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STATIC SINGLE ASSIGNMENT

The slides adapted from Vikram Adve



Def-use and Use-def (SSA vs no-SSA)

From Wegman et al. 



SSA-Based Optimizations

• Dead Code Elimination (DCE)

• Sparse Conditional Constant Propagation (SCCP)

• Loop-Invariant Code Motion (LICM)

• Global Value Numbering (GVN)

• Strength Reduction of Induction Variables

• Live Range Identification in Register Allocation



Constant Propagation

Goals

Whenever there is a statement of the form v = Const, the uses 
of v can be replaced by Const. 

Safety

Analysis: Explicit propagation of constant expressions

Transformation: Most languages allow removal of computations

Profitability

Fewer computations, almost always 

Opportunity

Symbolic constants, conditionally compiled code, …



Simple Constant Propagation

Worklist = All statements in the SSA program

While Worklist ≠ 

remove a statement S from Worklist

if S is “v = (c1,…cn)” and c1=…=cn=c (Const),
replace S with v = c

if S is “v = c” (c is Const)

Delete S from the program

For each Statement T  Uses (v)

substitute v with c in T

Worklist = Worklist  {T}



Extensions of the Algorithm

Copy propagation: 

• Assignments x = y or x = (y) can be replaced by a 

simple use of y. 

Constant folding:

• Assignments of the form x = a © b can be immediately 

evaluated if a and b are constants, and the statement 

replaced with x = c (c = a © b)

Constant conditions:

• If a condition if (x © y) always evaluate to true or false, 

then keep only one branch. 



Conditional Constant 

Propagation: SCCP
Goals

Identify and replace SSA variables with constant values

Delete infeasible branches due to discovered constants

Safety

Analysis: Explicit propagation of constant expressions

Transformation: Most languages allow removal of computations

Profitability

Fewer computations, almost always (except pathological cases)

Opportunity

Symbolic constants, conditionally compiled code, …



Example 1

J = 1;

...

if (J > 0) 

I = 1; // Always produces 1

else 

I = 2;



Example 2

I = 1;

...

while (...) {

J = I;

I = f(...);

...

I = J; // Always produces 1

}

We need to proceed with the 

assumption that everything is 

constant until proved otherwise.



Example 3

I = 1;
...
while (...) {

J = I;
I = f(...);
...
if (J > 0) 

I = J; // Always produces 1
}

For Ex. 1, we could do constant 

propagation and condition 

evaluation separately, and repeat 

until no changes. This separate 

approach is not sufficient for Ex. 3.



Conditional Constant Propagation*
Advantage:

Simultaneously finds constants + eliminates infeasible branches.

Optimistic

Assume every variable may be constant, until proven otherwise.

( Pessimistic ≡ initially assume nothing is constant. )

Sparse: Only propagates variable values where they are actually used or 
defined (using def-use chains in SSA form).

Iterative:

Build the list of constant definitions and uses using a worklist algorithm.

* Constant Propagation with Conditional Branches; M. Wegman and K. Zadeck, TOPLAS’91



Dead Code Elimination

The results of the computation are visible through return 

values or output statements

• We can remove the instructions that do not contribute to 

the visible outputs

A simple algorithm:

• Compute (or maintain) the def-use chains

• Iterate over the instructions:

• For v = x op z, if v has at least one use, mark as live, 

otherwise mark as dead

• Remove the instructions marked as dead



Aggressive Dead Code Elimination

Ordinary DCE: 

• x2 is live because 

used in def. of x1. 

• x1 is live because 

used in def. of x2. 

Yet…

x1 = (0, x2)

x1 > 100

x2 = x1 + 2 return 1

Idea: Analogous to SCCP, be optimistic and assume a statement 

is dead unless proven otherwise (i.e., contributes to the output)

T F



In each step, mark a statement as live if:

1. It is the output statement (e.g., return)

2. It has known side effects (e.g., assignment to global 

variable or calling a function with side effects)

3. It defines a variable x used by an already live statement

4. It is a conditional branch, and some other, already live 

statement is control dependent on the branch (and its block)

The algorithm then converges to a set of live variables

• Caveat: the algorithm may remove “empty” infinite loops

Aggressive Dead Code Elimination



Loop-Invariant Code Motion

Example:

x = 1; y = 0

while ( y < 10 ) {
t = min(x,2)
y = y + x

} 

Becomes:

x = 1; y = 0

t = min(x,2)
while ( y < 10 ) {

y = y + x
} 

Pattern:

loop {

v = a op b

… v is used here
}

Becomes: 

v = a op b
loop { 

… v is used here
}

What conditions does the code need to 

satisfy for this transformation to be sound?



