
CS 526

Advanced

Compiler

Construction
http://misailo.cs.Illinois.edu/courses/cs526

http://misailo.web.engr.illinois.edu/courses/cs526

STATIC SINGLE ASSIGNMENT

The slides adapted from Vikram Adve

References

Cytron, Ferrante, Rosen, Wegman, and Zadeck,

“Efficiently Computing Static Single Assignment
Form and the Control Dependence Graph,”

ACM Trans. on Programming Languages and Systems,
13(4), Oct. 1991, pp. 451–490.

Muchnick, Section 8.11 (partially covered).

Engineering a Compiler, Section 5.4.2 (partially
covered).

Definition of φ Function

In a basic block B with N predecessors, P1, P2, . . . , PN,

X = φ(V1, V2, . . . , VN)

assigns X = Vi if control enters block B from Pi , 1 ≤ i ≤ N

Properties of φ-functions:

• φ is not an executable operation.

• φ has exactly as many arguments as the number of
incoming basic block edges

• Think about the argument Vi as being evaluated on CFG
edge from predecessor Pi to B

Which Variables to Convert?

Convert all variables to SSA form, except . . .

Arrays: Array elements do not have an explicit name

(although note ArraySSA)

Variables that may have aliases: do not have a

unique name

Volatile variables: can be modified “unexpectedly”

E.g., In LLVM, only scalar variables in virtual registers

are in SSA form.

LLVM: Mem2reg

-mem2reg: Promote Memory to Register

“This file promotes memory references to be register references. It promotes

alloca instructions which only have loads and stores as uses. An alloca is

transformed by using dominator frontiers to place phi nodes, then traversing the

function in depth-first order to rewrite loads and stores as appropriate. This is

just the standard SSA construction algorithm to construct “pruned” SSA form.”

...
%6 = alloca i32, align 4
%7 = load i32, i32* %0, align 4
%8 = add nsw i32 1, %7
store i32 %8, i32* %6, align 4
%9 = load i32, i32* %6, align 4
ret i32 %9

%3 = add nsw i32 %0, 1
ret i32 %3

int f(int x) {
int y = x + 1;
return y

}

No optimizations

After mem2reg

More Definitions

Use of a variable: A use of variable X is a reference that
may read the value stored in the location named X.

Definition of a variable: A definition (def) of a variable X
is a reference that may store a value into the location
named X. Examples: Assignment; input I/O

Ambiguity of definitions:

Unambiguous definition (must): guaranteed to store to X

Ambiguous definition (may): may store to X

Q. Where does ambiguity come from?

We define ambiguous/unambiguous use similarly.

Def-Use Chains

• Def-use chain: The set of uses reached by a

particular definition.

• Use-def chain: The set of definitions reaching

a particular use

Definition of SSA Form

A program is in SSA form if:

• each variable is assigned a value in exactly one

statement

• each use of a variable is dominated by the

definition

Advantages of SSA Form

Makes def-use and use-def chains explicit:

These chains are foundation of many dataflow optimizations

• We will see some soon!

Compact, flow-sensitive* def-use information

• fewer def-use edges per variable: one per CFG edge

* Takes the order of statements into account

Advantages of SSA Form (cont.)

No anti- and output dependences on SSA variables

• Direct dependence: A=1; B=A+1

• Antidependence: A=1; B=A+1; A=2

• Output dependence: A=1; A=2; B=A+1

Explicit merging of values (φ): key additional

information

Can serve as IR for code transformations (see LLVM)

Cannot

reoder

Constructing SSA Form

Simple algorithm

1. insert φ-functions for every variable at every join

2. solve reaching definitions

3. rename each use to the def that reaches it (unique)

What’s wrong with this approach?

1. too many φ-functions (precision)

2. too many φ-functions (space)

3. too many φ-functions (time)

Where do we place φ-functions?

V=...; U=...; W=...;
if (...) then {

V = ...;
if (...) {

U = V + 1;
} else {

U = V + 2;
}

W = U + 1;
}

• For V?

• For U?

• For W?

Where do we place φ-functions?

V0=...; U0=...; W0=...;
if (...) then {

V1 = ...;
if (...) {

U1 = V1 + 1;
} else {

U2 = V1 + 2;
}
V2=(V1, V1);U3=(U1, U2);W1=(W0, W0)
W1 = U3 + 1;

}
V3=(V0, V1); U4=(U0, U3); W2=(W0, W1)

• For V?

• For U?

• For W?

Intuition for SSA Construction
Informal Conditions

If a block X contains an assignment to a variable V, then a

φ-function must be inserted in each block Z such that:

1. there is a non-empty path between X and Z,

2. there is a path from the entry block (s) to Z that

does not go through X,

3. Z is the first node on the path from X that satisfies

point 2.

Intuition for SSA Construction
Informal Conditions

If block X contains an assignment to a variable V, then a
φ-function must be inserted in each block Z such that:

1. there is a non-empty path between X and Z, and

the value of V computed in X reaches Z

2. there is a path from the entry block (s) to Z that does not
go through X

there is a path that does not go through X, so some other value of
V reaches Z along that path(ignore bugs due to uses of uninitialized
variables). So, two values must be merged at X with a φ

3. Z is the first node on the path from X to Z that satisfies
point 2

the φ for the value coming from X is placed in Z and not in
some earlier node on the path

Intuition for SSA Construction
Informal Conditions

Iterating the Placement Conditions:

• After a φ is inserted at Z, the above process must
be repeated for Z because the φ is effectively a new
definition of V.

