CS 521: Topics in PL

Probabilistic & Approximate Computing

http://misailo.web.engr.Illinois.edu/courses/cs521
Probability
“the chance that something will happen”

Approximation
“an amount or figure that is almost correct and is not intended to be exact”

* Merriam-Webster Dictionary
Uncertainty
“something that is doubtful or unknown”

Probability quantitatively represents uncertainty (captures the degree of belief)

Approximation efficiently copes with uncertainty (ignores it or tractably computes in its presence)
Location Tracking

A probability distribution is hiding on the screen. Find it!
Data Classification

Are all red points in the same cluster?
Pattern Recognition

'class'

Diagram showing a pattern recognition process with layers labeled 'fc' and dimensions 784, 128, 64, 10, leading to an 'argmax' output.
Communication between Agents
Big Data
Machine Vision
Extended Reality
Autonomous Systems
Numerical Simulations

...
Some Common Traits

Noisy Data coming from sensors

Redundancy in data and computation

Models that effectively compress such redundancy

Environments that we don’t fully understand
“All models are wrong, but some are useful!”

George E. P. Box
High quality, High cost

Medium quality, Medium cost

Low quality, Low cost
High quality, High cost

Medium quality, Medium cost

Low quality, Low cost

Low quality, Medium cost

High quality, Medium cost

Medium quality, Low cost

Low quality, Medium cost

High quality, Low cost
High quality, High cost

Low quality, Low cost

Medium quality, Medium cost

Quality vs. Cost (Time and Energy)
Two ways the brain forms thoughts:

System 1: fast, instinctive, and emotional

System 2: slow, conscious, and logical

Daniel Kahneman
Classical Computing Stack

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications</td>
<td></td>
</tr>
<tr>
<td>Languages and Compilers</td>
<td>Translates program code to identical machine code</td>
</tr>
<tr>
<td>Systems Software</td>
<td>Dynamically schedules program to minimize time</td>
</tr>
<tr>
<td>Hardware Architectures</td>
<td>Execute the machine code in an unambiguous manner</td>
</tr>
</tbody>
</table>

Perfection! System 2!
Observation (1965):

“The number of gates on a chip doubles every 24 months”

Gordon Moore
Dennard Scaling (1974)*: Voltage and current should be proportional to the linear dimensions of a transistor.

Thus, as transistors shrink, so do necessary voltage and current.

Power is proportional to the area of the transistor (while the transistor is still reliable)

Robert Dennard

* Robert Dennard (from W. Gropp; UIUC CS 598WG)
End of Dennard Scaling (2005-now)
How Much Can We Shrink?

Source: Inter-Agency Workshop on HPC Resilience at Extreme Scale, Feb 2012.
Meanwhile...

Meanwhile...

Cores that don’t count

Peter H. Hochschild
Paul Turner
Jeffrey C. Mogul
Google
Sunnyvale, CA, US

Rama Govindaraju
Parthasarathy Ranganathan
Google
Sunnyvale, CA, US

David E. Culler
Amin Vahdat
Google
Sunnyvale, CA, US

Abstract

We are accustomed to thinking of computers as fail-stop, especially the cores that execute instructions, and most system software implicitly relies on that assumption. During most of the VLSI era, processors that passed manufacturing tests and were operated within specifications have isolated us from this fiction. As fabrication pushes towards smaller feature sizes and more elaborate computational structures, and as increasingly specialized instruction-segment pairings are introduced to improve performance, we have observed quantifiable computational errors that were not detected during testing. These defects cannot always be mitigated by techniques such as microcode, and may be specific to components within the processor, allowing code changes to affect large shifts in reliability. We refer to a core that develops such behavior as “mercurial.”

Mercurial cores are extremely rare, but in a large-scale, high-reliability system of servers we can observe the disruption they can cause. We have seen enough to see them as a distinct problem—one for which collaboration between hardware designers, vendors, and systems software architects is required.

This paper is a call-to-action for a new focus in system design: we speculate about several software-based approaches to tolerating mercurial cores, ranging from better detection mechanisms to methods for detecting and handling corruption that they cause.

