CONTROL FLOW ANALYSIS

The slides adapted from Vikram Adve
Flow Graphs

Flow Graph: A triple $G=(N,A,s)$, where (N,A) is a (finite) directed graph, $s \in N$ is a designated “initial” node, and there is a path from node s to every node $n \in N$.

- An entry node in a flow graph has no predecessors.
- An exit node in a flow graph has no successors.
- There is exactly one entry node, s. We can modify a general DAG to ensure this. How?
- In a control flow graph, any node unreachable from s can be safely deleted. Why?
- Control flow graphs are usually sparse. I.e., $|A| = O(|N|)$. In fact, if only binary branching is allowed $|A| \leq 2 |N|$.
Control Flow Graph (CFG)

Basic Block is a sequence of statements $S_1 \ldots S_n$ such that execution control must reach S_1 before S_2, and, if S_1 is executed, then $S_2 \ldots S_n$ are all executed in that order.

- Unless a statement causes the program to halt

Leader is the first statement of a basic block.

Maximal Basic Block is a basic block with a maximum number of statements (n).
Control Flow Graph (CFG)

CFG is a directed graph in which:

• Each node is a single basic block
• There is an edge \(b_1 \rightarrow b_2 \) if block \(b_2 \) may be executed after block \(b_1 \) in some execution

We define it typically for a single procedure

A CFG is a conservative approximation of the control flow! Why?
Example

Source Code

```c
unsigned fib(unsigned n) {
    int i;
    int f0 = 0, f1 = 1, f2;
    if (n <= 1) return n;
    for (i = 2; i <= n; i++) {
        f2 = f0 + f1;
        f0 = f1;
        f1 = f2;
    }
    return f2;
}
```

LLVM bitcode

```c
define i32 @fib(i32) {
    %2 = icmp ult i32 %0, 2
    br i1 %2, label %12, label %3

    ; <label>:3:
    br label %4

    ; <label>:4:
    %5 = phi i32 [ %8, %4 ], [ 1, %3 ]
    %6 = phi i32 [ %5, %4 ], [ 0, %3 ]
    %7 = phi i32 [ %9, %4 ], [ 2, %3 ]
    %8 = add i32 %5, %6
    %9 = add i32 %7, 1
    %10 = icmp ugt i32 %9, %0
    br i1 %10, label %11, label %4

    ; <label>:11:
    br label %12

    ; <label>:12:
    %13 = phi i32 [ %0, %1 ], [ %8, %11 ]
    ret i32 %13
}
```
Dominance in Flow Graphs

Let \(d, d_1, d_2, d_3, n \) be nodes in \(G \).

\(d \) dominates \(n \) (\("d \; \text{dom} \; n" \)) iff every path in \(G \) from \(s \) to \(n \) contains \(d \)

\(d \) properly dominates \(n \) if \(d \) dominates \(n \) and \(d \neq n \)

\(d \) is the immediate dominator of \(n \) (\("d \; \text{idom} \; n" \)) if \(d \) is the last proper dominator on any path from initial node to \(n \),

\(\text{DOM}(x) \) denotes the set of dominators of \(x \).
Dominator Properties

Lemma 1: \(\text{DOM}(s) = \{ s \} \).

Lemma 2: \(s \; \text{dom} \; d \), for all nodes \(d \) in \(G \).

Lemma 3: The dominance relation on nodes in a flow graph is a partial ordering
- Reflexive — \(n \; \text{dom} \; n \) is true for all \(n \).
- Antisymmetric — If \(d \; \text{dom} \; n \), then not \(n \; \text{dom} \; d \)
- Transitive — \(d_1 \; \text{dom} \; d_2 \land d_2 \; \text{dom} \; d_3 \Rightarrow d_1 \; \text{dom} \; d_3 \)

Lemma 4: The dominators of a node form a list.

Lemma 5: Every node except \(s \) has a unique immediate dominator.
Finding Dominators in a Flow Graph

Input: A flow graph $G = (N, A, s)$.

Output: The sets $\text{DOM}(\text{node})$ for each $\text{node} \in N$.

```
\text{DOM}(s) := \{ s \}

\text{forall} \ n \in N - \{s\} \ \text{do}
  \text{DOM}(n) := N
\text{od}

\text{while} \ \text{changes to any DOM}(n) \ \text{occur} \ \text{do}
  \text{forall} \ n \ \text{in} \ N - \{s\} \ \text{do}
  \text{DOM}(n) := \{n\} \cup \bigcap_{p \rightarrow n} \text{DOM}(p)
  \text{od}
\text{od}
```
Finding Dominators in a Flow Graph

Input: A flow graph $G = (N, A, s)$.

Output: The sets $\text{DOM}(\text{node})$ for each $\text{node} \in N$.

Initialization

$\text{DOM}(s) := \{ s \}$

for all $n \in N - \{s\}$ do
 $\text{DOM}(n) := N$
od

while changes to any $\text{DOM}(n)$ occur do
 for all n in $N - \{s\}$ do
 $\text{DOM}(n) := \{n\} \cup \bigcap_{p \rightarrow n} \text{DOM}(p)$
 od
od

Iteration
Loops

while (b) { … } ⇒ ?
Loops

The right definition of “loop” is not obvious.