• For each block X and variable V, there must be at
most one φ for V in X.

This means that the above iterative process can be
done with a single worklist of nodes for each variable V,
initialized to handle all original assignment nodes X
simultaneously.

Minimal SSA

A program is in SSA form if:

• each variable is assigned a value in exactly one
statement

• each use of a variable is dominated by the definition
i.e., the use can refer to a unique name.

Minimal SSA: As few as possible φ-functions,

Pruned SSA: As few as possible φ-functions and no dead
φ-functions (i.e., the defined variable is used later)

• One needs to compute liveness information

• More precise, but requires additional time

SSA Construction Algorithm

Steps:

1. Compute the dominance frontiers*

2. Insert φ-functions

3. Rename the variables

Thm. Any program can be put into minimal SSA
form using the previous algorithm. [Refer to the paper for proof]

Dominance in Flow Graphs (review)

Let d, d1, d2, d3, n be nodes in G.

d dominates n (“d dom n”) iff every path in G from s to n contains d

d properly dominates n (“d pdom n”) if d dominates n and d ≠ n

d is the immediate dominator of n (“d idom n”)

if d is the last proper dominator on any path from initial node to n,

DOM(x) denotes the set of dominators of x,

Dominator tree*: the children of each node d are the nodes n such

that “d idom n” (d immediately dominates n)

Dominance Frontier

The dominance frontier of node X is the set of nodes Y such that X dominates

a predecessor of Y, but X does not properly dominate Y *

DF(X) = {Y | ∃ P ∈ Pred(Y) : X dom P and not (X pdomY)}

We can split DF(X) in two groups of sets:

DFlocal(X) ≡ {Y ∈ Succ(X) | not X idomY}

DFup(Z) ≡ {Y ∈ DF(Z) | ∃ W. W idom Z and not W pdomY}

Then:

DF(X) = DFlocal(X) ∪ ራ

𝑍∈𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑋)

DFup(Z)

* child, parent, ancestor, and descendant always refer to the dominator tree.

predecessor, successor, and path always refer to CFG

Dominance Frontier Algorithm
for each X in a bottom-up traversal of the dominator tree

(visit the node X in the tree after visiting its children):

DF(X) ← ∅

for each Y ∈ succ(X) /* local */

if not X idomY then

DF(X) ← DF(X) U {Y}

for each Z ∈ children(X) /* up */

for each Y ∈ DF(Z)

if not X idomY then

DF(X) ← DF(X) U {Y}

Dominance and LLVM

SSA Construction Algorithm

Steps:

1. Compute the dominance frontiers

2. Insert φ-functions

3. Rename the variables

Insert φ-functions

Insert φ-functions

Renaming Variables*

Renaming definitions is easy – just keep the counter for

each variable.

To rename each use of V :

(a) Use in non-φ-functions: Refer to immediately

dominating definition of V (+ φ nodes inserted for V).

preorder on Dominator Tree!

(b) Use as a φ-function operand: Refer to the definition

that immediately dominates the node with the incoming

CFG edge (not the node with the φ-function)

rename the φ-operand when processing the predecessor basic block!

* For the full algorithm refer to the paper

j=1;

while (j < X)

++j;

N = j;

A: j = 1;

B: if (j >= X) goto E;

S:

j = j+1;

if (j < X) goto S;

E:

N = j;

j=1;

while (j < X)

++j;

N = j;

A: j0 = 1;

B: if (j0 >= X) goto E;

S: j1 = (j0, j2)

j2 = j1+1;

if (j2 < X) goto S;

E: j3 = (j0, j2)

N = j3;

Translating Out of SSA Form

Overview:

1. Dead-code elimination (prune dead φs)

2. Replace φ-functions with copies in predecessors

3. Register allocation with copy coalescing

Before Step 2 After Step 2

Control Dependence

Def. Postdomination: node p postdominates a node d if
all paths to the exit node of the graph starting
at d must go through p

Def. In a CFG, node Y is control-dependent on node B if

• There is a non-empty path N0 = B,N1,N2, ...,Nk = Y such
that Y postdominates N1 . . .Nk, and

• Y does not strictly postdominate B

Def. The Reverse Control Flow Graph (RCFG) of a CFG
has the same nodes as CFG and has edge Y → X if X →Y is
an edge in CFG.

• p is a postdominator of d iff p dominates d in the RCFG.

Computing Control Dependence

Key observation: Node Y is control-dependent on B iff
B ∈ DF(Y) in RCFG.

Algorithm:

1. Build RCFG

2. Build dominator tree for RCFG

3. Compute dominance frontiers for RCFG

4. Compute CD(B) = {Y | B ∈ DF(Y)}.

CD(B) gives the nodes that are control-dependent on B.

Summary
Complexity:

Follow up works:

• A linear time algorithm for placing phi-nodes (POPL 1995)
https://dl.acm.org/citation.cfm?id=199464

• Algorithms for computing the static single assignment form (JACM 2003)

Further reading:

• Tiger Book, Chapter 19

• On History: http://citi2.rice.edu/WS07/KennethZadeck.pdf

https://dl.acm.org/citation.cfm?id=199464
http://citi2.rice.edu/WS07/KennethZadeck.pdf