ACM Reference Format:

Silent Data Corruptions at Scale

Harish Dattatraya
Dixit
Facebook, Inc.
hdd@fb.com

Sneha Pendharkar
Facebook, Inc.
spendharkar@fb.com

Matt Beadon
Facebook, Inc.
mbeadon@fb.com

Chris Mason
Facebook, Inc.
clm@fb.com

Tejasvi Chakravarthy
Facebook, Inc.
teju@fb.com

Bharath Muthiah
Facebook, Inc.
bharathm@fb.com

Sriram Sankar
Facebook Inc.
sriramsankar@fb.com

ABSTRACT

Machine learning inferences, ranking and recommendation systems. However, it is our observation that computations are not always accurate. In some cases, the CPU can perform computations incorrectly. For example, when you perform a 2d matrix, the CPU may give a result of 5 instead of 6 silently under certain microarchitectural conditions, without an indication of the miscomparison in system event or error logs. As a result, a service utilizing the CPU is potentially unaware of the computational accuracy and keeps consuming the incorrect values in the application. This paper predominantly focuses on scenarios where datacenter CPUs exhibit such silent data corruption. We dive deep into a real-world application-level impact of a corruption, the processes used in debugging such corruption, and conclude with detection and mitigation strategies for silent data corruptions.

This case — one of several hundred contending that Toyota’s vehicles inadvertently accelerated — was the first in which a jury heard the plaintiffs’ attorneys supporting their argument with extensive testimony from embedded systems experts. That testimony focused on Toyota’s electronic throttle control system — specifically, its source code.

Toyota Case: Single Bit Flip That Killed

By Junko Yoshida. 10.25.2013

MADISON, Wis. — Could bad code kill a person? It could, and it apparently did.

The Bookout v Toyota Motor Corp. case, which blamed sudden acceleration in a Toyota Camry for wrongful death, touches the issue directly.

This case — one of several hundred contending that ‘Toyota’s vehicles inadvertently accelerated’ was the first in which a jury heard the plaintiffs’ attorneys supporting their argument with extensive testimony from embedded systems experts. That testimony focused on Toyota’s electronic throttle control system — specifically, its source code.
GET READY FOR OUR FIRST THOUGH EXPERIMENT…
CMOS Transistors

Simple Inverter

\[
\begin{array}{c|c}
A & Q \\
0 & 1 \\
1 & 0
\end{array}
\]
Probabilistic CMOS Transistors

Simple Inverter

A	Q
0	1 \(P > 0.99 \)
0 \(P < 0.01 \)	
1	0 \(P > 0.99 \)
1 \(P < 0.01 \)	

Probabilistic CMOS Transistors

Probabilistic CMOS Transistors

Nominal V_{dd} operation

Conventional uniform V_{dd} scaling

PCMOS non-uniform V_{dd} scaling

MSB 12-bit Adder LSB

outputs

outputs

outputs

An element of a FIR filter used in H.264 image compression standard yielding an image

Normal operation

Conventional voltage scaling

Non-Uniform voltage scaling

Approximate and Unreliable Hardware

- **Process Variation and Aging**
 - Tiwari et al., ISCA ’07; Mohapatra et al., ISLPED ’09; Rahimi et al., DAC ’13; Karpuzcu et al., DNS ’12; Namaki-Shoushtari et al., CODES+ISSS ’13 …

- **Timing Errors & Soft Faults**
 - Ernst et al., MICRO ’03; Sarangi et al., MICRO ’08; Kruijf et al., ISCA ’10; Leem et al. DATE ’10; Sampson et al., PLDI ’11; Ku He et al., DATE ’11; Esmaeilzadeh et al., ASPLOS ’12 …

- **Inexact Circuits & Storage**
 - Palen et al., SSDM ’04; Narayanan et al., DATE ’10; Chippa et al., DAC ’10; Liu et al., ASPLOS ’11; Esmaeilzadeh et al., ASPLOS ’12; Esmaeilzadeh et al., MICRO ’12; Sampson et al., MICRO ’13; Venkataramani et al., MICRO ’13; Venkataramani et al., ISLPED ’14; Kozhicottu et al., ISLPED ’14; Miao et al., ICCAD ’14; St Amant et al., ISCA ’14; Düben et al., Phil. Trans. R. Soc.’14 …
Programming Language Support

Specifications

<0.99*R(x)> f(x) {...} Rely (OOPSLA’13)

@approx int x = ... Enerj (PLDI’11)

x := Gaussian (0,1); Kozen (JCSS’81)

Verification

assert Pr[Error] < 0.001

assert Expected[Error] = 0

Key Concept Probability Theory
LET’S DO ANOTHER THOUGH EXPERIMENT…
Compilers Pick Approximations

