## CS 526

Advanced

## Compiler

Construction
http://misailo.cs.Illinois.edu/courses/cs526

## STATIC SINGLE ASSIGNMENT

The slides adapted fromVikram Adve

## References

Cytron, Ferrante, Rosen, Wegman, and Zadeck, "Efficiently Computing Static Single Assignment Form and the Control Dependence Graph," ACM Trans. on Programming Languages and Systems, 13(4), Oct. I99I, pp. 45I-490.

Muchnick, Section 8.II (partially covered).
Engineering a Compiler, Section 5.4.2 (partially covered).

## Definition of $\varphi$ Function

In a basic block B with N predecessors, $\mathrm{PI}, \mathrm{P} 2, \ldots, \mathrm{PN}$,

$$
X=\varphi(\mathrm{VI}, \mathrm{~V} 2, \ldots, \mathrm{VN})
$$

assigns $\mathrm{X}=\mathrm{Vi}$ if control enters block B from $\mathrm{Pi}, \mathrm{I} \leq \mathrm{i} \leq \mathrm{N}$

Properties of $\varphi$-functions:

- $\varphi$ is not an executable operation.
- $\varphi$ has exactly as many arguments as the number of incoming basic block edges
- Think about the argument Vi as being evaluated on CFG edge from predecessor Pi to B


## Which Variables to Convert?

Convert all variables to SSA form, except ...
Arrays: Array elements do not have an explicit name (although note ArraySSA)
Variables that may have aliases: do not have a unique name
Volatile variables: can be modified "unexpectedly"
E.g., In LLVM, only scalar variables in virtual registers are in SSA form.

## LLVM: Mem2reg

-mem2reg: Promote Memory to Register
"This file promotes memory references to be register references. It promotes alloca instructions which only have loads and stores as uses. An alloca is transformed by using dominator frontiers to place phi nodes, then traversing the function in depth-first order to rewrite loads and stores as appropriate. This is just the standard SSA construction algorithm to construct "pruned" SSA form."

```
int f(int x) {
    int y = x + 1;
    return y
}
```



## No optimizations

```
%6 = alloca i32, align 4
%7 = load i32, i32* %0, align 4
%8 = add nsw i32 1, %7
store i32 %8, i32* %6, align 4
%9 = load i32, i32* %6, align 4
ret i32 %9
```


## More Definitions

## Use of a variable: $A$ use of variable $X$ is a reference that

 may read the value stored in the location named $X$.Definition of a variable:A definition (def) of a variable $X$ is a reference that may store a value into the location named X. Examples.Assignment; input I/O

Ambiguity of definitions:
Unambiguous definition (must): guaranteed to store to $X$
Ambiguous definition (may): may store to $X$
Q. Where does ambiguity come from?

We define ambiguous/unambiguous use similarly.

## Def-Use Chains

- Def-use chain:The set of uses reached by a particular definition.
- Use-def chain:The set of definitions reaching a particular use


## Definition of SSA Form

A program is in SSA form if:

- each variable is assigned a value in exactly one statement
- each use of a variable is dominated by the definition


## Advantages of SSA Form

## Makes def-use and use-def chains explicit:

These chains are foundation of many dataflow optimizations

- We will see some soon!

Compact, flow-sensitive* def-use information

- fewer def-use edges per variable: one per CFG edge
* Takes the order of statements into account


## Advantages of SSA Form (cont.)

No anti- and output dependences on SSA variables

- Direct dependence: $A=\|; B=A+\|$
- Antidependence: $A=1 ; B=A+1 ; A=2$

Cannot reoder

- Output dependence: $A=\| ; A=2 ; B=A+1$ ]

Explicit merging of values $(\varphi)$ : key additional information

Can serve as IR for code transformations (see LLVM)

## Constructing SSA Form

## Simple algorithm

I. insert $\varphi$-functions for every variable at every join
2. solve reaching definitions
3. rename each use to the def that reaches it (unique)

What's wrong with this approach?
I. too many $\varphi$-functions (precision)
2. too many $\varphi$-functions (space)
3. too many $\varphi$-functions (time)

## Where do we place $\varphi$-functions?

$$
\begin{aligned}
& V=\ldots ; U=\ldots ; W=\ldots ; \\
& \text { if }(\ldots) \text { then }\{ \\
& V=\ldots ; \\
& \text { if }(\ldots)\{ \\
& U=V+1 ; \\
& \} \text { else }\{ \\
& U=V+2 ; \\
& \} \\
& \\
& \text { U } \quad \begin{array}{l}
\text { U }=U+1 ;
\end{array}
\end{aligned}
$$

