concretize the intervals maps to a set of states

Intervals: Applied to Programs

Example of Abstraction and Concretization

i ({ 1,{x1,y9,q-2}, 1,{x5,y9,q-2}, 1,{x8,y9,q-2},
1,{x1,y9,q4}, 1,{x5,y9,q4}, 1,{x8,y9,q4}}

)
= 1  (x  [1,8], y  [9,9], q  [-2,4])

i (1  (x  [1,8], y  [9,9], q  [-2,4])

= { 1,{x1,y9,q-2}, 1,{x5,y9,q-2}, 1,{x8,y9,q-2},
1,{x1,y9,q4}, 1,{x5,y9,q4}, 1,{x8,y9,q4},
1,{x7,y9,q3}, 1,{x3,y9,q4}, 1,{x1,y9,q-1},
…, …, … }

Concretization includes many more states (in red) than what was abstracted…

1. select/define an abstract domain
• selected based on the type of properties you want to prove

2. define abstract semantics for the language w.r.t. to the domain
• prove sound w.r.t concrete semantics

• involves defining abstract transformers

• that is, effect of statement / expression on the abstract domain

Abstract Interpretation: Step 2

we still need to actually compute i (P)
(or an over-approximation of it)

We need to approximate F

We want a function Fi where:

Fi : (Lab  (Var  Li))(Lab  (Var  Li))

such that:

i (lfp F)  lfp Fi



z

(C, c) (A, A)

Fi(z)



x

F(x)

F

Fi

Here is a definition of Fi which approximates the best

transformer but works only on the abstract domain:

(’,action, )

actioni : (Var  Li)  (Var  Li)

 actioni(m(’))

 v. [-,]

Fi(m)  =

if  is initial label

otherwise

Lets define Fi

Fi : (Label  (Var  Li))(Label  (Var  Li))

What is (’,action, ) ?

foo (int i) {

1: int x := 5;
2: int y := 7;

3: if (0 ≤ i) {
4: y := y + 1;
5: i := i - 1;
6: goto 3;

}
7:}

Actions:

(1, x := 5, 2)
(2, y := 7, 3)
(3, 0 ≤ i, 4)
(3, 0 > i, 7)
(4, y = y + 1, 5)
(5, i := i – 1, 6)
(6, goto 3, 3)

Multiple (two) actions reach label 3

• (’,action, ) is an edge in the control-flow graph

• More formally, if there exists a transition t = ’, ’  , 
in a program trace in P, where t was performed by statement

called action, then (’,action, ) must exist. This says that we are

sound: we never miss a flow.

• However, (’,action, ) may exist even if no such transition t

above occurs. In this case, the analysis would be imprecise as we

would unnecessarily create more flows.

What is (’,action, ) ?

An action can be:

• b  BExp boolean expression in a conditional

• x:= a here, a  AExp

• skip

Next, we will define the effect of some of these things formally, while

with others we will proceed by example.

The key point is to make sure that actioni produces sound and

precise results.

What is (’,action, ) ?

foo (int i) {

1: int x :=5;
2: int y :=7;

3: if (i ≥ 0) {
4: y := y + 1;
5: i := i - 1;
6: goto 3;

}
7:
}

Fi on an example

 v. [-,]Fi(m) 1 =

Fi (m) 2 = x := 5i (m(1))

Fi (m) 3 = y:= 7 i (m(2))  goto 3 i (m(6))

Fi (m) 4 = i ≥ 0i (m(3))

Fi (m) 5 = y := y + 1i (m(4))

Fi (m) 6 = i := i - 1i (m(5))

Fi (m) 7 = i < 0i (m(3))

Fi : (Label  (Var  Li))(Label  (Var  Li))

x:= ai (m) = m [x v] , where a , m i v

a , m i v says that given a map m, the expression a evaluates

to a value v  Li (using interval arithmetic)

The operational semantics rules for expression evaluation:

• any constant Z is abstracted to an element in Li

• operators +, - and  are re-defined for the Interval domain

x:= ai

If we add i to any other element, we get i .

If both operands are not i , we get:

[x,y] + [z,q] = [x + z, y + q]

what about  ?

is [x,y]  [z,q] = [x  z, y  q] sound ?

