CS 526
Advanced Compiler Construction

http://misailo.cs.Illinois.edu/courses/cs526
DATAFLOW ANALYSIS

The slides adapted from Saman Amarasinghe, Martin Rinard and Vikram Adve
Why Dataflow Analysis?

Answers key questions about the flow of values and other program properties over control-flow paths at compile-time
Why Dataflow Analysis?

Compiler fundamentals
What defs. of x reach a given use of x (and vice-versa)?
What \{<ptr,target>\} pairs are possible at each statement?

Scalar dataflow optimizations
Are any uses reached by a particular definition of x?
Has an expression been computed on all incoming paths?
What is the innermost loop level at which a variable is defined?

Correctness and safety:
Is variable x defined on every path to a use of x?
Is a pointer to a local variable live on exit from a procedure?

Parallel program optimization
Where is dataflow analysis used?

Everywhere
Where is dataflow analysis used?

Preliminary Analyses
- Pointer Analysis
- Detecting uninitialized variables
- Type inference
- Strength Reduction for Induction Variables

Static Computation Elimination
- Dead Code Elimination (DCE)
- Constant Propagation
- Copy Propagation

Redundancy Elimination
- Local Common Subexpression Elimination (CSE)
- Global Common Subexpression Elimination (GCSE)
- Loop-invariant Code Motion (LICM)
- Partial Redundancy Elimination (PRE)

Code Generation
- Liveness analysis for register allocation
Basic Term Review

Point: A location in a basic block just before or after some statement.

Path: A path from points p_1 to p_n is a sequence of points $p_1, p_2, \ldots p_n$ such that (intuitively) some execution can visit these points in order.

Kill of a Definition: A definition d of variable V is killed on a path if there is an unambiguous (re)definition of V on that path.

Kill of an Expression: An expression e is killed on a path if there is a possible definition of any of the variables of e on that path.
Dataflow Analysis (Informally)

Symbolically simulate execution of program
• Forward (Reaching Definitions)
• Backward (Variable Liveness)

Stacked analyses and transformations that work together, e.g.
• Reaching Definitions → Constant Propagation
• Variable Liveness → Dead code elimination

Our plan:
• Examples first (analysis + theory)
• Theory follows
Analysis: Reaching Definitions

A definition d reaches point p if there is a path from the point after d to p such that d is not killed along that path.

Example Statements:

- $a = x+y$
 - It is a definition of a
 - It is a use of x and y
- $b = a+1$
 - It is a definition of b? And use of $??$

A definition reaches a use if the value written by the definition may be read by the use.
```
s = 0;
a = 4;
i = 0;
k == 0

b = 1;
b = 2;
i < n

s = s + a*b;
i = i + 1;
return s
```
Reaching Definitions (Declarative)

Dataflow variables (for each block B)

$\text{In}(B) \equiv$ the set of defs that reach the point before first statement in B

$\text{Out}(B) \equiv$ the set of defs that reach the point after last statement in B

$\text{Gen}(B) \equiv$ the set of defs in B that are not killed in B.

$\text{Kill}(B) \equiv$ the set of all defs that are killed in B (i.e., on the path from entry to exit of B, if $\text{def } d \notin B$; or on the path from d to exit of B, if $\text{def } d \in B$).

The difference:

$\text{In}(B), \text{Out}(B)$ are global dataflow properties (of the function).

$\text{Gen}(B), \text{Kill}(B)$ are local properties of the basic block B alone.
Computing Reaching Definitions

Compute with sets of definitions

- represent **sets** using **bit vectors** data structure
- each definition has a position in bit vector

At each basic block, compute

- definitions that reach the start of block
- definitions that reach the end of block

Perform computation by simulating execution of program until reach fixed point
1: s = 0;
2: a = 4;
3: i = 0;
4: b = 1;
5: b = 2;
6: s = s + a * b;
7: i = i + 1;

i < n

return s
Formalizing the analysis: Dataflow Equations

IN and OUT combine the properties from the neighboring blocks in CFG

\[\text{IN}[b] = \text{OUT}[b_1] \cup \ldots \cup \text{OUT}[b_n] \]
- where \(b_1, \ldots, b_n \) are predecessors of \(b \) in CFG

\[\text{OUT}[b] = (\text{IN}[b] - \text{KILL}[b]) \cup \text{GEN}[b] \]

\[\text{IN}[\text{entry}] = 0000000 \]

Result: system of equations
Solving Equations

Use fixed point (worklist) algorithm

Initialize with solution of $OUT[b] = 0000000$

- **Repeatedly apply equations**
 1. $IN[b] = OUT[b1] \cup \ldots \cup OUT[bn]$
 2. $OUT[b] = (IN[b] - KILL[b]) \cup GEN[b]$
- **Until reach fixed point**

* Fixed point = equation application has no further effect

Use a **worklist** to *track which equation applications may have a further effect*
Reaching Definitions Algorithm

for all nodes n in N
 OUT[n] = emptyset; // OUT[n] = GEN[n];
IN[Entry] = emptyset;
OUT[Entry] = GEN[Entry];
Changed = N - { Entry }; // N = all nodes in graph

while (Changed != emptyset)
 choose a node n in Changed;
 Changed = Changed - { n }; // in efficient impl. these are bitvector operations

 IN[n] = emptyset;
 for all nodes p in predecessors(n)
 IN[n] = IN[n] U OUT[p];

 OUT[n] = GEN[n] U (IN[n] - KILL[n]);

 if (OUT[n] changed)
 for all nodes s in successors(n)
 Changed = Changed U { s };
Reaching Definitions: Convergence

Out[B] is finite
Out[B] never decreases for any B
 ⇒ must eventually stop changing
At most n iterations if n blocks
 ⇐ Definitions need propagate only over acyclic paths
Transform: Constant Propagation

Paired with reaching definitions (uses its results)

Check: Is a use of a variable a constant?

- Check all reaching definitions
- If all assign variable to same constant
- Then use is in fact a constant

Can replace variable with constant
1: s = 0;
2: a = 4;
3: i = 0;
k == 0
4: b = 1;
5: b = 2;
6: s = s + a*b;
7: i = i + 1;
return s
1: \(\text{s} = 0; \)
2: \(\text{a} = 4; \)
3: \(\text{i} = 0; \)
 \(\text{k} == 0 \)
4: \(\text{b} = 1; \)
5: \(\text{b} = 2; \)

```
1 2 3 4 5 6 7
1110000
```
```
1 2 3 4 5 6 7
1111000
```
```
1 2 3 4 5 6 7
1111100
```
```
1 2 3 4 5 6 7
1111111
```
```
1 2 3 4 5 6 7
0101111
```
```
1 2 3 4 5 6 7
1111111
```
```
1 2 3 4 5 6 7
1111111
```
```
1 2 3 4 5 6 7
1111111
```
```
```

\text{Is a Being Constant in } \text{s} = \text{s+a*b} ?
```
6: \( \text{s} = \text{s} + \text{a*b}; \)
7: \( \text{i} = \text{i} + 1; \)
0101111
```
```
```
```
```
```
```
return s
```
```
```
```
```
```
```
```
Is a Being Constant in \(s = s + a \times b \)?
Analysis: Available Expressions

An expression $x+y$ is available at a point p if

1. Every path from the initial node to p must evaluate $x+y$ before reaching p,
2. There are no assignments to x or y after the expression evaluation but before p.

