CS 526

Advanced Compiler Construction

http://misailo.cs.Illinois.edu/courses/cs526
STATIC SINGLE ASSIGNMENT

The slides adapted from Vikram Adve

Muchnick, Section 8.11 (*partially covered*).

Engineering a Compiler, Section 5.4.2 (*partially covered*).
Definition of SSA Form

A program is in SSA form if:

• each variable is assigned a value in exactly one statement

• each use of a variable is dominated by the definition
Advantages of SSA Form

Makes def-use and use-def chains explicit:

These chains are foundation of many dataflow optimizations

• We will see some soon!

Compact, flow-sensitive* def-use information

• fewer def-use edges per variable: one per CFG edge

* Takes the order of statements into account
Advantages of SSA Form (cont.)

No anti- and output dependences on SSA variables

- Direct dependence: \(A=1; B=A+1 \)
- Antidependence: \(A=1; B=A+1; A=2 \)
- Output dependence: \(A=1; A=2; B=A+1 \)

Explicit merging of values (\(\phi \)): key additional information

Can serve as IR for code transformations (see LLVM)
Constructing SSA Form

Simple algorithm
1. insert ϕ-functions for every variable at every join
2. solve reaching definitions
3. rename each use to the def that reaches it (unique)

What’s wrong with this approach?
1. too many ϕ-functions (precision)
2. too many ϕ-functions (space)
3. too many ϕ-functions (time)
Where do we place ϕ-functions?

$V=\ldots; U=\ldots; W=\ldots$;
if (...) then {
 $V = \ldots$;
 if (...) {
 $U = V + 1$;
 } else {
 $U = V + 2$;
 }
}
$W = U + 1$;

• For V?
• For U?
• For W?
Where do we place φ-functions?

V=...; U=...; W=...;

if (...) then {
 V1 = ...
 if (...) {
 U1 = V1 + 1;
 } else {
 U2 = V1 + 2;
 }
} else {
 U3 = \varphi(U1, U2);
 W1 = U3 + 1;
}

V2 = \varphi(V1, V1);
W1 = \varphi(W0, W0);
V3 = \varphi(V0, V1);
U4 = \varphi(U0, U3);
W2 = \varphi(W0, W1)
Intuition for SSA Construction

Informal Conditions

If a block X contains an assignment to a variable V, then a φ-function must be inserted in each block Z such that:

1. there is a non-empty path between X and Z,

2. there is a path from the entry block (s) to Z that does not go through X,

3. Z is the first node on the path from X that satisfies point 2.
Intuition for SSA Construction

Informal Conditions

If block X contains an assignment to a variable V, then a ϕ-function must be inserted in each block Z such that:

1. there is a non-empty path between X and Z, and the value of V computed in X reaches Z

2. there is a path from the entry block (s) to Z that does not go through X

 there is a path that does not go through X, so some other value of V reaches Z along that path (ignore bugs due to uses of uninitialized variables). So, two values must be merged at X with a ϕ

3. Z is the first node on the path from X to Z that satisfies point 2

 the ϕ for the value coming from X is placed in Z and not in some earlier node on the path
Intuition for SSA Construction

Informal Conditions

Iterating the Placement Conditions:

- After a ϕ is inserted at Z, the above process must be repeated for Z because the ϕ is effectively a new definition of V.
- For each block X and variable V, there must be at most one ϕ for V in X.

This means that the above iterative process can be done with a single worklist of nodes for each variable V, initialized to handle all original assignment nodes X simultaneously.
Minimal SSA

A program is in SSA form if:
• each variable is assigned a value in exactly one statement
• each use of a variable is dominated by the definition i.e., the use can refer to a unique name.

Minimal SSA: As few as possible ϕ-functions,

Pruned SSA: As few as possible ϕ-functions and no dead ϕ-functions (i.e., the defined variable is used later)
• One needs to compute liveness information
• More precise, but requires additional time
SSA Construction Algorithm

Steps:
1. Compute the dominance frontiers*
2. Insert \(\varphi \)-functions
3. Rename the variables

Thm. Any program can be put into minimal SSA form using the previous algorithm. [Refer to the paper for proof]
Let d, d1, d2, d3, n be nodes in G.

d dominates n ("d dom n") iff every path in G from s to n contains d

d properly dominates n ("d pdom n") if d dominates n and d ≠ n

d is the immediate dominator of n ("d idom n")
if d is the last proper dominator on any path from initial node to n,