Look for all four combinations!

Arithmetic Expressions

bi

Let us first look at the expression: a1 c a2

Here, c is a condition such as: , =, <

For a memory map m, we need to define :  a1 c a2 i(m)

which produces another map as the result.

What is x  y ?

Easy case: xmax  ymin

• We simply keep the intervals of x and y

But, suppose we have the program:

// Here, x is [0,4] and y is [3,5]
if (x  y){
1: … // x? y?

}

What are the intervals for x and y at label 1 ?

what should [0,4]  [3,5] produce at label 1 ?

0 1 2 3 4

3 4 5

one answer is: (x=[0,3],y=[3,5]). Is it sound ?

another non-comparable answer is: (x=[0,4],y=[4,5]). Is it sound ?

Definition of [l1,u1]  [l2,u2]

[l1,u1]  [l2,u2] = ([l1,u1] i [-,u2], [l1,] i [l2,u2])

[0,4]  [3,5] = (x=[0,4] i [-,5],y=[0, ] i [3, 5])

= (x=[0,4],y=[3,5])

Exercise: define < and =

Definition of [l1,u1]  [l2,u2]

b1  b2i (m) = b1i (m)  b2i (m)

b1  b2i (m) = b1i (m)  b2i (m)

Evaluating bi

1. select/define an abstract domain
• selected based on the type of properties you want to prove

2. define abstract semantics for the language w.r.t. to the domain
• prove sound w.r.t concrete semantics

• involves defining abstract transformers

• that is, effect of statement / expression on the abstract domain

3. iterate abstract transformers over the abstract domain
• until we reach a fixed point

Abstract Interpretation: Step 3

x1 := ; x2 = ; …; xn = ;

W := {1,…,n};

while (W  {}) do {

 := removeLabel(W);

prev := x;

x := f (x1,…,xn) ;

if (x  prev)

W := W  influence();
}

• W is the worklist , a set of labels left to

be processed

• influence() returns the set of labels

where the value at those labels is

influenced by the result at 

• Re-compute only when necessary,

thanks to influence ()

• Asynchronous computation can be

parallelized

Chaotic (Asynchronous) Iteration

foo (int i) {

1: int x :=5;
2: int y :=7;

3: if (i ≥ 0) {
4: y := y + 1;
5: i := i - 1;
6: goto 3;

}
7:
}

Fi on an example

 v. [-,]Fi(m) 1 =

Fi (m) 2 = x := 5i (m(1))

Fi (m) 3 = y:= 7 i (m(2))  goto 3 i (m(6))

Fi (m) 4 = i ≥ 0i (m(3))

Fi (m) 5 = y := y + 1i (m(4))

Fi (m) 6 = i := i - 1i (m(5))

Fi (m) 7 = i < 0i (m(3))

Fi : (Label  (Var  Li))(Label  (Var  Li))

Let us compute the least fixed point of Fi

Fixed point of Fi

Iterate 0

1: x i, y i , i i

2: x i , y i , i i

3: x i , y i, i i

4: x i , y i , i i

5: x i , y i , i i

6: x i , y i , i i

7: x i , y i , i i

The collection of these lines

denote the current iterate.

The iterate is a map
foo (int i) {

1: int x :=5;
2: int y :=7;

3: if (i ≥ 0) {
4: y := y + 1;
5: i := i - 1;
6: goto 3;

}
7:
}

Iterate 1

1: x [-,], y [-,], i [-,]

foo (int i) {

1: int x :=5;
2: int y :=7;

3: if (i ≥ 0) {
4: y := y + 1;
5: i := i - 1;
6: goto 3;

}
7:
}

2: x i , y i , i i

3: x i , y i, i i

4: x i , y i , i i

5: x i , y i , i i

6: x i , y i , i i

7: x i , y i , i i

Iterate 2

1: x [-,], y [-,], i [-,]

2: x [5,5], y [-,], i [-,]

foo (int i) {

1: int x :=5;
2: int y :=7;

3: if (i ≥ 0) {
4: y := y + 1;
5: i := i - 1;
6: goto 3;