Loop Perforation (ICSE’10, FSE’11)

for (i = 0; i < n; i++) { ... }

↓

for (i = 0; i < n; i += 2) { ... }
Compilers Pick Approximations

Loop Perforation (ICSE’10, FSE’11)

for (i = 0; i < n; i++) { ... }

for (i = 0; i < n; i += 2) { ... }

It’s not going to work!
Program will produce incorrect result!
Perforated

Encoded 3x faster
Perforated

Any pixel difference
Original

Perforated

> 1% pixel difference
Original

Perforated

> 5% pixel difference
Not a correctness issue

Accuracy issue
Not a correctness issue

Accuracy and Safety issue
PROBABILISTIC LOGICS AND THE SYNTHESIS OF RELIABLE ORGANISMS FROM UNRELIABLE COMPONENTS

J. von Neumann

1. INTRODUCTION

The paper that follows is based on notes taken by Dr. R. S. Pierce on five lectures given by the author at the California Institute of Technology in January 1952. They have been revised by the author but they reflect, apart from minor changes, the lectures as they were delivered.

The subject-matter, as the title suggests, is the role of error in logic, or in the physical implementation of logics—in automata-synthesis. Error is viewed, therefore, not as an extraneous and misdirected or misdirecting accident, but as an essential part of the process under consideration—its importance in the synthesis of automata being fully comparable to that of the factor which is normally considered, the intended and correct logical structure.

Our present treatment of error is unsatisfactory and ad hoc. It is the author's conviction, voiced over many years, that error should be treated by thermodynamical methods, and be the subject of a thermodynamical theory, as information has been, by the work of L. Szilard and C. E. Shannon [Cf. 5.2]. The present treatment falls far short of achieving this, but it assembles, it is hoped, some of the building materials, which will have to enter into the final structure.

The author wants to express his thanks to K. A. Brueckner and M. Gell-Mann, then at the University of Illinois, to whose discussions in 1951 he owes some important stimuli on this subject; to Dr. R. S. Pierce at the California Institute of Technology, on whose excellent notes this exposition is based; and to the California Institute of Technology, whose invitation to deliver these lectures combined with the very warm reception by the audience, caused him to write this paper in its present form, and whose cooperation in connection with the present publication is much appreciated.
“Before Shannon, the problem of communication was primarily viewed as a deterministic signal-reconstruction problem: how to transform a received signal, distorted by the physical medium, to reconstruct the original as accurately as possible. Shannon’s genius lay in his observation that the key to communication is uncertainty. After all, if you knew ahead of time what I would say to you in this column, what would be the point of writing it?”

Classical Computing Stack

<table>
<thead>
<tr>
<th>Applications</th>
<th>Languages and Compilers</th>
<th>Systems Software</th>
<th>Hardware Architectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translate the program code to identical machine code</td>
<td>Dynamically schedules program to minimize time</td>
<td>Execute the machine code in unambiguous manner</td>
<td></td>
</tr>
</tbody>
</table>
Accuracy-Aware Computing Stack

Applications (tolerate errors)

Languages and Compilers
Translate the program code to **automatically approximate** code

Systems Software
Dynamically schedules program to minimize time **by trading accuracy**

Hardware Architectures
Execute the code **approximately and non-deterministically**
Goal of the Course

Embark on a journey to rethink computing in the world where absolute correctness is elusive

- Learn from recent papers
- Discuss new research ideas
- Do a fun project
Tentative Lectures