## Where do we place $\varphi$-functions?

$$
\begin{aligned}
& V 0=\ldots ; U 0=\ldots ; W 0=\ldots ; \\
& \text { if (...) then \{ } \\
& \text { V1 = ...; } \\
& \text { if (...) \{ } \\
& \mathrm{U} 1=\mathrm{V} 1+1 ; \\
& \text { \} else \{ } \\
& \mathrm{U} 2=\mathrm{V} 1+2 \text {; } \\
& \text { \} } \\
& V_{2}=\varphi(V 1, V 1) ; U 3=\varphi(\mathrm{U} 1, \mathrm{U} 2) ; \mathrm{W} 1=\frac{q}{}(\mathrm{W0}, \mathrm{~W} 0) \\
& \mathrm{W} 1=\mathrm{U} 3+1 \text {; } \\
& \text { \} } \\
& \mathrm{V} 3=\varphi(\mathrm{V} 0, \mathrm{~V} 1) ; \mathrm{U} 4=\varphi(\mathrm{U} 0, \mathrm{U} 3) ; \mathrm{W} 2=\varphi(\mathrm{W} 0, \mathrm{~W} 1)
\end{aligned}
$$

## Intuition for SSA Construction

 Informal ConditionsIf a block $X$ contains an assignment to a variable $V$, then a $\varphi$-function must be inserted in each block $Z$ such that:
I. there is a non-empty path between $X$ and $Z$,
2. there is a path from the entry block (s) to $Z$ that does not go through $X$,
3. $Z$ is the first node on the path from $X$ that satisfies point 2.

## Intuition for SSA Construction

 Informal ConditionsIf block $X$ contains an assignment to a variable $V$, then a $\varphi$-function must be inserted in each block $Z$ such that:
I. there is a non-empty path between $X$ and $Z$, and the value of $V$ computed in $X$ reaches $Z$
2. there is a path from the entry block (s) to $Z$ that does not go through $X$
there is a path that does not go through $X$, so some other value of $V$ reaches $Z$ along that path(ignore bugs due to uses of uninitialized variables). So, two values must be merged at $X$ with a $\varphi$
3. $Z$ is the first node on the path from $X$ to $Z$ that satisfies point 2
the $\varphi$ for the value coming from $X$ is placed in $Z$ and not in some earlier node on the path

## Intuition for SSA Construction

 Informal Conditions
## Iterating the Placement Conditions:

- After a $\varphi$ is inserted at $Z$, the above process must be repeated for $Z$ because the $\varphi$ is effectively a new definition of V .
- For each block $X$ and variable $V$, there must be at most one $\varphi$ for $V$ in $X$.
This means that the above iterative process can be done with a single worklist of nodes for each variable V , initialized to handle all original assignment nodes $X$ simultaneously.


## Minimal SSA

A program is in SSA form if:

- each variable is assigned a value in exactly one statement
- each use of a variable is dominated by the definition i.e., the use can refer to a unique name.

Minimal SSA: As few as possible $\varphi$-functions,
Pruned SSA: As few as possible $\varphi$-functions and no dead $\varphi$-functions (i.e., the defined variable is used later)

- One needs to compute liveness information
- More precise, but requires additional time


## SSA Construction Algorithm

## Steps:

I. Compute the dominance frontiers*
2. Insert $\varphi$-functions
3. Rename the variables

Thm. Any program can be put into minimal SSA form using the previous algorithm. [Reeer to the paper for proof]

## Dominance in Flow Graphs (review)

Let $\mathrm{d}, \mathrm{dl}, \mathrm{d} 2, \mathrm{~d} 3$, n be nodes in G .
d dominates n ("d dom n") iff every path in $G$ from s to n contains d
$d$ properly dominates $n$ ("d pdom $n$ ") if $d$ dominates $n$ and $d \neq n$
$d$ is the immediate dominator of $n$ ("d idom $n$ ") if $d$ is the last proper dominator on any path from initial node to $n$,

DOM(x) denotes the set of dominators of $x$,

Dominator tree*: the children of each node $d$ are the nodes $n$ such that "d idom $n$ " (d immediately dominates $n$ )