}
7:
}

3: x i , y i, i i

4: x i , y i , i i

5: x i , y i , i i

6: x i , y i , i i

7: x i , y i , i i

Iterate 3

1: x [-,], y [-,], i [-,]

2: x [5,5], y [-,], i [-,]

3: x [5,5], y [7,7], i [-,]

foo (int i) {

1: int x :=5;
2: int y :=7;

3: if (i ≥ 0) {
4: y := y + 1;
5: i := i - 1;
6: goto 3;

}
7:
}

4: x i , y i , i i

5: x i , y i , i i

6: x i , y i , i i

7: x i , y i , i i

Iterate 4

1: x [-,], y [-,], i [-,]

2: x [5,5], y [-,], i [-,]

3: x [5,5], y [7,7], i [-,]

4: x [5,5], y [7,7], i [0,]

7: x [5,5], y [7,7], i [-, -1]

foo (int i) {

1: int x :=5;
2: int y :=7;

3: if (i ≥ 0) {
4: y := y + 1;
5: i := i - 1;
6: goto 3;

}
7:
}

Notice how we propagated to both

labels 4 and 7 at the same time

5: x i , y i , i i

6: x i , y i , i i

Iterate 5

1: x [-,], y [-,], i [-,]

2: x [5,5], y [-,], i [-,]

3: x [5,5], y [7,7], i [-,]

4: x [5,5], y [7,7], i [0,]

5: x [5,5], y [8,8], i [0,]

7: x [5,5], y [7,7], i [-, -1]

foo (int i) {

1: int x :=5;
2: int y :=7;

3: if (i ≥ 0) {
4: y := y + 1;
5: i := i - 1;
6: goto 3;

}
7:
} 6: x i , y i , i i

Iterate 6

1: x [-,], y [-,], i [-,]

2: x [5,5], y [-,], i [-,]

3: x [5,5], y [7,7], i [-,]

4: x [5,5], y [7,7], i [0,]

5: x [5,5], y [8,8], i [0,]

6: x [5,5], y [8,8], i [-1,]

7: x [5,5], y [7,7], i [-, -1]

foo (int i) {

1: int x :=5;
2: int y :=7;

3: if (i ≥ 0) {
4: y := y + 1;
5: i := i - 1;
6: goto 3;

}
7:
}

Iterate 7

1: x [-,], y [-,], i [-,]

2: x [5,5], y [-,], i [-,]

3: x [5,5], y [7,8], i [-,]

4: x [5,5], y [7,7], i [0,]

5: x [5,5], y [8,8], i [0,]

6: x [5,5], y [8,8], i [-1,]

7: x [5,5], y [7,7], i [-, -1]

foo (int i) {

1: int x :=5;
2: int y :=7;

3: if (i ≥ 0) {
4: y := y + 1;
5: i := i - 1;
6: goto 3;

}
7:
}

Iterate 8

1: x [-,], y [-,], i [-,]

2: x [5,5], y [-,], i [-,]

3: x [5,5], y [7,8], i [-,]

4: x [5,5], y [7,8], i [0,]

5: x [5,5], y [8,8], i [0,]

6: x [5,5], y [8,8], i [-1,]

7: x [5,5], y [7,8], i [-, -1]

foo (int i) {

1: int x :=5;
2: int y :=7;

3: if (i ≥ 0) {
4: y := y + 1;
5: i := i - 1;
6: goto 3;

}
7:
}

Iterate 9

1: x [-,], y [-,], i [-,]

2: x [5,5], y [-,], i [-,]

3: x [5,5], y [7,8], i [-,]

4: x [5,5], y [7,8], i [0,]

5: x [5,5], y [8,9], i [0,]

6: x [5,5], y [8,8], i [-1,]

7: x [5,5], y [7,8], i [-, -1]

foo (int i) {

1: int x :=5;
2: int y :=7;

3: if (i ≥ 0) {
4: y := y + 1;
5: i := i - 1;
6: goto 3;

}
7:
}

Iterate 10

1: x [-,], y [-,], i [-,]

2: x [5,5], y [-,], i [-,]

3: x [5,5], y [7,8], i [-,]

4: x [5,5], y [7,8], i [0,]