Available Expression information can be used to do global (across basic blocks) CSE
- If expression is available at use, no need to reevaluate it
- Beyond SSA-form analyses
Example: Available Expression

\begin{align*}
a &= b + c \\
d &= e + f \\
f &= a + c \\
g &= a + c \\
b &= a + d \\
h &= c + f \\
j &= a + b + c + d
\end{align*}
Is the Expression Available?

YES!
Is the Expression Available?

YES!

\[
\begin{align*}
 a &= b + c \\
 d &= e + f \\
 f &= a + c \\
 g &= a + c \\
 b &= a + d \\
 h &= c + f \\
 j &= a + b + c + d
\end{align*}
\]
Is the Expression Available?

NO!

\[a = b + c \]
\[d = e + f \]
\[f = a + c \]
Is the Expression Available?

NO!

\[a = b + c \]
\[d = e + f \]
\[f = a + c \]
\[g = a + c \]
\[j = a + b + c + d \]
\[b = a + d \]
\[h = c + f \]
Transformation: Common Subexpression Elimination

Uses the results of available expressions

Check:
• If the expression is available and computed before,

Transform:
• At the first location, create a temporary variable
• Replace the latter occurrence(s) with the temporary variable name.
Use of Available Expression

\[a = b + c \]
\[d = e + f \]
\[f = a + c \]
\[g = a + c \]
\[b = a + d \]
\[h = c + f \]
\[j = a + b + c + d \]

YES!
Use of Available Expression

YES!

\[a = b + c \]
\[d = e + f \]
\[f = a + c \]

\[g = a + c \]
\[b = a + d \]
\[h = c + f \]

\[j = a + b + c + d \]
Use of Available Expression

\[a = b + c \]
\[d = e + f \]
\[f' = a + c \]
\[f = f' \]
\[g = f' \]
\[b = a + d \]
\[h = c + f \]
\[j = a + b + c + d \]
Use of Available Expression

\[a = b + c \]
\[d = e + f \]
\[f' = a + c \]
\[f = f' \]
\[g = f' \]
\[j = f' + b + d \]
\[b = a + d \]
\[h = c + f \]
Formalizing Analysis

Each basic block has

• $\text{IN} =$ set of expressions available at start of block
• $\text{OUT} =$ set of expressions available at end of block
• $\text{GEN} =$ set of expressions computed in block
• $\text{KILL} =$ set of expressions killed in in block

• Compiler scans each basic block to derive GEN and KILL sets

• Comparison with reaching definitions:
 • definition reaches a basic block if it comes from ANY predecessor in CFG
 • expression is available at a basic block only if it is available from ALL predecessors in CFG
Dataflow Equations

- $\text{IN}[b] = \text{OUT}[b_1] \cap \ldots \cap \text{OUT}[b_n]$
 - where b_1, \ldots, b_n are predecessors of b in CFG
- $\text{OUT}[b] = (\text{IN}[b] - \text{KILL}[b]) \cup \text{GEN}[b]$
- $\text{IN}[\text{entry}] = 0000$
- Result: system of equations
Solving Equations

• Use fixed point algorithm
• \(\text{IN[entry]} = 0000 \)
• Initialize \(\text{OUT[b]} = 1111 \)
• Repeatedly apply equations
 – \(\text{IN[b]} = \bigcap \text{OUT[b1]} \bigcap \ldots \bigcap \text{OUT[bn]} \)
 – \(\text{OUT[b]} = (\text{IN[b]} - \text{KILL[b]}) \cup \text{GEN[b]} \)
• Use a worklist algorithm to reach fixed point
Available Expressions Algorithm

for all nodes n in N
 OUT[n] = E; // OUT[n] = E - KILL[n];
IN[Entry] = emptyset;
OUT[Entry] = GEN[Entry];
Changed = N - { Entry }; // N = all nodes in graph

while (Changed != emptyset)
 choose a node n in Changed;
 Changed = Changed - { n };

 IN[n] = E; // E is set of all expressions
 for all nodes p in predecessors(n)
 IN[n] = IN[n] \cap OUT[p];

 OUT[n] = GEN[n] U (IN[n] - KILL[n]);

 if (OUT[n] changed)
 for all nodes s in successors(n)
 Changed = Changed U { s };
Questions

Does algorithm always halt?

If expression is available in some execution, is it always marked as available in analysis?

If expression is not available in some execution, can it be marked as available in analysis?
Analysis: Variable Liveness

A variable v is live at point p if

- v is used along some path starting at p, and
- no definition of v along the path before the use.

When is a variable v dead at point p?

- No use of v on any path from p to exit node, or
- If all paths from p redefine v before using v.
What Use is Liveness Information?

Register allocation.

- If a variable is dead, can reassign its register

Dead code elimination.

- Eliminate assignments to variables not read later.
- But must not eliminate last assignment to variable (such as instance variable) visible outside CFG.
- Can eliminate other dead assignments.
- Handle by making all externally visible variables live on exit from CFG
Conceptual Idea of Analysis

- Simulate execution
- But start from exit and go backwards in CFG
- Compute liveness information from end to beginning of basic blocks
Liveness Example

- Assume \(a, b, c \) visible outside method
 - So they are live on exit
- Assume \(x, y, z, t \) not visible outside method
- Represent Liveness Using Bit Vector
 - order is \(abcxyzt \)
Transformation: Dead Code Elimination

- Assume a, b, c visible outside method
 - So they are live on exit
- Assume x, y, z, t not visible outside method
- Represent Liveness Using Bit Vector
 - order is $abcxyz$
- Remove dead definitions
Transformation: Dead Code Elimination

- Assume a,b,c visible outside method
 - So they are live on exit
- Assume x,y,z,t not visible outside method
- Represent Liveness Using Bit Vector
 - order is $abcxyzt$
- Remove dead definitions
Formalizing Analysis

• Each basic block has
 – IN - set of variables live at start of block
 – OUT - set of variables live at end of block
 – USE - set of variables with upwards exposed uses in block
 – DEF - set of variables defined in block

• USE[x = z; x = x+1;] = { z } (x not in USE)
• DEF[x = z; x = x+1; y = 1;] = {x, y}

• Compiler scans each basic block to derive USE and DEF sets
Liveness Algorithm

for all nodes n in N - { Exit }
 IN[n] = emptyset;
OUT[Exit] = emptyset;
IN[Exit] = use[Exit];
Changed = N - { Exit };

while (Changed != emptyset)
 choose a node n in Changed;
 Changed = Changed - { n };