DOM(x) denotes the set of dominators of x,

Dominator tree*: the children of each node d are the nodes n such that "d idom n" (d immediately dominates n)
Dominance Frontier

The dominance frontier of node X is the set of nodes Y such that X dominates a predecessor of Y, but X does not properly dominate Y.

$$\text{DF}(X) = \{Y \mid \exists P \in \text{Pred}(Y) : X \text{ dom } P \text{ and not } (X \text{ pdom } Y)\}$$

We can split $\text{DF}(X)$ in two groups of sets:

- $\text{DF}_{\text{local}}(X) \equiv \{Y \in \text{Succ}(X) \mid \text{not } X \text{ idom } Y\}$
- $\text{DF}_{\text{up}}(Z) \equiv \{Y \in \text{DF}(Z) \mid \exists W. W \text{ idom } Z \text{ and not } W \text{ pdom } Y\}$

Then:

$$\text{DF}(X) = \text{DF}_{\text{local}}(X) \cup \bigcup_{Z \in \text{Children}(X)} \text{DF}_{\text{up}}(Z)$$

* child, parent, ancestor, and descendant always refer to the dominator tree. predecessor, successor, and path always refer to CFG.
Dominance Frontier Algorithm

for each X in a bottom-up traversal of the dominator tree (visit the node X in the tree after visiting its children):

$$DF(X) \leftarrow \emptyset$$

for each $Y \in \text{succ}(X)$ /* local */

if not $X \text{idom} Y$ then

$$DF(X) \leftarrow DF(X) \cup \{Y\}$$

for each $Z \in \text{children}(X)$ /* up */

for each $Y \in DF(Z)$

if not $X \text{idom} Y$ then

$$DF(X) \leftarrow DF(X) \cup \{Y\}$$
 Dominance and LLVM

Dominators.h

Go to the documentation of this file.

```c++
//--- Dominators.h - Dominator Info Calculation ------------------------ C++ -*-
//
00002 //
00003 //
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 // ----------------------------------------------------------------------
00009 //
00010 // This file defines the DominatorTree class, which provides fast and efficient
00011 // dominance queries.
00012 //
00013 //-------------------------------------------------------------------------
```

DominanceFrontier.h

Go to the documentation of this file.

```c++
//--- LLVM/Analysis/DominanceFrontier.h - Dominator Frontiers C++ -*-
//
00002 //
00003 //
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //----------------------------------------------------------------------
00009 //
00010 // This file defines the DominanceFrontier class, which calculate and holds the
00011 // dominance frontier for a function.
00012 //
00013 // This should be considered deprecated, don't add any more uses of this data
00014 // structure.
00015 //
00016 //----------------------------------------------------------------------
00017 //
00018 #ifndef LLVM_ANALYSIS_DOMINANCEFRONTIER_H
00019 #define LLVM_ANALYSIS_DOMINANCEFRONTIER_H
00020
00021 #include "llvm/IR/Dominators.h"
00022 #include <map>
00023 #include <set>
00024
00025 namespace llvm {
00026
00027 //----------------------------------------------------------------------
00028 // DominanceFrontierBase - Common base class for computing forward and inverse
00029 // dominance frontiers for a function.
00030 //
00031 //-------------------------------template---------------------------------
00032 class DominanceFrontierBase {
00033 public:
00034     typedef std::set<BlockT * > DomSetType; // Dom set for a bb
00035     typedef std::map<BlockT *, DomSetMapType> DomSetMapType; // Dom set map
00036
00037     protected:
00038     typedef GraphTraits<BlockT> BlockTraits;
00039
```
SSA Construction Algorithm

Steps:
1. Compute the dominance frontiers
2. Insert ϕ-functions
3. Rename the variables
Insert φ-functions

for each variable V

\[
\text{HasAlready} \leftarrow \emptyset \\
\text{EverOnWorkList} \leftarrow \emptyset \\
\text{WorkList} \leftarrow \emptyset
\]

for each node X that may modify V

\[
\text{EverOnWorkList} \leftarrow \text{EverOnWorkList} \cup \{X\} \\
\text{WorkList} \leftarrow \text{WorkList} \cup \{X\}
\]
Insert ϕ-functions

for each variable V

\begin{align*}
\text{HasAlready} & \leftarrow \emptyset \\
\text{EverOnWorkList} & \leftarrow \emptyset \\
\text{WorkList} & \leftarrow \emptyset
\end{align*}