5: x [5,5], y [8,9], i [0,]

6: x [5,5], y [8,9], i [-1,]

7: x [5,5], y [7,8], i [-, -1]

foo (int i) {

1: int x :=5;
2: int y :=7;

3: if (i ≥ 0) {
4: y := y + 1;
5: i := i - 1;
6: goto 3;

}
7:
}

Iterate 11

1: x [-,], y [-,], i [-,]

2: x [5,5], y [-,], i [-,]

3: x [5,5], y [7,9], i [-,]

4: x [5,5], y [7,8], i [0,]

5: x [5,5], y [8,9], i [0,]

6: x [5,5], y [8,9], i [-1,]

7: x [5,5], y [7,8], i [-, -1]

foo (int i) {

1: int x :=5;
2: int y :=7;

3: if (i ≥ 0) {
4: y := y + 1;
5: i := i - 1;
6: goto 3;

}
7:
}

Iterate 12

1: x [-,], y [-,], i [-,]

2: x [5,5], y [-,], i [-,]

3: x [5,5], y [7,9], i [-,]

4: x [5,5], y [7,9], i [0,]

5: x [5,5], y [8,9], i [0,]

6: x [5,5], y [8,9], i [-1,]

7: x [5,5], y [7,9], i [-, -1]

foo (int i) {

1: int x :=5;
2: int y :=7;

3: if (i ≥ 0) {
4: y := y + 1;
5: i := i - 1;
6: goto 3;

}
7:
}

Iterate 13

1: x [-,], y [-,], i [-,]

2: x [5,5], y [-,], i [-,]

3: x [5,5], y [7,9], i [-,]

4: x [5,5], y [7,9], i [0,]

5: x [5,5], y [8,10], i [0,]

6: x [5,5], y [8,9], i [-1,]

7: x [5,5], y [7,9], i [-, -1]

foo (int i) {

1: int x :=5;
2: int y :=7;

3: if (i ≥ 0) {
4: y := y + 1;
5: i := i - 1;
6: goto 3;

}
7:
}

Iterate 14

1: x [-,], y [-,], i [-,]

2: x [5,5], y [-,], i [-,]

3: x [5,5], y [7,9], i [-,]

4: x [5,5], y [7,9], i [0,]

5: x [5,5], y [8,10], i [0,]

6: x [5,5], y [8,10], i [-1,]

7: x [5,5], y [7,9], i [-, -1]

foo (int i) {

1: int x :=5;
2: int y :=7;

3: if (i ≥ 0) {
4: y := y + 1;
5: i := i - 1;
6: goto 3;

}
7:
}

Iterate 15

1: x [-,], y [-,], i [-,]

2: x [5,5], y [-,], i [-,]

3: x [5,5], y [7,10], i [-,]

4: x [5,5], y [7,9], i [0,]

5: x [5,5], y [8,10], i [0,]

6: x [5,5], y [8,10], i [-1,]

7: x [5,5], y [7,9], i [-, -1]

foo (int i) {

1: int x :=5;
2: int y :=7;

3: if (i ≥ 0) {
4: y := y + 1;
5: i := i - 1;
6: goto 3;

}
7:
}

Iterate 16

1: x [-,], y [-,], i [-,]

2: x [5,5], y [-,], i [-,]

3: x [5,5], y [7,10], i [-,]

4: x [5,5], y [7,10], i [0,]

5: x [5,5], y [8,10], i [0,]

6: x [5,5], y [8,10], i [-1,]

7: x [5,5], y [7,10], i [-, -1]

foo (int i) {

1: int x :=5;
2: int y :=7;

3: if (i ≥ 0) {
4: y := y + 1;
5: i := i - 1;
6: goto 3;

}
7:
}

The issue is that the iterates: Fi (1), Fi (2), Fi (3),…

will keep going on forever as the value of variable y will keep

increasing. Hence, we will not be able to compute all of the iterates

that we need in order to apply the fixed point theorem.

what should we do in this case ?

Generally, if we have

a complete lattice (L,  , , ) and

a monotone function F,

then when the height is infinite or the computation of the iterates of

F takes too long, we need to find a way to approximate the least

fixed point of F.