 OUT[n] = emptyset;
for all nodes s in successors(n)
 OUT[n] = OUT[n] U IN[s];

 IN[n] = use[n] U (out[n] - def[n]);

if (IN[n] changed)
 for all nodes p in predecessors(n)
 Changed = Changed U { p };
Similar to Other Dataflow Algorithms

Backwards analysis, not forwards
Still have transfer functions
Still have confluence operators
Can generalize framework to work for both forwards and backwards analyses
Comparison

Reaching Definitions

for all nodes n in N

\[
\text{OUT}[n] = \text{emptyset};
\]
\[
\text{IN}[\text{Entry}] = \text{emptyset};
\]
\[
\text{OUT}[\text{Entry}] = \text{GEN}[\text{Entry}];
\]
\[
\text{Changed} = N - \{ \text{Entry} \};
\]

while (Changed != emptyset)

choose a node n in Changed;

\[
\text{Changed} = \text{Changed} - \{ n \};
\]

\[
\text{IN}[n] = \text{emptyset};
\]

for all nodes p in predecessors(n)

\[
\text{IN}[n] = \text{IN}[n] \cup \text{OUT}[p];
\]

\[
\text{OUT}[n] = \text{GEN}[n] \cup (\text{IN}[n] - \text{KILL}[n]);
\]

if (OUT[n] changed)

for all nodes s in successors(n)

\[
\text{Changed} = \text{Changed} \cup \{ s \};
\]

Available Expressions

for all nodes n in N

\[
\text{OUT}[n] = E;
\]
\[
\text{IN}[\text{Entry}] = \text{emptyset};
\]
\[
\text{OUT}[\text{Entry}] = \text{GEN}[\text{Entry}];
\]
\[
\text{Changed} = N - \{ \text{Entry} \};
\]

while (Changed != emptyset)

choose a node n in Changed;

\[
\text{Changed} = \text{Changed} - \{ n \};
\]

\[
\text{IN}[n] = E;
\]

for all nodes p in predecessors(n)

\[
\text{IN}[n] = \text{IN}[n] \cap \text{OUT}[p];
\]

\[
\text{OUT}[n] = \text{GEN}[n] \cup (\text{IN}[n] - \text{KILL}[n]);
\]

if (OUT[n] changed)

for all nodes s in successors(n)

\[
\text{Changed} = \text{Changed} \cup \{ s \};
\]

Liveness

for all nodes n in $N - \{ \text{Exit} \}$

\[
\text{IN}[n] = \text{emptyset};
\]

\[
\text{OUT}[\text{Exit}] = \text{emptyset};
\]
\[
\text{OUT}[\text{Exit}] = \text{use}[\text{Exit}];
\]
\[
\text{Changed} = N - \{ \text{Exit} \};
\]

while (Changed != emptyset)

choose a node n in Changed;

\[
\text{Changed} = \text{Changed} - \{ n \};
\]

\[
\text{OUT}[n] = \text{emptyset};
\]

for all nodes s in successors(n)

\[
\text{OUT}[n] = \text{OUT}[n] \cup \text{IN}[p];
\]

\[
\text{IN}[n] = \text{use}[n] \cup (\text{OUT}[n] - \text{def}[n]);
\]

if (IN[n] changed)

for all nodes p in predecessors(n)

\[
\text{Changed} = \text{Changed} \cup \{ p \};
\]
Comparison

Reaching Definitions

for all nodes \(n \) in \(N \)

\[
\text{OUT}[n] = \text{emptyset};
\]

\[
\text{IN}[\text{Entry}] = \text{emptyset};
\]

\[
\text{OUT}[\text{Entry}] = \text{GEN}[\text{Entry}];
\]

\[
\text{Changed} = N - \{\ \text{Entry}\ \};
\]

while (\text{Changed} \neq \text{emptyset})

\[
\text{choose a node } n \text{ in } \text{Changed};
\]

\[
\text{Changed} = \text{Changed} - \{\ n \ \};
\]

\[
\text{IN}[n] = \text{emptyset};
\]

for all nodes \(p \) in predecessors(\(n \))

\[
\text{IN}[n] = \text{IN}[n] \cup \text{OUT}[p];
\]

\[
\text{OUT}[n] = \text{GEN}[n] \cup (\text{IN}[n] - \text{KILL}[n]);
\]

if (\text{OUT}[n] \text{ changed})

\[
\text{for all nodes } s \text{ in successors}(n)
\]

\[
\text{Changed} = \text{Changed} \cup \{\ s \ \};
\]

Available Expressions

for all nodes \(n \) in \(N \)

\[
\text{OUT}[n] = E;
\]

\[
\text{IN}[\text{Entry}] = \text{emptyset};
\]

\[
\text{OUT}[\text{Entry}] = \text{GEN}[\text{Entry}];
\]

\[
\text{Changed} = N - \{\ \text{Entry}\ \};
\]

while (\text{Changed} \neq \text{emptyset})

\[
\text{choose a node } n \text{ in } \text{Changed};
\]

\[
\text{Changed} = \text{Changed} - \{\ n \ \};
\]

\[
\text{IN}[n] = E;
\]

for all nodes \(p \) in predecessors(\(n \))

\[
\text{IN}[n] = \text{IN}[n] \cap \text{OUT}[p];
\]

\[
\text{OUT}[n] = \text{GEN}[n] \cup (\text{IN}[n] - \text{KILL}[n]);
\]

if (\text{OUT}[n] \text{ changed})

\[
\text{for all nodes } s \text{ in successors}(n)
\]

\[
\text{Changed} = \text{Changed} \cup \{\ s \ \};
\]
Comparison

Reaching Definitions

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>for all nodes n in N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OUT[n] = emptyset;</td>
</tr>
<tr>
<td></td>
<td>IN[Entry] = emptyset;</td>
</tr>
<tr>
<td></td>
<td>OUT[Entry] = GEN[Entry];</td>
</tr>
<tr>
<td></td>
<td>Changed = N - { Entry };</td>
</tr>
<tr>
<td>while (Changed != emptyset)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>choose a node n in Changed;</td>
</tr>
<tr>
<td></td>
<td>Changed = Changed - { n };</td>
</tr>
<tr>
<td></td>
<td>IN[n] = emptyset;</td>
</tr>
<tr>
<td></td>
<td>for all nodes p in predecessors(n)</td>
</tr>
<tr>
<td></td>
<td>IN[n] = IN[n] U OUT[p];</td>
</tr>
<tr>
<td></td>
<td>OUT[n] = GEN[n] U (IN[n] - KILL[n]);</td>
</tr>
<tr>
<td>if (OUT[n] changed)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for all nodes s in successors(n)</td>
</tr>
<tr>
<td></td>
<td>Changed = Changed U { s };</td>
</tr>
</tbody>
</table>