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Presenter</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/18</td>
<td>Introduction</td>
<td>Sasa</td>
<td>Fun Facts: J. von Neumann, Probabilistic logic and synthesis of reliable systems from unreliable components (Automatica Studies, 1956)</td>
</tr>
<tr>
<td>1/20</td>
<td>Approximations in Software Systems</td>
<td>Sasa</td>
<td>Fun Facts: Computing, Approximately — Ravi Nair’s talk (INAOBASPUS 2008)</td>
</tr>
<tr>
<td>2/1</td>
<td>Approximations: Non-deterministic</td>
<td>Sasa</td>
<td>Additional Read: Ersi: Approximate Data Types for Safe and General Low-Power Computation (PLDI 2011) Additional Read: Unconventional Parallelization of NonDeterministic Applications (ASPLOS 2018)</td>
</tr>
<tr>
<td>2/5</td>
<td>Quality-Aware Optimization Systems (1)</td>
<td>Sasa</td>
<td>Additional Read: Evolutionary Algorithms for Solving Multi-Objective Problems (Ch1) Additional Read: Language and Compiler Support for Auto-Tuning Variable Accuracy Algorithms (ICGO 2011) Software: OpenTuner</td>
</tr>
<tr>
<td>2/8</td>
<td>Quality-Aware Optimization Systems (2)</td>
<td>Sasa</td>
<td>Background Read: Managing Performance vs. Accuracy Trade-offs With Loop Perforation (FSE 2011) Background Read: Best-Effort Parallel Execution Framework for Recognition and Mining Applications (IPDPS 2009)</td>
</tr>
<tr>
<td>2/10</td>
<td>Probabilistic Programming (1)</td>
<td>Sasa</td>
<td>Background Read: Probabilistic Programming (ICSE/ToSE 2014) Background Read: An Introduction to Probabilistic Programming</td>
</tr>
<tr>
<td>2/15</td>
<td>Probabilistic Programming (2)</td>
<td>Sasa</td>
<td>Background Read: Probabilistic Models of Cognition, Ch7 Examples: Examples worked out in class Background Read: PPAML Summer School 2016</td>
</tr>
<tr>
<td>2/17</td>
<td>Probabilistic Programming (3)</td>
<td>Sasa</td>
<td>Background Read: Bayesian inference using data flow analysis (FSE 2013)</td>
</tr>
<tr>
<td>2/22</td>
<td>Testing and Verifying Approximate, Nondeterministic, and Probabilistic Software</td>
<td>Sasa</td>
<td>Background Read: A Comprehensive Study of Real-World Numerical Bug Characteristics (ASE 2017) Background Read: Testing Probabilistic Programming Systems (FSE 2018) Background Read: A practical guide for using statistical tests to assess randomized algorithms in software engineering (ICSE 2011)</td>
</tr>
</tbody>
</table>
Tentative List for Paper Discussion

2/24 Approximate Systems (1)
Primary Read: Input responsiveness: using canary inputs to dynamically steer approximation (PLDI 2016)

3/1 Approximate Systems (2)
Primary Read: Proactive control of approximate programs (ASPLOS 2016)
Secondary Read: JouleGuard: Energy Guarantees for Approximate Applications (SOSP 2015)

3/3 Approximate Systems (3)
Primary Read: Rigorous floating-point mixed-precision tuning (POPL 2017)
Secondary Read: Chisel: Reliability- and Accuracy-Aware Optimization of Approximate Computational Kernels (OOPSLA 2014)

3/8 Accuracy-Aware DNN Inference (1)
Primary Read: Deep Compression: Compressing Neural Networks With Pruning, Trained Quantization, and Huffman Coding (ICLR 2016)
Secondary Read: ApproxTuner: A Compiler and Runtime System for Adaptive Approximations (POPL 2021)

3/10 Accuracy-Aware DNN Inference (2)
Primary Read: SculpT: Customizing DNN pruning to the underlying hardware parallelism (SCA 2017)
Secondary Read: What is the state of Neural Network Pruning? (MLSYS 2020)

3/22 Accuracy-Aware DNN Inference (3)
Primary Read: The Lottery Ticket Hypothesis: Finding Small, Trainable Neural Networks (ICLR 2019)

3/24 DNN Accuracy vs. Privacy
Primary Read: Shredder: Learning Noise Distributions to Protect Inference Privacy (ASPLOS 2020)
Secondary Read: Defensive approximations: securing CNNs using approximate computing (ASPLOS 2021)

3/29 Testing: Deep Learning Applications

3/31 Testing: Probabilistic Applications
Primary Read: TNA: Optimizing Stochastic Regression Tests in Machine Learning Projects (SSSA 2021)

4/5 Testing: Numerical Applications
Primary Read: Efficient Generation of Error-Inducing Floating-Point Inputs via Symbolic Execution (OOPSLA 2020)
Secondary Read: Effective Floating-Point Analysis via Weak-Distance Minimization (PLDI 2019)

4/7 Testing and Analysis: Robustness
Primary Read: TBD (TBD)
Secondary Read: TBD (TBD)

4/19 Probabilistic Programming Systems (2)
Primary Read: Gen: a general-purpose probabilistic programming system with programmable inference (PLDI 2019)

