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Another good time for a recap

• Propositional Logic

• Operational Program Semantics

• Dataflow Analysis (CFG + finite-height lattice)

• Abstract Interpretation 
(abstraction/concretization + CFG + infinite-height lattice)

• First order logic, as an engine for solving constraints extracted 
from Axiomatic program semantics

• Axiomatic Semantics

• Coming up next….



Model Checking Today

Hardware Model Checking - part of the standard toolkit for 
hardware design 

• Intel has used it for production chips since Pentium 4 

• For the Intel Core i7, most pre-silicon validation was done through 
formal methods (i.e. Model Checking + Theorem Proving)

• Many commercial products

Software Model Checking 

• Static driver verifier now a commercial Microsoft product 

• Java PathFinder used to verify code for mars rover 



History of Model Checking

• Clarke and Emerson, “Design and Synthesis of Synchronization 
Skeletons using branching time temporal logic”

“Proof Construction is Unnecessary in the case of finite state 
concurrent systems and can be replaced by a model-theoretic 
approach which will mechanically determine if the system meets 
a specification expressed in propositional temporal logic” 

• Obtained Turing Award 

Precursors: 
• Verification through exhaustive exploration of finite state models: 

G. V. Bochmann and J. Gecsei, A unified method for the specification 
and verification of protocols, Proc. IFIP Congress 1977

• Linear Temporal Logic, used for specifying system properties:
A. Pnueli, The temporal semantics of concurrent programs. 1977



The model checking approach o 
(as characterized by Emerson)

• Start with a program that defines a finite state model M

• Search M for patterns that tell you whether a specification ϕ

holds

• Pattern specification is flexible

• The method is efficient in the sizes of M and hopefully also ϕ

• The method is algorithmic 



Model Checking

Most generally Model Checking is 

• an automated technique, that given 

• a finite-state model M of a system 

• and a logical property ϕ, 

• checks whether the property holds of model: M  ϕ ? 

• or if it fails returns a counter-example (example of 
failure) – useful for debugging



Basic Notions of Model Theory

When an interpretation I makes S true, we say that I satisfies S 

• or that I is a model of S (or I  S)

We are interested in deciding whether for the special case where

• I is a finite-state automaton with specific properties (e.g., Kripke
structure or a labeled transition system)

• S is a temporal logic formula

High-level Idea:

• The program will determine the model – through the translation 
to the transition system

• Recall, in axiomatic semantics, the program was a part of the 
theorem



Kripke Structures as Models 

• Kripke structure is a finite size model with labels

For a set AP of atomic propositions, 
Kripke structure = (S, S0, R, L) 

• S : finite set of states

• S0 ⊆ S : set of initial states

• R ⊆ S x S : transition relation 

• L : S (AP) : labels each state with a set of atomic 
propositions 



Microwave Example

• S = {s1 , s2 , s3 , s4 } 

• S0={s1} 

• R = { (s1 ,s2 ), (s2 ,s1 ), (s1 ,s4), 
(s4 ,s2 ), (s2 ,s3 ), (s3 ,s2 ), 
(s3 ,s3 ) }

• L( s1 )={-close, -start, -cooking}

• L( s2 )={close, -start, -cooking}

• L( s3 )={close, start, cooking}

• L( s4 )={-close, start, -cooking} 

Q: Can the microwave cook with the door open (-close)?



Properties over States

State formula:

• Can be established as true or false on a given state 

• If p ϵ AP then p is a state formula 

• if f and g are state formulas, so are (f and g), (not f), 
(f or g) 

• E.g.: not close and cooking 



Linear Time Logic Syntax

• ϕ ::= p | (ϕ) | ¬ϕ | ϕ ∧ ϕ’ | ϕ ∨ ϕ’
| ◦ϕ | ϕ U ϕ’ |  ϕ |  ϕ 

or | X ϕ| ϕ U ϕ’ | G ϕ | F ϕ  alternative notation 

• p – a propostion over state variables 

• Standard negation, conjunction and disjunction

• ◦ϕ– “next” (also denoted X ϕ ) 