Loop-Invariant Code Motion
Analysis

Conditions for the analysis (v = a op b):

• Both a, b are constants

while (b) { v = 2 + 3;  /* … */ }

• Both a, b are defined before the loop (SSA ensures there 

is only a single dominating definition for each)
x = …;
while (b) { v = x + 1;  /* … */ }

• Both a, b are referring to the variables that are in the loop 

but already determined to be loop invariant
x = …;
while (b) { v = x + 1; t = v * 2; /* … */ }

If curious about what complications arise if the program is not in the SSA form, take a look at

http://www.cs.cmu.edu/~aplatzer/course/Compilers11/17-loopinv.pdf

http://www.cs.cmu.edu/~aplatzer/course/Compilers11/17-loopinv.pdf


Loop-Invariant Code Motion
Transformation

Version 1: Since the computation is in SSA form, just move it to the 

node before the header

• What if there is no single such node? (Make it!) 

• Loop preheader: a single node that dominates the loop header

• How do we ensure there are no side effects?

• What if the loop-invariant computation is expensive?

Version 2: Like candidate 1, but add loop’s condition to avoid 

unnecessary execution of a op b:

if (cond) { 
t = a op b; 
while (cond) { /* … */ }

}



Another Handy One…

See also: https://llvm.org/docs/LoopTerminology.html

https://llvm.org/docs/LoopTerminology.html


Induction Variable Substitution

Auxiliary Induction Variable

An auxiliary induction variable in a loop 

for (int i = 0; i < n; i++) { … }

is any variable j that can be expressed as

c × i + m

at every point where it is used in the loop, where c
and m are loop-invariant values, but m may be 

different at each use.



Optimization Goals

Identify linear expression for each auxiliary 

induction variable

• More effective dependence analysis, and loop 

transformations

• Substitute linear expression in place of every use

• Eliminate expensive or loop-invariant operations 

from loop



Induction Variable Substitution

Auxiliary Induction Variable

for (int i = 0; i < n; i++) { 

j = 2*i + 1;  

k = -i;       

l = 2*i*i + 1;

c = c + 5;    

}



Induction Variable Substitution

Auxiliary Induction Variable

for (int i = 0; i < n; i++) { 

j = 2*i + 1;     // Y

k = -i;          // Y

l = 2*i*i + 1;   // N

c = c + 5;       // Y* 

}



Reminder: Strength Reduction

Goal: Replace expensive operations by cheaper ones

Primitive Operations: Many Examples

n * 2   → n << 1 (similarly, n/2)

n ** 2 → n * n

Recurrences

Example:  x = a[i] to x = (base(a) + (i-1) * 4) 

Such recurrences are common in array address calculations



Induction Variable Substitution

Strategy

• Identify operations of the form:

x ← iv × c or        x ← iv ± c 

iv: induction variable or another recurrence

c : loop-invariant variable

• Eliminate multiplications from the loop body

• Eliminate induction variable if the only remaining use 

is in the loop termination test



Induction Variable Substitution 



Induction Variable Substitution 



Induction Variable Substitution 

After induction variable substitution



Induction Variable Substitution

(recap) 

After induction variable substitution Before induction variable substitution



References

Cocke and Kennedy, CACM 1977 (superseded by the next one).

Allen, Cocke and Kennedy, “Reduction of Operator Strength,” In 

Program Flow Analysis: Theory and Applications, 1981.

Classical Approach

• ACK: Classic algorithm, widely used.

• works on “loops” (Strongly Connected Regions) of flow graph

• uses def-use chains to find induction variables and recurrences

Cooper, Simpson & Vick, 2001, “Operator Strength Reduction,” 

Trans. Prog. Lang. Sys. 23(5), Sept. 2001.