4/21 Probabilistic Programming Systems (3)
Primary Read: Reactive probabilistic programming (PLDI 2020)
Secondary Read: Scriptic: a language for scenario specification and scene generation (PLDI 2019)

4/26 Probabilistic Programming Systems (4)
Primary Read: Probabilistic Programming with Cessies in SlicStan: Efficient, Flexible and Deterministic (POPL 2019)
Secondary Read: Static Analysis for Probabilistic Programs: Inferring Whole Program Properties from Flakily Many Paths (PLDI 2013)

4/28 Probabilistic Programming Systems (5)
Primary Read: Transforming Probabilistic Programs for Model Checking (FOSS 2020)
Secondary Read: FairTest: probabilistic verification of program fairness (OOPSLA 2017)

5/5 Student Project Presentations
Systematically Exploring Tradeoffs of Approximation

Capri, ASPLOS 2016
Study Dynamic Approximation

swaptions

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Power Cap</th>
</tr>
</thead>
</table>

During the power cap, we either restart or suffer through poor performance.
Study Dynamic Approximation

swaptions

![Graph showing normalized performance over time for Baseline, Power Cap, and Dynamic Knobs implementations.]

- Application switches to alternative implementation
- Application returns to original implementation
Approximations in **ML** Frameworks in software and hardware

Figure 7: Main steps of SIMD-aware weight pruning.

Figure 8: (A) Weights grouping; (B) Sparse weight matrix after pruning weight groups; (C) Modified CSR format for SIMD-aware weight pruning.
Trading off Accuracy, Performance and Privacy

Shredder, ASPLOS 2020
Impacts of Approximate Answers on Decision-Making

Figure 1: A sample dangerous erroneous behavior found by DeepTest in the Chauffeur DNN.
Testing Probabilistic Applications

\[
\begin{align*}
\bar{x} &= [1.0, 2.0, \ldots] \\
\bar{y} &= [7.0, 14.0, \ldots] \\
w &= \text{Gamma}(97.5, 86.2) \\
p &= \text{Beta}(44.0, 44.0) \\
\text{observe}(\\
\quad \text{Normal}(w \cdot \bar{x}, p), \bar{y}) \\
\text{posterior}(w)
\end{align*}
\]

Proximal program
Probabilistic Programming
Probabilistic Programs

Extend Standard (Deterministic) Programs

<table>
<thead>
<tr>
<th>Distribution</th>
<th>(X := \text{Uniform}(0, 1);)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assertion</td>
<td>\text{assert} \ (X \geq 0);</td>
</tr>
<tr>
<td>Observation</td>
<td>\text{observe} \ (X \geq 0.5);</td>
</tr>
<tr>
<td>Query</td>
<td>\text{return} \ X;</td>
</tr>
</tbody>
</table>
CS 521

COURSE LOGISTICS
Schedule

Twice a week – Tuesdays and Thursdays 3:30-4:45

We first do several lectures: tutorial style introductions to
- Approximate computing
- Probabilistic programming
- Covers key ideas and classical results

In the majority of the course, we will discuss recent papers
- Typically, discussion focus is on one paper at a time
- One student presents the paper
- Everyone participates in the discussion
Course Format

Research-oriented Course:
- Discussing latest research
- Reading from primary literature (papers)
- Focus on finding new ideas and building new systems

Research project is the main outcome of the course
- Be able to publish your work at a conference
- It is **hard!** Unpredictable + requires time and effort
The Show Must Go On...

Miss a lecture, lecture cancelled or postponed or online

Bad Internet connection, Zoom, other sites, life happens…

Lesson from approximate computing:

Something will fail occasionally
What matters is how we respond and recover.
Prerequisites

Basic Probability (e.g., CS 361)

Basic Compilers and/or PL course (e.g., CS 421, CS 426)

Basic Computer Architecture (e.g., CS 233)

Basic Machine Learning (e.g., CS 446)

(or a commitment to learn as you go)
Real Prerequisites

Being comfortable with the idea of doing research

(If you don’t know what you’re getting into, talk to me after the class)
Grading

Reviews & Discussion 20%

Paper Presentations 20%

Project 50%

Homework 10% +

10% XC
Papers

For the majority of the class, we will **jointly read** and **discuss** recent research results.

We focus on one paper in each class discussions:
- but for most part we put it in context with at least another related paper.