Liveness

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>for all nodes n in N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IN[n] = emptyset;</td>
</tr>
<tr>
<td></td>
<td>OUT[Exit] = emptyset;</td>
</tr>
<tr>
<td></td>
<td>IN[Exit] = use[Exit];</td>
</tr>
<tr>
<td></td>
<td>Changed = N - { Exit };</td>
</tr>
<tr>
<td>while (Changed != emptyset)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>choose a node n in Changed;</td>
</tr>
<tr>
<td></td>
<td>Changed = Changed - { n };</td>
</tr>
<tr>
<td></td>
<td>OUT[n] = emptyset;</td>
</tr>
<tr>
<td></td>
<td>for all nodes s in successors(n)</td>
</tr>
<tr>
<td></td>
<td>OUT[n] = OUT[n] U IN[p];</td>
</tr>
<tr>
<td></td>
<td>IN[n] = use[n] U (out[n] - def[n]);</td>
</tr>
<tr>
<td>if (IN[n] changed)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for all nodes p in predecessors(n)</td>
</tr>
<tr>
<td></td>
<td>Changed = Changed U { p };</td>
</tr>
</tbody>
</table>
Basic Idea

Information about program represented using values from algebraic structure called **lattice**

Analysis produces lattice value for each program point

Two flavors of analysis

- Forward dataflow analysis [e.g., Reachability]
- Backward dataflow analysis [e.g. Live Variables]
Forward Dataflow Analysis

Analysis propagates values forward through control flow graph with flow of control

• Each node has a transfer function f
 – Input – value at program point before node
 – Output – new value at program point after node
• Values flow from program points after predecessor nodes to program points before successor nodes
• **At join points**, values are combined using a merge function
Analysis propagates values backward through control flow graph against flow of control

- Each node has a transfer function f
 - Input – value at program point after node
 - Output – new value at program point before node

- Values flow from program points before successor nodes to program points after predecessor nodes

- At split points, values are combined using a merge function
Partial Orders

Set P

Partial order relation \leq such that $\forall x, y, z \epsilon P$

- $x \leq x$ (reflexive)
- $x \leq y$ and $y \leq x$ implies $x = y$ (antisymmetric)
- $x \leq y$ and $y \leq z$ implies $x \leq z$ (transitive)

Can use partial order to define

- Upper and lower bounds
- Least upper bound
- Greatest lower bound
Upper Bounds

If $S \subseteq P$ then

• $x \in P$ is an upper bound of S if $\forall y \in S. \ y \leq x$

• $x \in P$ is the least upper bound of S if
 • x is an upper bound of S, and
 • $x \leq y$ for all upper bounds y of S

• \lor - join, least upper bound, lub, supremum, sup
 • $\lor S$ is the least upper bound of S
 • $x \lor y$ is the least upper bound of $\{x, y\}$
Lower Bounds

If $S \subseteq P$ then

- $x \in P$ is a lower bound of S if $\forall y \in S. \ x \leq y$
- $x \in P$ is the greatest lower bound of S if
 - x is a lower bound of S, and
 - $y \leq x$ for all lower bounds y of S

- \wedge - meet, greatest lower bound, glb, infimum, \inf,
 - $\wedge S$ is the greatest lower bound of S
 - $x \wedge y$ is the greatest lower bound of $\{x,y\}$
Covering

\(x \prec y \) if \(x \leq y \) and \(x \neq y \)

\textbf{x is covered by y} (y covers x) if

- \(x < y \), and
- \(x \leq z < y \) implies \(x = z \)

Conceptually, \(y \) covers \(x \) if there are no elements between \(x \) and \(y \)
Example

$P = \{000, 001, 010, 011, 100, 101, 110, 111\}$

(standard boolean lattice, also called hypercube)

$x \leq y$ is equivalent to $(x \text{ bitwise-and } y) = x$

Hasse Diagram

- If y covers x
 - Line from y to x
 - y above x in diagram
Lattices

Consider poset \((P, \leq)\) and the operators \(\land\) (meet) and \(\lor\) (join)

If for all \(x, y \in P\) there exist \(x \land y\) and \(x \lor y\),
then \(P\) is a lattice.

If for all \(S \subseteq P\) there exist \(\land S\) and \(\lor S\)
then \(P\) is a complete lattice.

All finite lattices are complete

Example of a lattice that is not complete: Integers \(\mathbb{Z}\)
- For any \(x, y \in \mathbb{Z}\), \(x \lor y = \max(x, y), x \land y = \min(x, y)\)
- But \(\lor \mathbb{Z}\) and \(\land \mathbb{Z}\) do not exist
- \(\mathbb{Z} \cup \{+\infty, -\infty\}\) is a complete lattice
Top and Bottom

Greatest element of P (if it exists) is top (\top)
Least element of P (if it exists) is bottom (\bot)
Connection Between \leq, \land, and \lor

The following 3 properties are equivalent:

- $x \leq y$
- $x \lor y = y$
- $x \land y = x$

Let's prove:

- $x \leq y$ implies $x \lor y = y$ and $x \land y = x$
- $x \lor y = y$ implies $x \leq y$
- $x \land y = x$ implies $x \leq y$

Then by transitivity, we can obtain

- $x \lor y = y$ implies $x \land y = x$
- $x \land y = x$ implies $x \lor y = y$
Connecting Lemma Proofs

Prove: $x \leq y$ implies $x \lor y = y$

- $x \leq y$ implies y is an upper bound of $\{x, y\}$.
- Any upper bound z of $\{x, y\}$ must satisfy $y \leq z$.
- So y is least upper bound of $\{x, y\}$ and $x \lor y = y$

Prove: $x \leq y$ implies $x \land y = x$

- $x \leq y$ implies x is a lower bound of $\{x, y\}$.
- Any lower bound z of $\{x, y\}$ must satisfy $z \leq x$.
- So x is greatest lower bound of $\{x, y\}$ and $x \land y = x$
Connecting Lemma Proofs

Prove: \(x \lor y = y \) implies \(x \leq y \)
 • \(y \) is an upper bound of \(\{x, y\} \) implies \(x \leq y \)

Prove: \(x \land y = x \) implies \(x \leq y \)
 • \(x \) is a lower bound of \(\{x, y\} \) implies \(x \leq y \)
Lattices as Algebraic Structures

We have defined \lor and \land in terms of \leq

We will now define \leq in terms of \lor and \land

- Start with \lor and \land as arbitrary algebraic operations that satisfy *associative, commutative, idempotence, and absorption* laws
- Will define \leq using \lor and \land
- Will show that \leq is a partial order

Intuitive concept of \lor and \land as information combination operators (or, and)
Algebraic Properties of Lattices

Assume arbitrary operations \lor and \land such that

- $(x \lor y) \lor z = x \lor (y \lor z)$ (associativity of \lor)
- $(x \land y) \land z = x \land (y \land z)$ (associativity of \land)
- $x \lor y = y \lor x$ (commutativity of \lor)
- $x \land y = y \land x$ (commutativity of \land)
- $x \lor x = x$ (idempotence of \lor)
- $x \land x = x$ (idempotence of \land)
- $x \lor (x \land y) = x$ (absorption of \lor over \land)
- $x \land (x \lor y) = x$ (absorption of \land over \lor)
Connection Between \land and \lor

