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Roadmap

• Control-flow Analysis

• SSA-based Analysis

• General Data-flow Analysis

• Dependence Analysis

• Pointer Analysis

• Interprocedural Analysis

And then some generalizations and interesting 

cases: AI, VMs, ML



DEPENDENCE ANALYSIS

The slides based on lectures by Vikram Adve and David Padua

and Dragon Book



Theme

How can a compiler enhance parallelism and locality in 
programs with arrays?

Exposing available parallelism is not easy!

• Find parallel tasks

• Minimize communication&synchronization overhead

Data locality: A program has good data locality if CPU 
accesses the same data it has used recently (temporal 
locality) or data neighboring such data (spatial locality)



Theme

Parallelism and data locality go hand-in-hand

• Identify data locality  know the parallelism

Previous data-flow analysis does not work 

• We don’t distinguish the ways the statement was 

reached, i.e. different executions of the same statement 

in the loop

• We didn’t discuss how to treat arrays in that framework

• For parallelization we need to reason about the different 

dynamic executions of the same statement



Motivation: Vectorization

*Slide from Maria Garzaran and David Padua



Motivation: Vectorization

*Slide from Maria Garzaran and David Padua

** AVX code from Intel’s Software&Services Group talk 



Motivation: Task Parallelization

for (i=0; i < N; i++) 
{

Y[i] = X[i] – 1
Y[i] = Y[i] * Y[i]

}

for (i=0; i < N/4; i++) 
{

Y[i] = X[i] – 1
Y[i] = Y[i] * Y[i]

}

for (i=N/4; i < N/2; i++) 
{

Y[i] = X[i] – 1
Y[i] = Y[i] * Y[i]

}

for (i=N/2; i < 3*N/4; i++) 
{

Y[i] = X[i] – 1
Y[i] = Y[i] * Y[i]

}

for (i=3*N/4; i < N; i++) 
{

Y[i] = X[i] – 1
Y[i] = Y[i] * Y[i]

}

SPMD = Single program multiple data; there is a synchronization barrier at the end

Wait for all threads to finish before proceeding



Data Dependence

A data dependence from statement S1 to statement S2

exists if

1. there is a feasible execution path from S1 to S2, and

2. an instance of S1 references the same memory 

location as an instance of S2 in some execution of the 

program, and

3. at least one of the references is a store.



Kinds of Data Dependence

Direct Dependence

Anti-dependence

Output Dependence

X =…

…= X + …

… = X

X  = …

X  = …

X  = …



Dependence Graph

A dependence graph is a graph with:

• Each node represents a statement, and

• Each directed edge from S1 to S2, if there is 

a data dependence between S1 and S2 

(where the instance of S2 follows the instance 

of S1 in the relevant execution).

• S1 is known as a source node

• S2 is known as a sink node



Kinds of Data Dependence

S1:  X =…

S2: … = X + …

S1: … = X

S2: X  = …

S1: X  = …

S2: X  = …

Dependence 

Graph Edges

Direct Dependence

Anti-dependence

Output Dependence



Dependence Graph for Loops

(Repeat) A dependence graph is a graph with:

• one node per statement, and

• a directed edge from S1 to S2 if there is a data 
dependence between S1 and S2 (where the 
instance of S2 follows the instance of S1 in the 
relevant execution).

For loops: dependence graph is a summary of 
unrolled dependencies for different iterations

• Some (detailed) information may be lost 



Dependence in Loops

int X[], Y[], a[], i;

for i = 1 to N

S1:      X[i] = a[i] + 2

S2:      Y[i] = X[i] + 1

end

S1

S2

S1

S2

S1

S2

S1

S2

S1

S2

S1

S2

S1

S2

S1

S2

S1

S2

…
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Dependence in Loops

int X[], Y[], a[], i;

for i = 1 to N

S1:      X[i+1] = a[i] + 2

S2:      Y[i] = X[i] + 1

end

S1

S2

S1

S2

S1

S2

S1
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Dependence in Loops

int X[], Y[], a[], i;

for i = 2 to N

S1:      X[i] = a[i] + 2

S2:      Y[i] = X[i-1] + 1

end

S1

S2

S1

S2

S1

S2

S1
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S1

S2

S1

S2

S1

S2

S1

S2

…

53 42 NN-1N-2N-3



Dependence in Loops

int X[], Y[], a[], i;

for i = 1 to N

S1:      X[i] = a[i] + 2

S2:      Y[i] = X[i+1] + 1

end

S1

S2

S1

S2

S1

S2

S1

S2

S1

S2

S1

S2

S1

S2

S1

S2

S1

S2

…

42 31 NN-1N-2N-3



Dependence in Loops

int X[], Y[], a[], t, i;

for i = 1 to N

S1:      t = a[i] + 2

S2:      Y[i] = t + 1

end

S1

S2



Loop Carried Dependence: one that 

crosses the loop iteration boundary

Loop Independent Dependence: one 

that remains within the statements in the 

single iteration



Next…

Let us introduce the affine transform theory

• Reorder statements instead of remove

• Lets us use standard mathematical tools

(solving linear equations, mathematical 

programming, solving linear constraints)



Reordering Transformation

Reordering Transformation: merely changes 

the order of execution of computations in a 

program, without adding or deleting executions 

of any computations.

Preserving Dependence: a reordering 

transformation preserves a dependence if it 

preserves the relative execution order of the 

source and sink statements of the dependence.