The interval domain and its function Fi is an example of this case.

We need to find a way to compute an element A such that:

lfp (F)  A

The operator : L  L  L is called a widening operator if:

•  a,b  L: a  b  a  b (widening approximates the join)

• if x0  x1  x2  …  xn  … is an increasing sequence then

y0  y1  y2  …  yn stabilizes after a finite number of steps

where y0 = x0 and i  0: yi+1 = yi  xi+1

Widening is completely independent of the function F.

Much like the join, it is an operator defined for the particular domain.

Widening Operator

y0 = 
y1 = y0  F(y0)

y2 = y1  F(y1)

…

yn = yn-1  F(yn-1)

Useful Theorem

If L is a complete lattice, : L  L  L, F: L  L is monotone

Then the sequence:

will stabilize after a finite number of steps with yn being a

post-fixedpoint of F.

By Tarski’s theorem, we know that a post-fixedpoint is above

the least fixed point. Hence, it follows that: lfp(F)  yn

Widening for Interval Domain

Let us define a widening operator for the intervals

i: L
i  Li  Li

[a, b] i [c, d] = [e, f] where:

if c < a, then e = -, else e = a

if d > b, then f = , else f = b

if one of the operands is  the result is the other operand.

The basic intuition is that if we see that an end point is unstable, we

move its value to the extreme case.

Exercise: show this operator satisfies the conditions for widening.

Examples:

Widening for Interval

[1, 2] i [0, 2] =

[0, 2] i [1, 2] =

[1, 5] i [1, 5] =

[2, 3] i [2, 4] =

Examples:

Widening for Interval

[1, 2] i [0, 2] = [-, 2]

[0, 2] i [1, 2] = [0, 2]

[1, 5] i [1, 5] = [1, 5]

[2, 3] i [2, 4] = [2, ]

Let us again consider our program with the Interval domain

but this time we will apply the widening operator

Iterate 0
it0 = 

foo (int i) {

1: int x :=5;
2: int y :=7;

3: if (i ≥ 0) {
4: y := y + 1;
5: i := i - 1;
6: goto 3;

}
7:
}

1: x i, y i , i i

2: x i , y i , i i

3: x i , y i, i i

4: x i , y i , i i

5: x i , y i , i i

6: x i , y i , i i

7: x i , y i , i i

Iterate 1

1: x [-,], y [-,], i [-,]

it1 = it0  F(it0)

=   F()

= F()

foo (int i) {

1: int x :=5;
2: int y :=7;

3: if (i ≥ 0) {
4: y := y + 1;
5: i := i - 1;
6: goto 3;

}
7:
}

2: x i , y i , i i

3: x i , y i, i i

4: x i , y i , i i

5: x i , y i , i i

6: x i , y i , i i

7: x i , y i , i i

Iterate 2

1: x [-,], y [-,], i [-,]

2: x [5,5], y [-,], i [-,]

it2 = it1  F(it1)

foo (int i) {

1: int x :=5;
2: int y :=7;

3: if (i ≥ 0) {
4: y := y + 1;
5: i := i - 1;
6: goto 3;

}
7:
}

3: x i , y i, i i

4: x i , y i , i i

5: x i , y i , i i

6: x i , y i , i i

7: x i , y i , i i

Iterate 3

1: x [-,], y [-,], i [-,]

2: x [5,5], y [-,], i [-,]

3: x [5,5], y [7,7], i [-,]

it3 = it2  F(it2)

foo (int i) {

1: int x :=5;
2: int y :=7;

3: if (i ≥ 0) {
4: y := y + 1;
5: i := i - 1;
6: goto 3;

}
7:
}

4: x i , y i , i i

5: x i , y i , i i

6: x i , y i , i i

7: x i , y i , i i

Iterate 4

1: x [-,], y [-,], i [-,]

2: x [5,5], y [-,], i [-,]

3: x [5,5], y [7,7], i [-,]

4: x [5,5], y [7,7], i [0,]

7: x [5,5], y [7,7], i [-, -1]

it4 = it3  F(it3)

foo (int i) {

1: int x :=5;
2: int y :=7;

3: if (i ≥ 0) {
4: y := y + 1;
5: i := i - 1;
6: goto 3;