$x \lor y = y$ if and only if $x \land y = x$

Proof of $x \lor y = y$ implies $x = x \land y$

$$x = x \land (x \lor y) \quad (\text{by absorption})$$
$$= x \land y \quad (\text{by assumption})$$

Proof of $x \land y = x$ implies $y = x \lor y$

$$y = y \lor (y \land x) \quad (\text{by absorption})$$
$$= y \lor (x \land y) \quad (\text{by commutativity})$$
$$= y \lor x \quad (\text{by assumption})$$
$$= x \lor y \quad (\text{by commutativity})$$
Properties of \leq

Define $x \leq y$ if $x \lor y = y$

Proof of transitive property. Must show that

$x \lor y = y$ and $y \lor z = z$ implies $x \lor z = z$

$x \lor z = x \lor (y \lor z)$ (by assumption)

$= (x \lor y) \lor z$ (by associativity)

$= y \lor z$ (by assumption)

$= z$ (by assumption)
Properties of \leq

Proof of asymmetry property. Must show that $x \lor y = y$ and $y \lor x = x$ implies $x = y$

\[
\begin{align*}
 x &= y \lor x \quad \text{(by assumption)} \\
 &= x \lor y \quad \text{(by commutativity)} \\
 &= y \quad \text{(by assumption)}
\end{align*}
\]

Proof of reflexivity property. Must show that $x \lor x = x$

\[
\begin{align*}
 x \lor x &= x \quad \text{(by idempotence)}
\end{align*}
\]
Properties of \leq

Induced operation \leq agrees with original definitions of \lor and \land, i.e.,

- $x \lor y = \text{sup}\{x, y\}$
- $x \land y = \text{inf}\{x, y\}$
Proof of $x \lor y = \sup \{x, y\}$

Consider any upper bound u for x and y.
Given $x \lor u = u$ and $y \lor u = u$, must show $x \lor y \leq u$, i.e., $(x \lor y) \lor u = u$

$$u = x \lor u \quad \text{(by assumption)}$$
$$= x \lor (y \lor u) \quad \text{(by assumption)}$$
$$= (x \lor y) \lor u \quad \text{(by associativity)}$$
Proof of $x \land y = \inf \{x, y\}$

• Consider any lower bound L for x and y.
• Given $x \land L = L$ and $y \land L = L$, must show $L \leq x \land y$, i.e., $(x \land y) \land L = L$

$L = x \land L$ (by assumption)

$= x \land (y \land L)$ (by assumption)

$= (x \land y) \land L$ (by associativity)
Chains

A set S is a chain if $\forall x, y \in S. y \leq x$ or $x \leq y$

P has no infinite chains if every chain in P is finite.

P satisfies the \textit{ascending chain condition} if for all sequences $x_1 \leq x_2 \leq \ldots$ there exists n such that $x_n = x_{n+1} = \ldots$
Application to Dataflow Analysis

Dataflow information will be lattice values

- **Transfer functions** operate on lattice values
- Solution algorithm will generate **increasing sequence of values** at each program point
- Ascending chain condition will ensure termination

We will use \vee to combine values at control-flow join points
Transfer Functions

Transfer function $f: \text{P} \rightarrow \text{P}$ is defined for each node in control flow graph

The function f models effect of the node on the program information
Transfer Functions

Each dataflow analysis problem has a set F of transfer functions $f: P \rightarrow P$. This set F contains:

- **Identity function** belongs to the set, $i \in F$
- F must be **closed under composition**:
 \[\forall f, g \in F. \text{ the function } h = \lambda x. f(g(x)) \in F \]
- Each $f \in F$ must be **monotone**:
 \[x \leq y \text{ implies } f(x) \leq f(y) \]
- Sometimes all $f \in F$ are **distributive**:
 \[f(x \lor y) = f(x) \lor f(y) \]
- Note that Distributivity implies monotonicity
Distributivity Implies Monotonicity

Proof.
Assume distributivity: \(f(x \lor y) = f(x) \lor f(y) \)

Must show: \(x \lor y = y \) implies \(f(x) \lor f(y) = f(y) \)

\[
f(y) = f(x \lor y) \quad \text{(by assumption)}
\]

\[
= f(x) \lor f(y) \quad \text{(by distributivity)}
\]
Putting the Pieces Together...
Forward Dataflow Analysis

Simulates execution of program forward with flow of control

For each node n, we have

- in_n – value at program point before n
- out_n – value at program point after n
- f_n – transfer function for n (given in_n, computes out_n)

Requires that solution satisfies

- $\forall n. \quad out_n = f_n(in_n)$
- $\forall n \neq n_0. \quad in_n = \lor \{ out_m . m \in \text{pred}(n) \}$
- $in_{n_0} = 1$, summarizes information at the start of program
Dataflow Equations

Compiler processes program to obtain a set of dataflow equations

\[
\begin{align*}
 \text{out}_n & := f_n(\text{in}_n) \\
 \text{in}_n & := \lor \{ \text{out}_m \ . \text{for each } m \text{ in } \text{pred}(n) \}
\end{align*}
\]

Conceptually separates analysis problem from program
Worklist Algorithm for Solving Forward Dataflow Equations

for each n do out\(_n\) := \(f_n(\perp)\)

\(in_{n_0} := I;\) out\(_{n_0} := f_{n_0}(I)\)
worklist := N - \{ n_0 \}

while worklist \(\neq \emptyset\) do
 remove a node n from worklist
 \(in_n := \lor \{ out_m : m \in \text{pred}(n) \}\)
 out\(_n\) := \(f_n(in_n)\)
 if out\(_n\) changed then
 worklist := worklist \cup \text{succ}(n)
Correctness Argument

Why does the result satisfy dataflow equations?

- Whenever it processes a node \(n \), algorithm sets \(\text{out}_n := f_n(\text{in}_n) \). Therefore, the algorithm ensures that \(\text{out}_n = f_n(\text{in}_n) \).

- Whenever \(\text{out}_m \) changes, it puts \(\text{succ}(m) \) on worklist. Consider any node \(n \in \text{succ}(m) \). It will eventually come off worklist and algorithm will set

 \[
 \text{in}_n := \lor \{ \text{out}_m \cdot m \in \text{pred}(n) \}
 \]

 to ensure that \(\text{in}_n = \lor \{ \text{out}_m \cdot m \in \text{pred}(n) \} \).

- So final solution will satisfy dataflow equations.

- Need also to ensure that the dataflow equalities correspond to the states in the program execution (this comes later!)
Termination Argument

Why does algorithm terminate?

Sequence of values taken on by IN_n or OUT_n is a chain. If values stop increasing, worklist empties and algorithm terminates.