• ϕUϕ’ – “until” 

•  ϕ – “box”, “always”, “forever” (also G ϕ)

•  ϕ – “diamond”, “eventually”, “sometime” (also F ϕ)



Intuition



Paths and Path Formulas
Path  : a sequence of connected states:  := s0, s1, s2, …

Path formulae. Let f be a formula, which 

• a state formula p is also a path formula: 𝑝 (𝜋i) := 𝑝 (si)

• boolean operations on path formulae are path formulae 
• e.g. f g (𝜋i ) := 𝑓 (𝜋i )  𝑔 (𝜋i ) 

• path quantifiers

[  ]   G f (𝜋i ) := globally f (𝜋i) =  k  i .   𝑓 (𝜋k ) 

[  ]    F f (𝜋i ) := eventually f (𝜋i ) =  k  i 𝑓 (𝜋k ) 

[   ]   X f (𝜋i ) := next f (𝜋i ) = 𝑓 (𝜋i+1) 

f U g (𝜋i ) := f until g = 
 k  i s.t. 𝑔 (𝜋k ) and j. i  j<k  𝑓 (𝜋j )

Given a formula f and a path 𝜋 if 𝑓 (𝜋) is true, then 𝜋  f



Liveness Vs. Safety

Two very common terms:

Safety: 

• Something bad will never happen: 𝐺 ¬𝑏𝑎𝑑

• If it fails to hold, it’s easy to produce a witness 

Liveness: 

• Something good will eventually happen: 𝐹 𝑔𝑜𝑜𝑑

• What does a witness for this look like? (¬ 𝐹 𝑔𝑜𝑜𝑑 )



Box vs. Diamond

•  p     ¬  ¬ p

•  p    ¬  ¬ p

In another notation:

• F  p     ¬ G  ¬ p

• G p  ¬ G  ¬ p



Common Combinations

• p will hold infinitely often:
• G (F p)

• p will continuously hold from some point on
• F (G p)

• If p happens infinitely often, then so does q
• (G p)  (G q)



LTL Examples

• If you submit your homework (submit) you eventually get a grade 

back (grade)

• You should get your grade before you submit the next homework

• If assignment i was submitted before drop date, you should get your 

grade before drop date



LTL Examples

• If you submit your homework (submit) you eventually get a grade 

back (grade)

• G (submit ⇒ F grade) 

• You should get your grade before you submit the next homework

• G (submit ⇒ X ( ¬submit U grade ) )

• If assignment i was submitted before the drop date, you should get 

your grade before the drop date

• ( G (submit𝑖⇒ F dropDate) ) ⇒ ( G ( grade𝑖⇒ F dropDate ) ) 

• and G (submit𝑖⇒ F grade𝑖)



Microwave Example

• S = {s1 , s2 , s3 , s4 } 

• S0={s1} 

• R = { (s1 ,s2 ), (s2 ,s1 ), (s1 ,s4), 
(s4 ,s2 ), (s2 ,s3 ), (s3 ,s2 ), 
(s3 ,s3 ) }

• L( s1 )={-close, -start, -cooking}

• L( s2 )={close, -start, -cooking}

• L( s3 )={close, start, cooking}

• L( s4 )={-close, start, -cooking} 

Q: Can the microwave cook with the door open (-close)?



Microwave Example

Q: Can the microwave cook with the door open (-close)?

Labeled Transition System Kripke Structure



Reminder: Transition System (TS)
Describes potential system behaviors  

• TS: Tuple 𝑆, Θ,→ : S is set of states, Θ ⊆ 𝑆 are start states,
→ is a relation of state transitions

• →⊆ 𝑆 × 𝑆 (we often write s1 → 𝑠2 for s1, 𝑠2 ∈ ⋅→⋅ )

• Labeled TS: 𝑆, Θ,→, Λ : Λ is a set of labels
• →⊆ 𝑆 × Λ × 𝑆

• we often write s1→
𝜆
𝑠2 for s1, 𝜆, 𝑠2 ∈ ⋅→

⋅
⋅

• (recall) For atomic propositions set AP, Kripke structure = (S, S0, R, L) 
• S : finite set of states; S0 ⊆ S : set of initial states