## Dominance Frontier

The dominance frontier of node $X$ is the set of nodes $Y$ such that $X$ dominates a predecessor of Y , but X does not properly dominate $\mathrm{Y}^{*}$
$\mathbf{D F}(\mathbf{X})=\{Y \mid \exists P \in \operatorname{Pred}(Y): X \operatorname{dom} P$ and not $(X$ pdom $Y)\}$
We can split $\mathbf{D F}(\mathbf{X})$ in two groups of sets:

$$
D F_{\text {local }}(X) \equiv\{Y \in \operatorname{Succ}(X) \mid \text { not } X \text { idom } Y\}
$$

$D F_{\text {up }}(Z) \equiv\{Y \in \operatorname{DF}(Z) \mid \exists W$. $W$ idom $Z$ and not $W$ pdom $Y\}$
Then:

$$
\mathrm{DF}(\mathrm{X})=\mathrm{DF}_{\text {local }}(\mathrm{X}) \cup \bigcup_{Z \in \operatorname{Children}(X)} \mathrm{DF}_{\mathrm{up}}(\mathrm{Z})
$$

* child, parent, ancestor, and descendant always refer to the dominator tree. predecessor, successor, and path always refer to CFG


## Dominance Frontier Algorithm

for each $X$ in a bottom-up traversal of the dominator tree (visit the node $X$ in the tree after visiting its children):

$$
\mathrm{DF}(\mathrm{X}) \leftarrow \emptyset
$$

for each $Y \in \operatorname{succ}(X) / *$ local*/
if not $X$ idom $Y$ then

$$
\mathrm{DF}(\mathrm{X}) \leftarrow \mathrm{DF}(\mathrm{X}) \cup\{\mathrm{Y}\}
$$

for each $Z \in$ children $(X) / * u p *$ for each $Y \in \operatorname{DF}(Z)$
if not $X$ idom $Y$ then $\mathrm{DF}(\mathrm{X}) \leftarrow \mathrm{DF}(\mathrm{X}) \cup\{\mathrm{Y}\}$

## Dominance and LLVM

## LLVM

mainline
Main Page
Related Pages
File Members

## Dominators.h

Go to the documentation of this file.


## DominanceFrontier.h

## Go to the documentation of this file.

```
00001 //==- 1lvm/Analysis/DominanceFrontier.h - Dominator Frontiers --*- C++ -*-===//
000003 // The LLVM Compiler Infrastructure
00004 //
The LLVM Compiler Infrastructure
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //=
00009 //
00011 // dominance frontier for anction
00012 //
00013 // This should be considered deprecated, don't add any more uses of this data
00014 // structure.
00015 //
00016
00017
00018 \#ifndef LLVM_ANALYSIS_DOMINANCEFRONTIER
00019 \#define LLVM_ANALYSIS_DOMINANCEFRONTIER_H
00020
00021 \#include "llvm/IR/Dominators.h"
00022 \#include <map>
00022 \#include <map>
00023
00025 namespace llvm \{
00026
\(00027 / /==\)
```



```
00029 /// DominanceFrontierBase - Common base class for computing forward and inverse
00029 /// dominance frontiers for a function.
00030 //
00031 template <class BlockT>
00032 class DominanceFrontion
00034 typedef std::set<BlockT *> DomSetType;
p0035 typedef std::map<BlockT *, DomSetType> // Dom set for a bb 00036
00037 protected:
00038 typedef GraphTraits<BlockT *> BlockTraits;
00039
```


## SSA Construction Algorithm

## Steps:

I. Compute the dominance frontiers
2. Insert $\varphi$-functions
3. Rename the variables

## Insert $\boldsymbol{\varphi}$-functions

for each variable V
HasAlready $\leftarrow \emptyset$
EverOnWorkList $\leftarrow \emptyset$
WorkList $\leftarrow \emptyset$
for each node $X$ that may modify $V$
EverOnWorkList $\leftarrow$ EverOnWorkList $\bigcup\{X\}$
WorkList $\leftarrow$ WorkList $\bigcup\{X\}$

## Insert $\boldsymbol{\varphi}$-functions

```
for each variable V
    HasAlready }\leftarrow
    EverOnWorkList }\leftarrow
WorkList }\leftarrow
for each node X that may modify V
    EverOnWorkList \leftarrow EverOnWorkList \{X}
    WorkList }\leftarrow\mathrm{ WorkList U{X}
while WorkList }=
        remove X from WorkList
        for each Y }\inDF(X
    if Y & HasAlready then
        insert a \phi-node for V at Y
        HasAlready }\leftarrow HasAlready \{Y
        if Y & EverOnWorkList then
            EverOnWorkList \leftarrow EverOnWorkList \ {Y}
            WorkList }\leftarrow\mathrm{ WorkList \ {Y}
```


## Renaming Variables*

Renaming definitions is easy - just keep the counter for each variable.