If lattice has ascending chain property, algorithm terminates

• Algorithm terminates for finite lattices
• For lattices without ascending chain property, use widening operator
Widening Operators

Detect lattice values that may be part of infinitely ascending chain
Artificially raise value to least upper bound of chain

Example:

• Lattice is set of all subsets of integers
• E.g, it can collect possible values of the variables during the execution of program
• Widening operator might raise all sets of size n or greater to TOP (likely to be useful for loops)
Termination Argument (Details)

- For lattice \((L, \leq)\)
- Start: each node \(n \in CFG\) has an initial \(IN\) set, called \(IN_0[n]\)
- When \(F\) is monotone, for each \(n\), successive values of \(IN[n]\) form a non-decreasing sequence.
 - Any chain starting at \(x \in L\) has at most \(c_x\) elements
 - \(x = IN[n]\) can increase in value at most \(c_x\) times
 - Then \(C = \max_{n \in CFG} c_{IN[n]}\) is finite
- On every iteration, at least one \(IN\) set must increase in value
 - If loop executes \(N \times C\) times, all \(IN\) sets would be \(T\)
 - The algorithm terminates in \(O(N \times C)\) steps
Speed of Convergence

Loop Connectedness \(d(G) \): for a reducible CFG \(G \), it is the maximum number of back edges in any acyclic path in \(G \).

Rapid: A Data-flow framework \((L, \leq, F)\) is called \textbf{Rapid} if
\[
\forall f \in F, \forall x \in L . \quad x \leq f(x) \land f(\top)
\]

\textbf{Kam & Ullman, 1976: Data-flow Framework is Rapid}

- The depth-first version of the iterative algorithm halts in at most \(d(G) + 3 \) passes over the graph
- If the lattice \(L \) has \(\top \), at most \(d(G) + 2 \) passes are needed

\textbf{In practice:}

- \(d(G) < 3 \), so the algorithm makes less than 6 passes over the graph
- The rapid condition implies that the information around the loop stabilizes in 2 steps
Reaching Definitions Algorithm

(Reminder)

for all nodes n in N
 \(\text{OUT}[n] = \text{emptyset}; \) // \(\text{OUT}[n] = \text{GEN}[n]; \)
\(\text{IN}[\text{Entry}] = \text{emptyset}; \)
\(\text{OUT}[\text{Entry}] = \text{GEN}[\text{Entry}]; \)
\(\text{Changed} = N - \{ \text{Entry} \}; \) // \(N = \text{all nodes in graph} \)

while (\(\text{Changed} \neq \text{emptyset} \))
 choose a node \(n \) in \(\text{Changed} \);
 \(\text{Changed} = \text{Changed} - \{ n \}; \)

 \(\text{IN}[n] = \text{emptyset}; \)
 for all nodes \(p \) in \(\text{predecessors}(n) \)
 \(\text{IN}[n] = \text{IN}[n] \cup \text{OUT}[p]; \)

 \(\text{OUT}[n] = \text{GEN}[n] \cup (\text{IN}[n] - \text{KILL}[n]); \)

 if (\(\text{OUT}[n] \) changed)
 for all nodes \(s \) in \(\text{successors}(n) \)
 \(\text{Changed} = \text{Changed} \cup \{ s \}; \)
General Worklist Algorithm

(Reminder)

for each n do out_n := f_n(⊥)

in_{n_0} := I; out_{n_0} := f_{n_0}(I)
worklist := N - { n_0 }

while worklist ≠ ∅ do
 remove a node n from worklist
 in_n := ∨ { out_m . m in pred(n) }
 out_n := f_n(in_n)
 if out_n changed then
 worklist := worklist ∪ succ(n)
Reaching Definitions

for all nodes \(n \) in \(N \)
\[
\text{OUT}[n] = \text{emptyset};
\]
\[
\text{IN}[\text{Entry}] = \text{emptyset};
\]
\[
\text{OUT}[\text{Entry}] = \text{GEN}[\text{Entry}];
\]
\[
\text{Changed} = N - \{ \text{Entry} \};
\]

while (\text{Changed} \neq \text{emptyset})
 choose a node \(n \) in \text{Changed};
 \text{Changed} = \text{Changed} - \{ n \};

\[
\text{IN}[n] = \text{emptyset};
\]
for all nodes \(p \) in \text{predecessors}(n)
 \[
 \text{IN}[n] = \text{IN}[n] \cup \text{OUT}[p];
 \]
\[
\text{OUT}[n] = \text{GEN}[n] \cup (\text{IN}[n] - \text{KILL}[n]);
\]
if (\text{OUT}[n] changed)
 for all nodes \(s \) in \text{succ}(n)
 \[
 \text{Changed} = \text{Changed} \cup \{ s \};
 \]

General Worklist

for each \(n \) do \(\text{out}_n := f_n(\bot) \)

\[
\text{in}_{n_0} := I; \text{out}_{n_0} := f_{n_0}(I)
\]
\[
\text{worklist} := N - \{ n_0 \}
\]

while \text{worklist} \neq \emptyset do
 remove a node \(n \) from \text{worklist}
 \[
 \text{in}_n := \lor \{ \text{out}_m . m \in \text{pred}(n) \}
 \]
 \[
 \text{out}_n := f_n(\text{in}_n)
 \]
 if \(\text{out}_n \) changed then
 \[
 \text{worklist} := \text{worklist} \cup \text{succ}(n)
 \]
Reaching Definitions

P = powerset of set of all definitions in program (all subsets of set of definitions in program)
\(\vee = \bigcup \) (order is \(\subseteq \))
\(\perp = \emptyset \)
I = in_{n_0} = \perp
F = all functions f of the form f(x) = a \cup (x-b)
 • b is set of definitions that node kills
 • a is set of definitions that node generates

General pattern for many transfer functions
 • f(x) = GEN \cup (x-KILL)
Does Reaching Definitions Framework Satisfy Properties?

\(\subseteq \) satisfies conditions for \(\leq \)

- **Reflexivity:** \(x \subseteq x \)
- **Antisymmetry:** \(x \subseteq y \) and \(y \subseteq x \) implies \(y = x \)
- **Transitivity:** \(x \subseteq y \) and \(y \subseteq z \) implies \(x \subseteq z \)

\(F \) satisfies transfer function conditions

- **Identity:** \(\lambda x.\emptyset \cup (x - \emptyset) = \lambda x.x \in F \)
- **Distributivity:** Will show \(f(x \cup y) = f(x) \cup f(y) \)
 \[
 f(x) \cup f(y) = (a \cup (x - b)) \cup (a \cup (y - b))

 = a \cup (x - b) \cup (y - b) = a \cup ((x \cup y) - b)

 = f(x \cup y)
 \]
Does Reaching Definitions Framework Satisfy Properties?

What about composition of F?