}
7:
}

Notice how we propagated to both

labels 4 and 7 at the same time

5: x i , y i , i i

6: x i , y i , i i

Iterate 5

1: x [-,], y [-,], i [-,]

2: x [5,5], y [-,], i [-,]

3: x [5,5], y [7,7], i [-,]

4: x [5,5], y [7,7], i [0,]

5: x [5,5], y [8,8], i [0,]

7: x [5,5], y [7,7], i [-, -1]

it5 = it4  F(it4)

foo (int i) {

1: int x :=5;
2: int y :=7;

3: if (i ≥ 0) {
4: y := y + 1;
5: i := i - 1;
6: goto 3;

}
7:
}

6: x i , y i , i i

Iterate 6

1: x [-,], y [-,], i [-,]

2: x [5,5], y [-,], i [-,]

3: x [5,5], y [7,7], i [-,]

4: x [5,5], y [7,7], i [0,]

5: x [5,5], y [8,8], i [0,]

6: x [5,5], y [8,8], i [-1,]

7: x [5,5], y [7,7], i [-, -1]

it6 = it5  F(it5)

foo (int i) {

1: int x :=5;
2: int y :=7;

3: if (i ≥ 0) {
4: y := y + 1;
5: i := i - 1;
6: goto 3;

}
7:
}

Iterate 7: first compute F(it6)

1: x [-,], y [-,], i [-,]

2: x [5,5], y [-,], i [-,]

3: x [5,5], y [7,8], i [-,]

4: x [5,5], y [7,7], i [0,]

5: x [5,5], y [8,8], i [0,]

6: x [5,5], y [8,8], i [-1,]

7: x [5,5], y [7,7], i [-, -1]

it7 = it6  F(it6)

foo (int i) {

1: int x :=5;
2: int y :=7;

3: if (i ≥ 0) {
4: y := y + 1;
5: i := i - 1;
6: goto 3;

}
7:
}

we have:

3: x [5,5], y [7,7], i [-,]


3: x [5,5], y [7,8], i [-,]

=

3: x [5,5], y [7, ], i [-,]

Iterate 7: then it6  F(it6)

Iterate 7: final result

1: x [-,], y [-,], i [-,]

2: x [5,5], y [-,], i [-,]

3: x [5,5], y [7, ], i [-,]

4: x [5,5], y [7,7], i [0,]

5: x [5,5], y [8,8], i [0,]

6: x [5,5], y [8,8], i [-1,]

7: x [5,5], y [7,7], i [-, -1]

it7 = it6  F(it6)

foo (int i) {

1: int x :=5;
2: int y :=7;

3: if (i ≥ 0) {
4: y := y + 1;
5: i := i - 1;
6: goto 3;

}
7:
}

Iterate 8

1: x [-,], y [-,], i [-,]

2: x [5,5], y [-,], i [-,]

3: x [5,5], y [7, ], i [-,]

4: x [5,5], y [7, ], i [0,]

5: x [5,5], y [8,8], i [0,]

6: x [5,5], y [8,8], i [-1,]

7: x [5,5], y [7, ], i [-, -1]

it8 = it7  F(it7)

foo (int i) {

1: int x :=5;
2: int y :=7;

3: if (i ≥ 0) {
4: y := y + 1;
5: i := i - 1;
6: goto 3;

}
7:
}

Iterate 9

1: x [-,], y [-,], i [-,]

2: x [5,5], y [-,], i [-,]

3: x [5,5], y [7, ], i [-,]

4: x [5,5], y [7, ], i [0,]

5: x [5,5], y [8, ], i [0,]

6: x [5,5], y [8,8], i [-1,]

7: x [5,5], y [7, ], i [-, -1]

it9 = it8  F(it8)

foo (int i) {

1: int x :=5;
2: int y :=7;

3: if (i ≥ 0) {
4: y := y + 1;
5: i := i - 1;
6: goto 3;

}
7:
}

Iterate 10

1: x [-,], y [-,], i [-,]

2: x [5,5], y [-,], i [-,]

3: x [5,5], y [7, ], i [-,]

4: x [5,5], y [7, ], i [0,]