Make sure you can make it to the class on the day you’re presenting the paper!
Selecting Papers

Submit at least 5 candidate papers you’d like to present

• List of papers is on the website (use the week and number)
• Split in the primary read – the one we will focus the most in the discussion and secondary read – the one we will use to expand our understanding of the topic
• If you’d like a paper outside of the list, email me and make a case

Submission deadline is February 10

• Link: http://misailo.web.engr.Illinois.edu/courses/521/
• Will get back with the assignments by the class after
Reviews and Discussions

For each paper, write a review of between 500-1000 words:

• Summarize the **primary** paper:
 state main contributions in one/two paragraphs (use your own words!)

• Evaluate the contribution and discuss pros and cons:
 give a honest critique of the approach (main part)

• Two questions:
 about the paper, the general topic, its impact, or extensions (key!)

• Summarize the **secondary** paper after reading only its introduction (and maybe example) sections
 State main contributions in one/two paragraphs

• Relate the two papers
 What is similar and what is different (extrapolate what the 2nd paper does from the first two sections)
Reviews and Discussions

Send reviews before the lecture
• By midnight two days before the lecture
• Submission forms: we will use HotCRP

Discuss papers online before the class
• You will be able to see everyone else’s reviews
• Improve your understanding on the paper’s pros/cons
• Free to update your reviews after reading the other reviews.
• The lead student moderates the discussion

Participate in the discussion during the class
• We try to reach
• Purpose: practice how to be loud
 (at the conferences, board meetings, home…)
Paper Lead: Presentation

Week before: Meet with the instructor
• Mandatory! (we can set up 30min meeting)
• Discuss outline and questions you have so far (ok if still rough!)
• Send the recorded video by the time the reviews are due

30 minute slot per presentation (ok to have video):
• Explain motivation for the work
• Clearly present the technical solution and results
• Use your own example (not the one from the paper)
• Outline limitations / improvements
• Focus on concepts, leave out nonessential details
• Discuss the impact on the related/follow-up work
Paper Lead: Roles (Continued)

Before the class:
• Lead the online discussion (I will often help)
• Prepare the response to the questions raised by other students (by pointing into the paper or other related work)

After your presentation:
• Lead the discussion (take the online discussion as a starting point)
• Help reach the verdict about the main points of the paper
• Summarize the discussion on the online system after the class
Grading Presentations

Presentation quality:

• How well did you understand the work?
• How well did you present it (clarity and grace)?
• How well did you answer the questions?
• How well did you write the after-class report?

We will take into account the paper difficulty
Project

Teams of two but individual is also ok this semester
• Teamwork is a great experience!
• But this year is strange in so many ways!

Research projects, some ideas:
• New Software and/or hardware approximations
• Dynamic or input-aware approximations
• Optimize approximate inference algorithms
• New program analysis for probabilistic programs
• New probabilistic analysis of approximate programs
• Implement and compare existing approaches
• Survey literature on an emerging topic
Grading Projects

Proposal by first half of March (Date TBD)
• Meet with instructor for a quick discussion

Deliverables:
• Short paper – up to 5 pages ACM 10pt format
• Think of e.g., DATE (https://www.date-conference.com/)
• Project overview – 10/15 minutes
• Officially, due last week of classes (Tuesday)

Real outcome:
• Prepare (or make a good step toward) a publishable research paper
Grading

Reviews & Discussion 20%

Paper Presentations 20%

Project 50%

Homework 10% +

10% XC

Grading on an absolute scale (no curve!)
RESOURCES FOR READING, WRITING AND PRESENTING
Reading Papers

“How to Read a Research Paper”,
by Michael Mitzenmacher

“How to Read an Engineering Research Paper”,
by William Griswold
http://cseweb.ucsd.edu/~wgg/CSE210/howtoread.html

Advice compiled by Tao Xie:
http://taoxie.cs.illinois.edu/advice.htm#review
Writing Reviews

“The Task of the Referee”, by Allan Smith
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.177.3844

“Constructive and Positive Reviewing”,
by Mark Hill and Kathryn McKinley
http://www.cs.utexas.edu/users/mckinley/notes/reviewing.html
Presenting Research

“How to give strong technical presentations” by Markus Püschel
http://users.ece.cmu.edu/~pueschel/teaching/guides/guide-presentations.pdf

Patrick Winston’s talk @ MIT:
https://www.youtube.com/playlist?list=PL9F536001A3C605FC

Jean Luc Doumont’s talk
https://www.youtube.com/watch?v=meBXuTIPJQk
QUESTIONS SO FAR?