SSA-based algorithm

• Same effectiveness as ACK, but faster and simpler

• Identify induction variables from SCCs in the SSA graph



Value Numbering

• Analysis: Determining 

equivalent computations 

(variables, expressions, 

consts)

• Transformation: Eliminates 

duplicates with a semantics-

preserving optimization

• Form of redundancy 

elimination

Code:
a = x + y   

b = x + y

a = 1
c = x + y
d = y + x
e = d - 1
f = e + 1



Value Numbering

• Assign an identifying number to each variable / 

expression / constant:

x and y have same id number 

⇔ x = y for all inputs

• Use algebraic identities to simplify expressions

• Discover redundant computations & replace them

• Discover constant values, fold & propagate them



Value Numbering

• Use algebraic identities to simplify expressions

• Commutativity (a+b = b+a), a+b+c = c+b+a, 

(a+b)^2 = a^2+2ab+b^2…

• Discover redundant computations and replace 

them

• E.g., y=2*x; z=2*x+1 => y=2*x; z=y+1

• Discover constant values, fold & propagate them

• After SCCP: e.g., x=1; y = x+1 => y = 1+1

• Evaluate constant expression (y = 2) then 

propagate



Local Value Numbering

• Each variable, expression, & constant gets a 
“value number” (hash code)

Same value number ⇒ same value

• Prerequisites: low-level intermediate code and 
existing basic blocks

• Equivalence based solely on facts from within the 
single basic  block

• If an instruction’s value number is already defined, instr. 
can be eliminated & subsequent references subsumed

• Constant folding is simple



Local Value Numbering

a = x + y   

b = x + y

a = 1

c = x + y

d = y + x

e = d - 1

f = e + 1

V1 ← hash(+,VN[x],VN[y]),

Name[V1] ← a

hash(+, VN[x], VN[y]) == V1 

So, replace x+y with a. Transformed: b = a

Name[V1] ←∅ (can we be more precise?)

Can we replace?

Challenges:

tracking where each value resides

commutativity ⇒ ???

identities (e.g., Vx OR Vx × 1): ⇒
instr. gets value number of operand (Vx)



Local Value Numbering

a1 = x + y   

b = x + y

a2 = 1

c = x + y

d = y + x

e = d - 1

f = e + 1

V1 ← hash(+,VN[x],VN[y]),

Name[V1] ← a

hash(+, VN[x], VN[y]) == V1 

So, replace x+y with a. Transformed: b = a1

Name[V1] ←∅ (don’t need anymore)

b = a1

c = a1

d = a1

…
Challenges:

tracking where each value resides

commutativity ⇒ ???

identities (e.g., Vx OR Vx × 1): ⇒
instr. gets value number of operand (Vx)



Local Value Numbering

a1 = x + y   

b1 = a1

a2 = 1

c1 = a1

d1 = a1

e = d1 - 1

f = e + 1

V1 ← hash(+,VN[x],VN[y]),

Name[V1] ← a

hash(+, VN[x], VN[y]) == V1 

So, replace x+y with a. Transformed: b = a1

Name[V1] ←∅ (don’t need anymore)

b = a1

c = a1

d = a1

Challenges:

What happens with e and f ? 



Local Value Numbering

For each instruction i : x ← y op z in the block

V1 ←VN[y] 

V2 ←VN[z]

let v = hash(op, V1, V2)

if (v exists in hash table)

replace RHS with Name[v]

else

enter v in hash table

VN[x] ← v

Name[v] ← ti (new temporary)

replace instruction with: “ti ← y op z; x ← ti”



Local VN Simplifications
• If the operands have the same value number i.e. z=x op y, and 

VN[x] = VN[y]
• if op is MAX, MIN, AND, OR, . .  replace op with a copy 

operation (z=x)

• if op tests equality, replace it with z=true

• if op tests inequality replace it with z=false

• if all operands (x,y) are constants and we haven’t already 
simplified the expression, then immediately evaluate the 
resulting constant and propagate constants down

• if one operand is constant and we haven’t yet simplified the 
expression:
• if a constant operand is zero, replace ADD and OR with another 

operand; replace MULT, AND with zero

• if constant operand is one, replace MULT with assignment of 
another operand

• If op commutes, reorder its operands into ascending order 
by value number (canonical form)



Local VN Analogy

• Constructing a DAG from a forest (set of trees)

• Each expression is a node in a dag, edges are uses of 
the expression in the instructions

• Start from the leading instruction of the basic block

• Collapse nodes that are repeated into a single node 
and connect the edges to all uses

a = x + y   
b = (x + y) - z
c = y + x

X Y Z

+ -

A= B=C=



Global Value Numbering

W = X + Y; 
if (...) {

Z = X + Y; 
X = 1;

} else {
Z = X + Y – 1;

}

U = X + Y – 1;   // ??



Global Value Numbering

W1 = X1 + Y1; 
if (...) {

Z1 = X1 + Y1; 
X2 = 1;

} else {
Z2 = X1 + Y1 – 1;

}
X3 = Phi(X1, X2)
Z3 = Phi(Z1, Z2)
U1 = X3 + Y1 – 1;   // ??