5: x [5,5], y [8, ], i [0,]

6: x [5,5], y [8, ], i [-1,]

7: x [5,5], y [7, ], i [-, -1]

it10 = it9  F(it9)

foo (int i) {

1: int x :=5;
2: int y :=7;

3: if (i ≥ 0) {
4: y := y + 1;
5: i := i - 1;
6: goto 3;

}
7:
}

Iterate 11: a post fixed point is reached

1: x [-,], y [-,], i [-,]

2: x [5,5], y [-,], i [-,]

3: x [5,5], y [7, ], i [-,]

4: x [5,5], y [7, ], i [0,]

5: x [5,5], y [8, ], i [0,]

6: x [5,5], y [8, ], i [-1,]

7: x [5,5], y [7, ], i [-, -1]

it11 = it10  F(it10)

foo (int i) {

1: int x :=5;
2: int y :=7;

3: if (i ≥ 0) {
4: y := y + 1;
5: i := i - 1;
6: goto 3;

}
7:
}

x1 := ; x2 = ; …; xn = ;

W := {1,…,n};

while (W  {}) do {

 := removeLabel(W);

prev := x;

x := f (x1,…,xn) ;

if (x  prev)

W := W  influence();
}

• W is the worklist , a set of labels left to

be processed

• influence() returns the set of labels

where the value at those labels is

influenced by the result at 

• Re-compute only when necessary,

thanks to influence ()

• Asynchronous computation can be

parallelized

Chaotic (Asynchronous) Iteration

x1 := ; x2 = ; …; xn = ;

W := {1,…,n};

while (W  {}) do {

 := removeLabel(W);

prev := x;

x := prev  f (x1,…,xn) ;

if (x  prev)

W := W  influence();
}

• W is the worklist , a set of labels left to

be processed

• influence() returns the set of labels

where the value at those labels is

influenced by the result at 

• Re-compute only when necessary,

thanks to influence ()

• Asynchronous computation can be

parallelized

Chaotic (Asynchronous) Iteration

With Widening

HEAP ANALYSIS

Pointer Analysis

Pointer and Alias Analysis are fundamental to
reasoning about heap manipulating programs (pretty
much all programs today).

• Pointer Analysis:

• What objects does each pointer points to?

• Also called points-to analysis

• Alias Analysis:

• Can two pointers point to the same location?

• Client of pointer analysis

Example

X = 1

P = &X

Q = P

*P = 2

// (P, X)

// { (P, X), (Q, X) }

Points-to pairs

Points-to Pair: pair (r1, r2) denoting that one

of the memory locations of r1 An ordered may

hold the address of one of the memory

locations of r2.

Example

X = 1

P = &X

Q = P

R = Q

// (P, X)

// { (P, X), (Q, X) }

Points-to pairs

Points-to Pair: pair (r1, r2) denoting that one

of the memory locations of r1 An ordered may

hold the address of one of the memory

locations of r2.

// { (P, X), (Q, X), (R,X) }

“Short notation”: vs the long one that

would list all the aliases.

Challenges of Points-To Analysis

• Pointers to pointers, which can occur in many ways: take

address of pointer; pointer to structure containing pointer;

pass a pointer to a procedure by reference

• Aggregate objects: structures and arrays containing pointers

• Recursive data structures (lists, trees, graphs, etc.) closely

related problem: anonymous heap locations

• Control-flow: analyzing different data paths

• Interprocedural: a location is often accessed from multiple

functions; a common pattern (e.g., pass by reference)

• Compile-time cost

• Number of variables, | V |, can be large

• Number of alias pairs at a point can be O(| V |2)

Naming Schemes for Heap Objects

The Naming Problem: Example 1

int main() {
// Two distinct objects
T* p = create(n);
T* q = create(m);

}

T* create(int num) {
// Many objects allocated here
return new T(num);

}

Q. Should we try to distinguish the objects created in main()?

Naming Schemes for Heap Objects

The Naming Problem: Example 2

T* makelist(int len) {

T* newObj = new T; // Many distinct objects
// allocated here

newObj->next = (--len == 0)? NULL :

makelist(len);