for each node X that may modify V

\begin{align*}
\text{EverOnWorkList} & \leftarrow \text{EverOnWorkList} \cup \{X\} \\
\text{WorkList} & \leftarrow \text{WorkList} \cup \{X\}
\end{align*}

while $\text{WorkList} \neq \emptyset$

remove X from WorkList

for each $Y \in \text{DF}(X)$

if $Y \not\in \text{HasAlready}$ then

insert a ϕ-node for V at Y

\begin{align*}
\text{HasAlready} & \leftarrow \text{HasAlready} \cup \{Y\} \\
\text{EverOnWorkList} & \leftarrow \text{EverOnWorkList} \cup \{Y\} \\
\text{WorkList} & \leftarrow \text{WorkList} \cup \{Y\}
\end{align*}
Renaming Variables*

Renaming definitions is easy – just keep the counter for each variable.

To rename each use of \(V \):

(a) **Use in non-\(\varphi \)-functions**: Refer to immediately dominating definition of \(V \) (+ \(\varphi \) nodes inserted for \(V \)).

 preorder on Dominator Tree!

(b) **Use as a \(\varphi \)-function operand**: Refer to the definition that immediately dominates the node with the incoming CFG edge (not the node with the \(\varphi \)-function)

 rename the \(\varphi \)-operand when processing the predecessor basic block!

* For the full algorithm refer to the paper
j = 1;

while (j < X)
 ++j;

N = j;

A: j = 1;

B: if (j >= X) goto E;

S:
 j = j + 1;
 if (j < X) goto S;

E:
 N = j;
j=1;

while (j < X)
 ++j;

N = j;

A: j0 = 1;

B: if (j0 >= X) goto E;

S: j1 = φ(j0, j2)
 j2 = j1+1;
 if (j2 < X) goto S;

E: j3 = φ(j0, j2)
 N = j3;
Translating Out of SSA Form

Overview:
1. Dead-code elimination (prune dead ϕs)
2. Replace ϕ-functions with copies in predecessors
3. Register allocation with copy coalescing
Control Dependence

Def. Postdomination: node p postdominates a node d if all paths to the exit node of the graph starting at d must go through p.

Def. In a CFG, node Y is control-dependent on node B if

- There is a non-empty path $N_0 = B, N_1, N_2, ..., N_k = Y$ such that Y postdominates $N_1 \ldots N_k$, and
- Y does not strictly postdominate B.

Def. The Reverse Control Flow Graph (RCFG) of a CFG has the same nodes as CFG and has edge $Y \rightarrow X$ if $X \rightarrow Y$ is an edge in CFG.

- p is a postdominator of d iff p dominates d in the RCFG.
Computing Control Dependence

Key observation: Node Y is control-dependent on B *iff* $B \in DF(Y)$ in RCFG.

Algorithm:
1. Build RCFG
2. Build dominator tree for RCFG
3. Compute dominance frontiers for RCFG
4. Compute $CD(B) = \{Y \mid B \in DF(Y)\}$.

$CD(B)$ gives the nodes that are control-dependent on B.
Summary

Complexity:

The conversion to SSA form is done in three steps:

1. The *dominance frontier* mapping is constructed from the control flow graph CFG (Section 4.2). Let CFG have N nodes and E edges. Let DF be the mapping from nodes to their dominance frontiers. The time to compute the dominator tree and then the dominance frontiers in CFG is $O(E + \sum_X |DF(X)|)$.

2. Using the dominance frontiers, the locations of the ϕ-functions for each variable in the original program are determined (Section 5.1). Let A_{tot} be the *total* number of assignments to variables in the resulting program, where each ordinary assignment statement $LHS \leftarrow RHS$ contributes the length of the tuple LHS to A_{tot}, and each ϕ-function contributes 1 to A_{tot}. Placing ϕ-functions contributes $O(A_{tot} \times avrgDF)$ to the overall time, where $avrgDF$ is the weighted average (7) of the sizes $|DF(X)|$.

3. The variables are renamed (Section 5.2). Let M_{tot} be the total number of mentions of variables in the resulting program. Renaming contributes $O(M_{tot})$ to the overall time.

Follow up works:

• A linear time algorithm for placing phi-nodes (POPL 1995) [https://dl.acm.org/citation.cfm?id=199464]

• Algorithms for computing the static single assignment form (JACM 2003)

Further reading:

• Tiger Book, Chapter 19

• On History: [http://citi2.rice.edu/WS07/KennethZadeck.pdf]