To rename each use of V :
(a) Use in non- $\boldsymbol{\varphi}$-functions: Refer to immediately dominating definition of $V(+\varphi$ nodes inserted for $V)$.
preorder on Dominator Tree!
(b) Use as a $\varphi$-function operand: Refer to the definition that immediately dominates the node with the incoming
CFG edge (not the node with the $\varphi$-function)
rename the $\varphi$-operand when processing the predecessor basic block!

* For the full algorithm refer to the paper

$$
j=1
$$

$$
A: j=1 ;
$$

$$
\text { while }(\mathrm{j}<\mathrm{X})
$$

$$
++j ;
$$

S:

$$
N=j ;
$$

j = j+1;
if ( $\mathbf{j}<\mathrm{X}$ ) goto S;

E:
$N=j ;$
$j=1 ;$
while ( $\mathrm{j}<\mathrm{X}$ ) ++j;
$N=j ;$

A: j0 = 1;

B: if (j0 >= X) goto E;

S: $\mathbf{j 1}=\varphi(j 0, j 2)$
j2 = j1+1;
if ( $\mathbf{j} 2<X$ ) goto $S$;
$E: j 3=\varphi(j 0, j 2)$
$N=j 3 ;$

## Translating Out of SSA Form

## Overview:

I. Dead-code elimination (prune dead $\varphi s$ )
2. Replace $\varphi$-functions with copies in predecessors
3. Register allocation with copy coalescing


## Control Dependence

Def. Postdomination: node $p$ postdominates a node $d$ if all paths to the exit node of the graph starting at $d$ must go through $p$

Def. In a CFG, node $Y$ is control-dependent on node B if

- There is a non-empty path $\mathrm{NO}=\mathrm{B}, \mathrm{NI}, \mathrm{N} 2, \ldots, \mathrm{Nk}=\mathrm{Y}$ such that Y postdominates $\mathrm{NI} \ldots \mathrm{Nk}$, and
- $Y$ does not strictly postdominate $B$

Def.The Reverse Control Flow Graph (RCFG) of a CFG has the same nodes as CFG and has edge $Y \rightarrow X$ if $X \rightarrow Y$ is an edge in CFG.

- $\quad p$ is a postdominator of $d$ iff $p$ dominates $d$ in the RCFG.


## Computing Control Dependence

Key observation: Node $Y$ is control-dependent on $B$ iff $B \in \operatorname{DF}(Y)$ in RCFG.

## Algorithm:

I. Build RCFG
2. Build dominator tree for RCFG
3. Compute dominance frontiers for RCFG
4. Compute $C D(B)=\{Y \mid B \in D F(Y)\}$.
$C D(B)$ gives the nodes that are control-dependent on $B$.

## Summary

## Complexity:

The conversion to SSA form is done in three steps:
(1) The dominance frontier mapping is constructed from the control flow graph $C F G$ (Section 4.2). Let $C F G$ have $N$ nodes and $E$ edges. Let $D F$ be the mapping from nodes to their dominance frontiers. The time to compute the dominator tree and then the dominance frontiers in $C F G$ is $O\left(E+\sum_{X}|D F(X)|\right)$.
(2) Using the dominance frontiers, the locations of the $\phi$-functions for each variable in the original program are determined (Section 5.1). Let $A_{t o t}$ be the total number of assignments to variables in the resulting program, where each ordinary assignment statement $L H S \leftarrow R H S$ contributes the length of the tuple LHS to $A_{\text {tot }}$, and each $\phi$-function contributes 1 to $A_{\text {tot }}$. Placing $\phi$-functions contributes $O\left(A_{\text {tot }} \times \operatorname{aurg} D F\right)$ to the overall time, where $a v r g D F$ is the weighted average (7) of the sizes $|D F(X)|$.
(3) The variables are renamed (Section 5.2). Let $M_{t o t}$ be the total number of mentions of variables in the resulting program. Renaming contributes $O\left(M_{t o t}\right)$ to the overall time.

## Follow up works:

- A linear time algorithm for placing phi-nodes (POPL 1995) https://dl.acm.org/citation.cfm?id=199464
- Algorithms for computing the static single assignment form (JACM 2003) Further reading:
- Tiger Book, Chapter 19
- On History: $\underline{\text { http: } / / c i t i 2 . r i c e . e d u / W S 07 / K e n n e t h Z a d e c k . p d f ~}$