• R ⊆ S x S : transition relation 

• L : S (AP) : labels each state with a set of atomic propositions 



Why are Kripke Structures Enough?
• Can still represent all (finite or infinite) traces

s1

s4 s2

s2 s1 s3

s1 s3 s4 s2 s3 s2

s4 s2 s3 s2 s2 s1 s3
…



Liveness Vs. Safety

• Two terms you are likely to run into:

• Safety:
• Something bad will never happen:  𝐺 ¬𝑏𝑎𝑑

• If it fails to hold, it’s easy to produce a witness

• Liveness: 
• Something good will eventually happen: 𝐹 𝑔𝑜𝑜𝑑

• What does a witness for this look like?



Automata for LTL properties

• LTL defines properties over a trace

• Given a trace, we want to know whether it satisfies the 
property

• Model checking: Language(Model)  Language(Formula)

• Problem:
• we need to build an automata to recognize infinite strings!
• 𝜔 − 𝑅𝑒𝑔𝑢𝑙𝑎𝑟 Languages



Reminder: Finite State Machine (FSM)

• A FSM is a 5-tuple ⟨Σ,𝑆, 𝐼, 𝛿, 𝐹⟩

• Σ is an alphabet

• S is a finite set of states

• 𝐼 ⊆ 𝑆 is a set of initial states

• 𝛿 ⊆ 𝑆×Σ×𝑆 is a transition relation

• 𝐹 ⊆ 𝑆 is a set of accepting states

Accepts the word w iff it ends in the accepting state 
after consuming the word



Buchi Automata

• Similar to a DFA
• but with a stronger notion of acceptance

• In DFA, you have an accept state
• when you reach accept state, you are done
• this means you only accept finite strings

• In Buchi automata you also have accepting states 
but you only accept strings that visit the accept 
state infinitely often



(Non-deterministic) Buchi Automata

• A Buchi Automaton is a 5-tuple Σ, 𝑆, 𝐼, 𝛿, 𝐹
• Σ is an alphabet

• S is a finite set of states

• 𝐼 ⊆ 𝑆 is a set of initial states

• 𝛿 ⊆ 𝑆 × Σ × 𝑆 is a transition relation

• 𝐹 ⊆ 𝑆 is a set of accepting states

• Non-deterministic Buchi Automata are not 
equivalent to deterministic ones



Basic examples

• p

• G p

• F p

• p U q  



Basic examples

• p

• G p

• F p

• p U q  

Graphs from: http://www.lsv.fr/~gastin/ltl2ba/index.php 



Example

• G F p



Example

• G F p

ok

!p p

p

!p



Example

• F p => G q



Example

• G rec  F ack
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From LTL to automata

• Any LTL formula can be expressed as a non-
deterministic Buchi automata (NBA)

• But the construction of the automata is complicated: 
exponential on the size of the formula

• See Vardi and Wolper, Reasoning about infinite 
computations, 1983.  

• To visualize the formula: 
http://www.lsv.fr/~gastin/ltl2ba/index.php

http://www.lsv.fr/~gastin/ltl2ba/index.php


Explicit State Model checking
The Basic Strategy

Temporal Logic Formula

Kripke structure

Buchi Automata

Product Automata
Model 

checker

OK

Counterexample 
trace



A Bit About Complexity

• Satisfiability of a LTL formula: PSPACE-hard

• There is an algorithm that can solve the problem in 
M  F in O( |M| 2|F| )

• LTL and a fragment of FOL can express the same class 
of languages (infinite word languages)

• But the ways of expressing the properties are different

• For the detailed treatment, see Mahesh’s notes: 
https://courses.engr.illinois.edu/cs498mv/fa2018/LTL.pdf

https://courses.engr.illinois.edu/cs498mv/fa2018/LTL.pdf


Proof System (Informational)
• First: Extend all rules of Propositional Logic to LTL