Global Value Numbering

T1 = X1 + Y1; W1 = T1;
if (...) {

Z1 = T1; 
X2 = 1;

} else {
Z2 = T1 – 1;

}
X3 = Phi(X1, X2)
Z3 = Phi(Z1, Z2)
U1 = X3 + Y1 – 1;   // ??



Yet another example

X0 = 1

Y0 = 1

do {

X1 = φ(X0, X2)

Y1 = φ(Y0, Y2)

X2 = X1 + 1

Y2 = Y1 + 1

} while (. . .)



Global Value Numbering (DVTN)

The Dominator-based VN Technique 
(DVNT)

• B2, B3 can be value-numbered using 
B1’s table

• How about B4? Yes, can use the 
expressions from B1 (dominator 
node) but needs to invalidate the 
expressions killed in B2, B3

• Still based on hashing

• BUT: difficult to merge these tables

• A variable may be redefined in 
B2, B3, or both

B1

B2 B3

B4



Global Value Numbering (DVTN)

B1

B2 B3

B4

B

1

B

2

B

3

B

4



Example

X0=42

X0<1

Y0 = X0+1

Z0 = X0+1

Y1 = X0+2

Z1 = X0+2

Y2=φ(Y0,Y1)

Z2=φ(Z0,Z1)

Y2<Z2

(0x1) X0 [42]



Example

X0=42

X0<1

Y0 = X0+1

Z0 = X0+1

Y1 = X0+2

Z1 = X0+2

Y2=φ(Y0,Y1)

Z2=φ(Z0,Z1)

Y2<Z2

(0x1) X0 [42]

0x1 X0 [ 42]

0x2 Y0 [(0x1)+1]

0x2 Z0 [(0x1)+1]

(0x1) X0

Y2=φ((0x2),Y1)

Z2=φ((0x2),Z1)



Example

X0=42

X0<1

Y0 = X0+1

Z0 = X0+1

Y1 = X0+2

Z1 = X0+2

Y2=φ(Y0,Y1)

Z2=φ(Z0,Z1)

Y2<Z2

(0x1) X0 [42]

(0x1) X0

Y2=φ((0x2),(0x3))

Z2=φ((0x2),(0x3))

0x1 X0 [42]

0x2 Y0 [(0x1)+1]

0x2 Z0 [(0x1)+1]

0x1 X0 [42]

0x3 Y0 [(0x1)+1]

0x3 Z0 [(0x1)+1]



Example

X0=42

X0<1

Y0 = X0+1

Z0 = X0+1

Y1 = X0+2

Z1 = X0+2

Y2=φ(Y0,Y1)

Z2=φ(Z0,Z1)

Y2<Z2

(0x1) X0 [42]

(0x1) X0 [42]

(0x4) Y2 [φ((0x2),(0x3))]

(0x4) Z2 [φ((0x2),(0x3))]

0x1 X0 [42]

0x2 Y0 [(0x1)+1]

0x2 Z0 [(0x1)+1]

Y2=φ((0x2),(0x3))

Z2=φ((0x2),(0x3))

0x1 X0 [42]

0x3 Y0 [(0x1)+1]

0x3 Z0 [(0x1)+1]



Instruction Congruence

Instructions i and j are congruent iff: 

1. They are the same instruction, or

2. They are assignments of constants, which are equal 

(e.g. x:=ci, y:=cj and ci==cj), or

3. They have one or multiple operands, e.g.,

zi = xi op yi

zj = xj op yj

same operator and their operands are congruent

(xi congruent to xj and yi congruent to yj), taking into 

consideration commutativity of op. 



References
Long history in literature

• form of redundancy elimination (compare CSE)

• local version using hashing: late 60’s Cocke & Schwartz, 1969

• algorithms for blocks, extended blocks, dominator regions, entire 
procedures, and (maybe) whole programs

• easy to understand algorithm for single block

• larger scopes cause more complex algorithms

1. Alpern, Wegman & Zadeck, “Detecting Equality of 
Variables in Programs,” Proceedings POPL 1988

2. Cooper & Simpson, “SCC-Based Value Numbering,” Rice 
University TR CRPC-TR95636-S, 1995. 

3. Briggs, Cooper, Simpson, “Value Numbering,” Software–
Practice and Experience, June 1997 (for explanations).



Optimizations where we will need 

more information

• Global Common Subexpression Elimination (GCSE)

• Partial Redundancy Elimination (PRE)

• Redundant Load Elimination

• Dead or Redundant Store Elimination

• Code Placement Optimizations