Given $f_1(x) = a_1 \cup (x-b_1)$ and $f_2(x) = a_2 \cup (x-b_2)$ we must show $f_1(f_2(x))$ can be expressed as $a \cup (x - b)$

$$f_1(f_2(x)) = a_1 \cup ((a_2 \cup (x-b_2)) - b_1)$$

$$= a_1 \cup ((a_2 - b_1) \cup ((x-b_2) - b_1))$$

$$= (a_1 \cup (a_2 - b_1)) \cup ((x-b_2) - b_1))$$

$$= (a_1 \cup (a_2 - b_1)) \cup (x-(b_2 \cup b_1))$$

• Let $a = (a_1 \cup (a_2 - b_1))$ and $b = b_2 \cup b_1$
• Then $f_1(f_2(x)) = a \cup (x - b)$
Reaching Definitions is \textbf{Rapid}

\textit{Convergence Is Fast}

\[f(x) \geq x \land f(T) \]
Reaching Definitions is **Rapid**

Convergence Is Fast

\[
\begin{align*}
f(x) & \geq x \land f(T) \\
a_f \cup (x \cap b_f) & \geq x \land (a_f \cup (T \cap b_f)) \\
a_f \cup (x \cap b_f) & \geq x \cap (a_f \cup b_f) \\
a_f \cup (x \cap b_f) & \geq (x \cap a_f) \cup (x \cap b_f)
\end{align*}
\]
Reaching Definitions is **Rapid**

Convergence Is Fast

\[
\begin{align*}
 f(x) & \geq x \land f(\top) \\
 a_f \cup (x \cap b_f) & \geq x \cap (a_f \cup (\top \cap b_f)) \\
 a_f \cup (x \cap b_f) & \geq x \cap (a_f \cup b_f) \\
 a_f \cup (x \cap b_f) & \geq (x \cap a_f) \cup (x \cap b_f) \\
 a_f & \geq x \land a_f \\
 x \cap b_f & = x \cap b_f
\end{align*}
\]
General Result

All GEN/KILL transfer function frameworks satisfy the three properties:

- Identity
- Distributivity
- Composition

And all of them converge rapidly
Available Expressions

$P = \text{powerset of set of all expressions in program}$
(all subsets of set of expressions)

$\lor = \cap \ (\text{order is } \supseteq)$

$\perp = P$

$I = \text{in}_{n_0} = \emptyset$

$F = \text{all functions } f \text{ of the form } f(x) = a \cup (x-b)$
 • b is set of expressions that node kills
 • a is set of expressions that node generates

Another GEN/KILL analysis
Concept of Conservatism

Reaching definitions use ∪ as join

• Optimizations must take into account all definitions that reach along \textit{ANY} path

Available expressions use ∩ as join

• Optimization requires expression to be available along \textit{ALL} paths

Optimizations must \textit{conservatively} take all possible executions into account.
Backward Dataflow Analysis

• Simulates execution of program backward against the flow of control
• For each node \(n \), we have
 – \(\text{in}_n \) – value at program point before \(n \)
 – \(\text{out}_n \) – value at program point after \(n \)
 – \(f_n \) – transfer function for \(n \) (given \(\text{out}_n \), computes \(\text{in}_n \))
• Require that solution satisfies
 – \(\forall n. \text{in}_n = f_n(\text{out}_n) \)
 – \(\forall n \notin N_{\text{final}}. \text{out}_n = \lor \{ \text{in}_m . m \in \text{succ}(n) \} \)
 – \(\forall n \in N_{\text{final}} = \text{out}_n = O \)
 – Where \(O \) summarizes information at end of program
Worklist Algorithm for Solving Backward Dataflow Equations

for each \(n \) do \(\text{in}_n := f_n(\bot) \)

for each \(n \in N_{\text{final}} \) do \(\text{out}_n := \bot; \text{in}_n := f_n(\bot) \)

worklist := \(N - N_{\text{final}} \)

while worklist \(\neq \emptyset \) do

remove a node \(n \) from worklist

\(\text{out}_n := \lor \{ \text{in}_m \mid m \in \text{succ}(n) \} \)

\(\text{in}_n := f_n(\text{out}_n) \)

if \(\text{in}_n \) changed then

worklist := worklist \(\cup \) pred(\(n \))
Live Variables

\[P = \text{powerset of set of all variables in program} \]
\[(\text{all subsets of set of variables in program}) \]
\[\lor = \cup \ (\text{order is } \subseteq) \]
\[\perp = \emptyset \]
\[\mathcal{O} = \emptyset \]

\[F = \text{all functions } f \text{ of the form } f(x) = a \cup (x-b) \]
 \begin{itemize}
 \item b is set of variables that node kills
 \item a is set of variables that node reads
 \end{itemize}
Meaning of Dataflow Results

Concept of program state s for control-flow graphs

- **Program point** n where execution is located
 (n is node that will execute next)
- Values of variables in program

Each execution generates a trajectory of states:

- $s_0; s_1; ...; s_k$, where each $s_i \in S$
- s_{i+1} generated from s_i by executing basic block to
 1. Update variable values
 2. Obtain new program point n
Relating States to Analysis Result

- Meaning of analysis results is given by an abstraction function \(AF:ST \rightarrow P \)

- Correctness condition: require that for all states \(s \)

\[
AF(s) \leq in_n
\]

where \(n \) is the next statement to execute in state \(s \)
Sign Analysis Example

Sign analysis - compute sign of each variable v

Base Lattice: $P = \text{flat lattice on } \{-,0,+\}$

Actual lattice records a value for each variable

- Example element: $[a \rightarrow +, b \rightarrow 0, c \rightarrow -]$
Interpretation of Lattice Values

If value of v in lattice is:
- \perp: no information about the sign of v
- $-$: variable v is negative
- 0: variable v is 0
- $+$: variable v is positive
- \top: v may be positive or negative or zero

What is abstraction function AF?
- $AF([v_1, \ldots, v_n]) = [\text{sign}(v_1), \ldots, \text{sign}(v_n)]$

- $\text{sign}(x) = \begin{cases}
0 & \text{if } v = 0 \\
+ & \text{if } v > 0 \\
- & \text{if } v < 0
\end{cases}$
Transfer Functions

If \(n \) of the form \(v = c \)
- \(f_n(x) = x[v\rightarrow+] \) if \(c \) is positive
- \(f_n(x) = x[v\rightarrow0] \) if \(c \) is 0
- \(f_n(x) = x[v\rightarrow-] \) if \(c \) is negative

If \(n \) of the form \(v_1 = v_2 \times v_3 \)
- \(f_n(x) = x[v_1\rightarrow x[v_2] \otimes x[v_3]] \)

\(\text{Init} = \text{TOP} \) (uninitialized variables may have any sign)
Operation \otimes on Lattice

<table>
<thead>
<tr>
<th>\otimes</th>
<th>\bot</th>
<th>$-$</th>
<th>0</th>
<th>$+$</th>
<th>\top</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bot</td>
<td>\bot</td>
<td>\bot</td>
<td>0</td>
<td>\bot</td>
<td>\bot</td>
</tr>
<tr>
<td>$-$</td>
<td>\bot</td>
<td>$+$</td>
<td>0</td>
<td>$-$</td>
<td>\top</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$+$</td>
<td>\bot</td>
<td>$-$</td>
<td>0</td>
<td>$+$</td>
<td>\top</td>
</tr>
<tr>
<td>\top</td>
<td>\bot</td>
<td>\top</td>
<td>0</td>
<td>\top</td>
<td>\top</td>
</tr>
</tbody>
</table>
Sign Analysis Example

\[a = 1 \]

\[b = -1 \quad b = 1 \]

\[c = a \times b \]
Imprecision In Example

Abstraction Imprecision:

\[[a \rightarrow 1]\] abstracted as \([a \rightarrow +]\)

\[c = a \times b\]

Control Flow Imprecision:

\[[b \rightarrow \text{TOP}]\] summarizes results of all executions.