• Second Step: Add one more rule                  Gen

• Third Step: Add a collection of axioms (a sufficient set of 8 exists)

A1: G φ ⇔ ¬(F (¬φ))
A2: G (φ ⇒ψ) ⇒ (Gφ ⇒Gψ)
A3: G φ ⇒ (φ ∧ X G φ)
A4: X ¬φ ⇔ ¬ Xφ
A5: X (φ ⇒ψ) ⇒ (X φ ⇒ X ψ)
A6: G (φ ⇒X φ) ⇒ (φ ⇒G φ)
A7: φ U ψ ⇔ (φ ∧ ψ) ∨(φ ∧ X (φVψ)
A8: φ U ψ ⇒F ψ

• Result: a sound and relatively complete proof system

G φ
φ 



Buchi Automaton from Kripke Structure

• Given a Kripke structure: 
- M = (S, S0, R, L) 

• Construct a Buchi Automaton 
- (𝜮 , S U {Init},  {Init}, T*,   S U {Init} ) 

- T* is defined s.t.
• T*(s, 𝜎, s’) iff R(s, s’) and 𝜎  L(s’) 
• T*(Init, 𝜎,s) iff s  S0 and 𝜎  L(s)



Buchi Automaton from Kripke Structure

- (𝜮 , S U {Init}, {Init}, T, S U {Init} ) 

- T is defined s.t.
• T(s, 𝜎, s’) iff R(s, s’) and 𝜎  L(s’) 
• T(Init, 𝜎,s) iff s  S0 and 𝜎  L(s) 



Negated Property

• Given a good property P, you can define a bad 
property P’ 

• If the system has a trace that satisfies P’, then it is 
buggy. 

• Example 
- Good property: G( req F ack) 
- Bad property: F (req  ( G ack)) 

• We are going to ask whether M satisfies P’ 
- If it does, then we found a bug 



Computing the Product Automaton

• Given Buchi automata A and B’ 
- A = (𝜮 , SA, TA, {InitA}, SA) 

- B’ = (𝜮 , SB, TB, {InitB}, F’) 

- A x B’ = (𝜮 , SA x SB, T, {(InitA, InitB)}, F) 

• Where 
- T((s1,s2), 𝜎, (s1’, s2’)) iff TA(s1, 𝜎, s1’) and TB(s2, 𝜎, s2’) 

- (s1,s2)  F iff s2  F’



Check if a state is visited infinitely 
often

• Check for a cycle with an accepting state 

• Cycle must be reachable from the initial state 

Simple algorithm 

• Do a depth-first search (DFS) to find an 
accepting state

• Do a DFS from that accepting state to see if it 
can reach itself



From Programs to Models

• Recall operational semantics

• Programs may have an infinite set of states (loops, 
recursion)

• To get a finite model, bound the number of 
iterations



Next… 

• Continue the discussion from programs to models

• Following Jhala and Majumdar, “Software Model 
Checking” survey (most of text and examples from there)



Model Checking Concurrent 
Systems

• Based on Baier and Katoen Book

• Also find more on concurrent processes & SPIN in 
Moshe Vardi’s online chapter: 
https://cnx.org/contents/zVdF_TJw@3.4:13_CJz0Y
@12/Concurrent-Programming-and-Verification-
Outline

https://cnx.org/contents/zVdF_TJw@3.4:13_CJz0Y@12/Concurrent-Programming-and-Verification-Outline


Reminder: Transition System (TS)
Describes potential system behaviors  

• TS: Tuple 𝑆, Θ,→ : S is set of states, Θ ⊆ 𝑆 are start states,
→ is a relation of state transitions

• →⊆ 𝑆 × 𝑆 (we often write s1 → 𝑠2 for s1, 𝑠2 ∈ ⋅→⋅ )