}

Q. Can we distinguish the objects created in makelist()?

Possible Naming Abstractions

H0 : One name for the entire heap

HT : One name per type T (for type-safe languages)

HL : One name per heap allocation site L (line number)

HC : One name per (acyclic) call path C (“cloning”)

HF : One name per immediate caller F or call-site

(“one-level cloning”)

Program States for Points-To Analysis

Abstraction:

{ pointer → {Allocation Sites}, … }

e.g. { p → {A}, x → {A}, z → {A} }

Concretization:

{ pointer → {Objects allocated} … }

e.g., { p → {O1, O2},

x → {O1, O2},

z → {O1, O2} }

Program States for Points-To Analysis

RELATIONAL ABSTRACT

DOMAINS

Sign Domain

- 0 +

TOP

BOT

Constant Domain

-1 0 +1

TOP

BOT

+2 …-2…

Interval Domain

Each variable takes a value

from the following domain

(a complete lattice):

Infinite height



[0,0][-1,-1][-2,-2]

[-2,-1]

[-2,0]

[1,1] [2,2]

[-1,0] [0,1] [1,2]

[-1,1] [0,2]

[-2,1] [-1,2]

[-2,2]

……

[2,]

[1,]

[0,]

[-1,]

[-2,]

[- ,]

…

[- ,-2]

[-,-1]

[- ,0]

[-,1]

[- ,2]

Relational Abstractions

The Interval domain is an example of a non-relational

domain. It does not explicitly keep the relationship

between variables.

Sometimes, it may be necessary to keep this relationship

to be more precise. Octagon and Polyhedra domains

keep the relationship. These domains are called

relational domains.

Octagon Domain

x

y

2 y  2

8
y  8

7

x  7

1

x  1

15

x+y  15

5

x+y  5

3

x-y  3

x-y  -20
constraints are of

the following form:

+
-

+
-x y  c

an abstract state is a map

from labels to conjunction

of constraints

x - y  3 
y  8 
y  2 
x + y  15 
x + y  5 
x  1 
x – y  -20 
x  7

The slope is fixed

A. Mine. The octagon abstract domain. In WCRE 2001

+
- x  c

+
-
y  c

Polyhedra Domain

x

y

5

x+y  5

2

x-3y  2

x-y  -20

constraints are of the following form:

c1x1 + c2x2 … + cnxn  c

an abstract state is again a map

from labels to conjunction of

constraints:

x - y  -20 
x - 3  y  2 
x + y  5

the slope can vary

P. Cousot and N. Halbwachs. Automatic discovery of linear

restraints among variables of a program. In POPL ’78

Approximating a Function: Definition 2

We have the 2 functions:

F: C  C

F : A A

But what if  and  do not form a Galois Connection?

• For instance,  is not monotone.

• For instance, Polyhedral domain does not form GC.

Then, we can use the following definition of approximation:

z A : F((z)) c (F
(z))



z

Visualizing Definition 2

z A : F((z)) c (F
(z))

(C, c) (A,A)

F(z)

x

F(x)

F

F

1. monotone functions F: C  C and F : A A

2.  : A  C is monotone

3. z A : F((z)) c (F
(z)) (that is, F approximates F)

lfp(F) c  (lfp (F))

This is important as it goes from local function approximation to

global approximation. Another key theorem in program analysis.

If we have:

then:

Key Theorem 2: Least Fixed Point Approximation

Some Uses of Numerical Domais

• Out of bounds checks

• Division by zero

• Aliasing (A. Venet, SAS’02)

• Predicate abstraction
(P. Cousot,Verification by abstract interpretation, 2003)

• Resource usage (J Navas et al. ICLP’ 07).

• Machine Learning: Certifying Neural Networks (Singh et al
POPL ‘19)

Additional Materials

List of classical papers and abstract domains:
http://www.di.ens.fr/~cousot/AI/

Tools and libraries for abstract interpretation

• Astree

• Fluctuat

• Frama-C

Libraries of abstract domains:

• Oct (octagon)

• NewPolka and Parma (polyhedral)

• Recent: Fast Polyhedra Abstract Domain (POPL’17)

http://www.di.ens.fr/~cousot/AI/