\((\text{In any concrete execution state } s, \text{AF}(s)[b] \neq \text{TOP})\)
General Sources of Imprecision

Abstraction Imprecision
- Concrete values (integers) abstracted as lattice values (-, 0, and +)
- Lattice values less precise than execution values
- Abstraction function throws away information

Control Flow Imprecision
- One lattice value for all possible control flow paths
- Analysis result has a single lattice value to summarize results of multiple concrete executions
- Join operation \lor moves up in lattice to combine values from different execution paths
- Typically if $x \leq y$, then x is more precise than y
Why To Allow Imprecision?

Make analysis tractable

Unbounded sets of values in execution
 • Typically abstracted by finite set of lattice values

Execution may visit unbounded set of states
 • Abstracted by computing joins of different paths
Correctness of Solution

Correctness condition:

- $\forall v . \ AF(s)[v] \leq in_n[v]$ (n is node, s is state)
- Reflects possibility of imprecision

Proof:

- By the induction on the structure of the computation that produces s
What solution would be ideal for a forward dataflow problem?

Consider a path $p = n_0, n_1, \ldots, n_k, n$ to a node n (note that for all i, $n_i \in \text{pred}(n_{i+1})$)

The solution must take this path into account:

$$f_p(\bot) = (f_{nk}(f_{nk-1}(\ldots f_{n1}(f_{n0}(\bot)) \ldots)) \leq \text{in}_n$$

So the solution must have the property that

$$\lor\{f_p(\bot) . p \text{ is a path to } n\} \leq \text{in}_n$$

and ideally

$$\lor\{f_p(\bot) . p \text{ is a path to } n\} = \text{in}_n$$

* Name exists for historical reasons; this is really a join
Soundness Proof of Analysis Algorithm

Property to prove: For all paths \(p \) to \(n \), \(f_p(\bot) \leq \text{in}_n \)

- Proof is by induction on length of \(p \)
- Uses monotonicity of transfer function

Connections between MOP and worklist solution:

- [Kildall, 1973] The **iterative worklist algorithm**: (1) converges and (2) computes a MFP (maximum fixed point) solution of the set of equations using the worklist algorithm

- [Kildall, 1973] **If \(F \) is distributive**, \(\text{MOP} = \text{MFP} \)

 \[\lor\{f_p(\bot) . p \text{ is a path to } n\} = \text{in}_n \]

- [Kam & Ullman, 1977] **If \(F \) is monotone**, \(\text{MOP} \leq \text{MFP} \)
Lack of Distributivity Example

Constant Calculator: Flat Lattice on Integers

```
TOP
...
-2
-1
0
1
2
...
BOT
```

Actual lattice records a value for each variable

- Example element: [a→3, b→2, c→5]

Transfer function:

- If n of the form v = c, then \(f_n(x) = x[v \rightarrow c] \)
- If n of the form \(v_1 = v_2 + v_3 \), \(f_n(x) = x[v_1 \rightarrow x[v_2] + x[v_3]] \)
Lack of Distributivity Anomaly

\[
\begin{align*}
 a &= 2 & a &= 3 \\
 b &= 3 & b &= 2 \\
\end{align*}
\]

\[
[a \rightarrow 2, b \rightarrow 3] \quad [a \rightarrow 3, b \rightarrow 2]
\]

\[
[a \rightarrow \text{TOP}, b \rightarrow \text{TOP}] \quad \text{Lack of Distributivity Imprecision:} \quad [a \rightarrow \text{TOP}, b \rightarrow \text{TOP}, c \rightarrow 5] \text{ more precise}
\]

\[
[a \rightarrow \text{TOP}, b \rightarrow \text{TOP}, c \rightarrow \text{TOP}]
\]

What is the meet over all paths solution?
Make Analysis Distributive

Keep combinations of values on different paths

\[
\begin{align*}
\text{a} &= 2 \\
\text{b} &= 3 \\
\{[\text{a} \rightarrow 2, \text{b} \rightarrow 3]\}
\end{align*}
\]

\[
\begin{align*}
\text{a} &= 3 \\
\text{b} &= 2 \\
\{[\text{a} \rightarrow 3, \text{b} \rightarrow 2]\}
\end{align*}
\]

\[
\begin{align*}
\text{c} &= \text{a} + \text{b} \\
\{[\text{a} \rightarrow 2, \text{b} \rightarrow 3], [\text{a} \rightarrow 3, \text{b} \rightarrow 2]\}
\end{align*}
\]

\[
\begin{align*}
\{[\text{a} \rightarrow 2, \text{b} \rightarrow 3, \text{c} \rightarrow 5], [\text{a} \rightarrow 3, \text{b} \rightarrow 2, \text{c} \rightarrow 5]\}
\end{align*}
\]
Discussion of the Solution

It basically simulates all combinations of values in all executions

- Exponential blowup
- Nontermination because of infinite ascending chains

Terminating solution:

- Use widening operator to eliminate blowup (can make it work at granularity of variables)
- However, loses precision in many cases
- Not trivial to select optimal point to do widening
III Precise Sign Analysis

In this question we will build a more precise sign analysis. The purpose of this analysis is to enable the compiler to perform safety checks for calls to the $\log(x)$ function.

The analysis will analyze programs with one variable x. The language is defined as a sequence of the statements of this form:

$$S ::= x = c$$

$$\quad | x = x + c$$

$$\quad | \text{if} \ (x == c) \ \{S_1\} \ \text{else} \ \{S_2\};$$

In addition, the very last statement in the program is a call to the $\log(x)$ function. In the previous definition, each c is a (signed) integer constant.

To keep track of the sign of variable x, we will use the lattice $(\mathcal{P} \ (-, 0, +), \subseteq)$. For example, if x has a non-negative value, then the analysis will represent this as a set $\{0, +\}$. If x has a positive value, the analysis will represent this as a set $\{+\}$.
Look Forward

We will return to these problems later in the semester

- **Interprocedural analysis**: how to handle function calls and global variables in the analysis?
- **Abstract interpretation**: how to automate analysis with infinite chains and rich abstract domains?

Additional readings:

- Short comparison: Wolfgang Woegerer. A Survey of Static Program Analysis Techniques (available online)