• Labeled TS*: 𝑆, A, Θ,→, Λ : A is a set of actions, Λ is a set of node 
labels  

• →⊆ 𝑆 × A × 𝑆

• we often write s1→
𝑎
𝑠2 for s1, 𝑎, 𝑠2 ∈ ⋅→

⋅
⋅

*one of the versions



Parallel Systems

TS = TS1 || TS2

• Operator || denotes that the two transition 
systems execute in parallel



Concurrency and Interleaving

• Interleaving – widely adopted model for concurrent 
systems

• Create the global system state that comprises of individual 
parallel components

• Pure interleaving: non-deterministic choice between the 
transitions of concurrent processes

• E.g., for two processes P, Q some legal interleavings:

P Q P Q P Q P Q P Q P Q P Q P Q …

P P Q P Q P P P Q Q P Q Q Q P Q …

Q P Q P P P P P P P Q Q Q Q Q P … 

Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q …



Scheduler

• Decides on the interleavings

• The interleaving model of concurrency abstracts 
over the choice of real-world scheduler or 
performance of the processes

• It models all possible interactions

• The number of possible interleavings often leads to 
a combinatorial explosion



Interleaving of Transition System
• Let TS1 = 𝑆1, 𝐴1, Θ1, →1, Λ1 and TS2 = 𝑆2, 𝐴2, Θ2, →2, Λ2

be two labeled transition systems

• The interleaving transition system TS = TS1 || TS2

TS = 𝑆1 × 𝑆2, 𝐴1 ∪ 𝐴2, Θ1 × Θ2, → , Λ

where

𝑠1→
𝑎

1 𝑠1
′ 𝑠2→

𝑎

2 𝑠2
′

(𝑠1, 𝑠2)→
𝑎

(𝑠1
′ , 𝑠2) 𝑠1, 𝑠2 →

𝑎
(𝑠1, 𝑠2

′ )

and Λ 𝑠1, 𝑠2 = Λ1(𝑠1) ∪ Λ2(𝑠2)



Example: Traffic Lights

red

green

red

green

TS1

TS2

red 
red

green
red

TS1

red 
green

green 
green



How about programs? No sharing data!

• x:=x+1 || y:=y-2

{x->1}

{x->2}

{y->5}

{y->3}

{x->1, y->5}

{x->2, y->5} {x->1, y->3}

{x->2, y->3}

The result of concurrently executing actions is identical
to executing them in sequence!

x:=x+1 y:=y-2

y:=y-2 x:=x+1 

x:=x+1 

y:=y-2



Communicate via Shared Variables

• x:=x+1 || x:=x-2

{x->1}, x:=x+1 

{x->2}, skip

{x->1}, x:=x-1

{x->1}, skip

{x->1, x->1}

{x->2, x->1} {x->1, x->-1}

{x->2, x->-1}

The result of concurrently executing actions is identical
to executing them in sequence!

x:=x+1 x:=y-2

x:=y-2 x:=x+1 

x:=x+1 

y:=y-2



Communicate via Shared Variables
• Instead of defining || on transition systems, define it on 

the control flow graphs, G1 and G2

• The two graphs have a set of shared variables X’
The other variables are private to G1 and G2

• Then obtain the underlying transition system TS(G1||G2)

{x->2}

{x->3} {x->0}

{x->1} {x->1}

x:=x+1

x:=x+1 x:=x-2 

x:=x-2 

x:=x+1

skip

x:=x-2

skip

x:=x+1 x:=x-2

x:=x-2 x:=x+1

skip

skip

G1||G2 TS(G1||G2)



Communicate via Shared Variables
• Instead of defining || on transition systems, define it on 

the control flow graphs, G1 and G2

• The two graphs have a set of shared variables X’
The other variables are private to G1 and G2

• Then obtain the underlying transition system TS(G1||G2)

{x->1}

{x->2} {x->-1}

{x->0}

x:=x+1

x:=x+1 x:=x-2 

x:=x-2 

x:=x+1

skip

x:=x-2

skip

x:=x+1 x:=x-2

x:=x-2 x:=x+1

skip

skip

G1||G2 TS(G1||G2)



Communicate via Channels

• Asynchronous communication

• Extend the language with 
send (Expr, ProcessID) and x:=recv(ProcessID)

• Example:

[  send (1+1, #1); x:=recv(#1) ]#0

|| [  x:=recv(#0); x:=x+1;  send(x, #0) ]#1

• Each process state has a buffer (FIFO queue) with incoming messages 
from other messages

• To build the transition system, take the || of CFGs (since the channels 
are analogous to shared variables between processes) but all other 
variables are local  

• And then convert to its corresponding transition system. 