Obviously bad definitions

- **Cycle**: Not necessarily properly nested or disjoint
- **Strongly Connected Components**: Too coarse; no nesting information

What properties of the loops do we want to extract from CFG?
Loops: Two Definitions

Natural loop — Defined using dominators

Intervals — Defined in terms of reachability in flow graph
Natural Loops

Def. **Back Edge:** An edge $n \rightarrow d$ where $d \text{ dom } n$

Def. **Natural Loop:** Given a back edge, $n \rightarrow d$, the natural loop corresponding to $n \rightarrow d$ is the set of nodes $\{d + \text{ all nodes that can reach } n \text{ without going through } d\}$

Def. **Loop Header:** A node d that dominates all nodes in the loop
- Header is unique for each natural loop *Why?*
- Implies d is the unique entry point into the loop
- Uniqueness is very useful for many optimizations
Natural Loops

Pros:
+ Intuitive, and similar to SCC.
+ Single entry point: “loop header”.
+ Identifies nested loops (if different headers)

Cons:
- Nested loops are not disjoint.
- Some nodes are not part of any natural loop.
- Does not include some cycles in “irreducible” flow graphs.
Reducibility of Flow Graphs

Def. Reducible* flow graph: a flow graph G is called reducible iff we can partition the edges into 2 disjoint sets:

- **forward edges**: should form a DAG in which every node is reachable from initial node s (or also header)
- **remaining edges must be back edges**: i.e., only those edges n → d such that d dom n

Idea:
Every “cycle” has at least one back edge
⇒ All “cycles” are natural loops
Otherwise graph is called irreducible.

Well-structured
Loops: Two Definitions

Natural loop — Defined using dominators

Intervals — Defined in terms of reachability in flow graph
Interval Analysis*

Idea: Partition flow graph into disjoint subgraphs so that each subgraph has a single entry (header).

Definition: The interval with node h as header, denoted I(h), is the subset of nodes of G constructed as:

* It’s different from the interval analysis on numerical quantities
Transformation Rules T1 and T2

T1: Reduce a self-loop \(x \rightarrow x \) to a single node

\[
T1 : \quad x \rightarrow x \quad \Rightarrow \quad x
\]

T2: If \(x \rightarrow y \), and there is no other predecessor of \(y \), then reduce \(x \) and \(y \) to a single node.

\[
T2 : \quad x \rightarrow y, \quad \text{and there is no other predecessor of } y, \quad \Rightarrow \quad xy
\]

Important: If \(G \) is reducible, successive applications of T1 and T2 produce the trivial graph.
⇒ Reducibility by T1 and T2 is equivalent to reducibility by intervals.
Interval Analysis*

Idea: Partition flow graph into disjoint subgraphs so that each subgraph has a single entry (header).

Definition: The interval with node h as header, denoted I(h), is the subset of nodes of G constructed as:

\[
I(h) := \{ h \}
\]

while \(\exists \) node \(m \) such that \(m \not\in I(h) \) and \(m \neq s \) and all arcs entering \(m \) leave nodes in \(I(h) \)
do
\[
I(h) := I(h) + m
\]
od

* It’s different from the interval analysis on numerical quantities
Derived Flow Graphs

Def. Derived Flow Graph, $I(g)$: If G is a flow graph, then its $I(G)$ is:

(a) The nodes of $I(G)$ are the intervals of G
(b) The initial node of $I(G)$ is $I(s)$
(c) There is an arc from node $I(h)$ to $I(k)$ in $I(G)$ if there is any arc from a node in $I(h)$ to node k in G.

Def. Derived sequence: the sequence $G = G_0, G_1, ..., G_k$ is derived iff

- $G_{i+1} = I(G_i)$ for $0 \leq i < k$,
- $G_{k-1} \neq G_k$,
- $I(G_k) = G_k$. G_k is called the limit flow graph of G.

Definition: A flow graph is reducible iff its limit flow graph is a single node with no arc. Otherwise it is called irreducible.
Intervals Properties

Lemma 6. $I(h)$ is unique: does not depend on order of node insertion. (See Hecht for proof)

Lemma 7. The subgraph generated by $I(h)$ is itself a flow graph.

Lemma 8.
(a) Every arc entering a node of the interval $I(h)$ from the outside enters the header h.
(b) h dominates every node in $I(h)$
(c) every cycle in $I(h)$ includes h
Node Splitting

Claim: If a node has $n > 1$ predecessors and $m > 1$ successors, split the node into n copies:

T_2 is always applicable to a graph after a node is split

\Rightarrow Any graph can be reduced to the trivial graph by applying $T_1, T_2,$ and splitting.

Challenge: Finding a “minimal” splitting of a graph is not easy. Typically involves an NP-complete problem.
See You Next Time!

Review in the next few weeks:
Muchnick, Chapter 21: Case Studies of Compilers

Review by next class: Sections from Muchnick Sections §4.1-4.5, 4.9: Intermediate Representations
Section §7.1: Control Flow Graphs
(or equivalent sections in Cooper & Torczon or Aho, Lam, Sethi & Ullman)