Deadlock: Dining Philosophers

• A state of the system in 
which it cannot make a 
transition to perform a 
useful action

• Typically occurs when 
processes mutually wait for 
the others to proceed (e.g., 
release or aquire resources)

• Freedom of deadlocks is a 
weak form of liveness 
property

• If deadlocked, the program 
cannot reach the accepting 
state

Example: Dining Philosophes



Abstraction Refinement*

• When abstract analysis produces a counterexample, it can be 

• genuine, i.e., can be reproduced on the concrete program,

• spurious, i.e., does not correspond to a real computation

but arises due to imprecisions in the analysis

• If analysis imprecise, use the counterexample to refine it 

(CEGAR): use a new abstract domain that can represent 

strictly more sets of concrete program states [Ball and 

Rajamani 2000b; Clarke et al. 2000; Saidi 2000]

*from Jhala and Majumdar, Software Model Checking, 2009



Example Program

• “The abstraction of the set of reachable set of states: 
(LOCK = 1 ∧ new = old) ∨ (LOCK = 0 ∧ new != old)

captures the intuition that at line 4, either the lock is acquired and new is equal to 

old, or the lock is not acquired and the value of new is different from old 

(in fact, new = old + 1)”

• Abstraction insufficient if it tracks only the predicates LOCK = 0 and LOCK = 1



Example Program

• “The abstraction of the set of reachable set of states: 
(LOCK = 1 ∧ new = old) ∨ (LOCK = 0 ∧ new != old)

captures the intuition that at line 4, either the lock is acquired and new is equal to 

old, or the lock is not acquired and the value of new is different from old 

(in fact, new = old + 1)”

• Abstraction insufficient if it tracks only the predicates LOCK = 0 and LOCK = 1



CEGAR Overview
• Input to CEGAR algorithm: a path in the control flow graph 

that represents a possible counterexample produced by 
abstract reachability analysis.

• Step #1: constructs the trace formula from the path, such that 
the formula is satisfiable iff the path is executable by the 
concrete program. 

• Step #2:  a solver checks for satisfiability of the trace formula:
• Yes -- the path is reported as a concrete counterexample to

the property. 

• No -- the proof of unsatisfiability is mined for new predicates that
can rule out the current counterexample when the abstract domain is 
augmented with these predicates. 

• The CEGAR loop makes progress by eliminating at least one 
counterexample in each step. 



Step 1: Trace Formula

• To convert an abstract counterexample into a trace 
formula, rename the state variables at each 
transition of the counterexample and conjoin the 
resulting transition to get

• Equivalent to the bounded model checking 
formula for the unrolled version of the program
corresponding to the path, and also to the weakest 
precondition  wp (unrolled_program, true)

• To avoid constraints of the form xi+1 = xi for each x 
not modified by an operation, convert the path to 
static single-assignment (SSA) form

• Thus: LOCK1, LOCK2, new1, new2 



Step 2: Refinement (Syntax Based)
• Strategy: find an unsatisfiable core of atomic 

predicates appearing in the formula, whose 
conjunction is inconsistent. 

• The trace formula is unsatisfiable as it 
contains the conjunction of
old2 = new0, new4 = new0 + 1, new4 = old2

• Refinement: drop the subscripts [Henzinger
et al. 2002] and the new predicates are

old = new, new = new + 1, new = old

• hen this predicate is added to the set of 
predicates, the resulting set

{LOCK = 0, LOCK = 1, new = old}

suffices to refute the counterexample, i.e. the 
path is not a counterexample in the abstract 
model generated from these predicates.