Reordering Transformation

Definition. Legal Transformation preserves the meaning of 

that program, i.e., all externally visible outputs are 

identical to the original program, and in identical order.
• We consider two programs equivalent (i.e., the transformation preserving the 

program meaning) if on the same inputs both the original and transformed 

programs, after being executed, produce the same outputs. 

Theorem. A reordering transformation that preserves all 

data dependences in a program is a legal transformation.



Proof of Theorem 1 
(by contradiction)

Loop-free program: 

Let S1, … Sn be the original execution order, and i1…in a permutation of 
the statement indices in the reordered program. If we reorder code 
without violating dependencies, but the output changed, then at least one 
statement would need to produce a different output. Since the statement 
is the same as in the original program, then its error must have propagated 
from the inputs. But in that case, there must have been a previous 
statement that violated (flow, anti, or output) dependence. Contradiction!

Loops:

The previous argument directly extends, by unrolling (and the index 
of the loop iteration represents the part of the permutation index). 

Conditionals: 

If there are conditional statements, the theorem must include 
control dependences in addition to data dependences. 
(We will come back to this point next week)



Dependence in Loop Nests

Goal: Supporting transformations of a given loop nest 
(Assume perfect loop nest here)

Canonical Loop Nest:  A loop nest is in canonical form 
if both lower bound and step of each loop are +1.

do i1 = 1 to n1
do i2 = 1 to n2

. . .
do ik = 1 to nk

statements
enddo

. . .
enddo

enddo

Rectangular Loop 

Nest: The value of n1
to nk does not change 

during the execution



Dependence in Loop Nests

Iteration space

The iteration space of the loop 
nest is a set of points in a k-
dimensional integer space (i.e., 
a polyhedron):

𝐿 = {[𝑖1, . . . , 𝑖𝑛] ∶
1 ≤ 𝑖1 ≤ 𝑛1 ∧ . . .∧
1 ≤ 𝑖𝑘 ≤ 𝑛𝑘}

Each element [𝑖1, . . . , 𝑖𝑛] is an 
iteration vector

do i1 = 1 to n1
do i2 = 1 to n2

. . .
do ik = 1 to nk

statements
enddo

. . .
enddo

enddo



Example

for i in 0 to 5
for j in i to 7

Z[i,j] = i+j; 

Inequalities:

𝟎 ≤ 𝒊
𝒊 ≤ 𝟓
𝒊 ≤ 𝒋
𝒋 ≤ 𝟕

Turn the inequalities in the form 𝜶 ⋅ 𝒊 + 𝜷 ⋅ 𝒋 + 𝜸 ≥ 𝟎
• 𝛼, 𝛽 become rows in the matrix B

• 𝛾 becomes an element in the vector b

1 0
−1 0
−1 1
0 −1

𝑖
𝑗

+

0
5
0
7

≥

0
0
0
0

𝒊 + 𝟎 ⋅ 𝒋 + 𝟎 ≥ 𝟎
−𝒊 + 𝟎 ⋅ 𝒋 + 𝟓 ≥ 𝟎
−𝒊 + 𝒋 + 𝟎 ≥ 𝟎
𝟎 ⋅ 𝒊 − 𝒋 + 𝟕 ≥ 𝟎



Iteration of the Loop Nest

𝑖 ∈ ℤ𝑛 𝐵𝑖 + 𝑏 ≥ 0}

• 𝑛 is the depth of the loop nest

• B is a m × 𝑛 matrix

• 𝑏 is a vector with length 𝑚

• 0 is a vector of 𝑚 zeros

Represent a convex polyhedron

Incorporating Symbolic Constraints (e.g., for i < n): add symbolic 

variable, extending the vector:

𝑖 ∈ ℤ
−1 1
1 0

𝑖
𝑛

𝑖 + 𝑏 ≥
0
0

}



Dependence in Loop Nests

Lexicographic Order: for iteration vectors

𝐼 = [𝑖1, . . . , 𝑖𝑛] and 𝐼′ = [𝑖1
′ , . . . , 𝑖𝑛

′ ] :

𝑖1, . . . , 𝑖𝑛 < [𝑖1
′ , . . . , 𝑖𝑛

′ ] iff there is a subscript k,  such 

that 𝑖1 = 𝑖1
′ , … 𝑖𝑘−1 = 𝑖𝑘−1

′ but 𝑖𝑘 < 𝑖𝑘
′

If 𝑖1, . . . , 𝑖𝑛 < 𝑖1
′ , . . . , 𝑖𝑛

′ we say that the iteration 𝐼
precedes the iteration 𝐼′

Examples:    [1,2,3] < [1,2,4]   and    [1, 2, 3] < [1,3,1]



Dependence in Loop Nests

do v1 = 1 to n1
do v2 = 1 to n2

. . .
do vk = 1 to nk

X[f1(I), …, fk(I)] = ...
... = X[g1(I’), …, gk(I’)] 

end
. . .

end
end

I=[v1,v2, …,vk]
I’=[v1’,v2’,…, vk’]

A data dependence exists iff ∃I,I’ ∈ [1..n1]x…x [1..nk]

s.t. [f1(I), …, fk(I)] = [g1(I’), …, gk(I’)]



Direct (Flow) Dependence in Loops

We say that SA→SB (SA𝛿SB) iff there exist 𝐼, 𝐼′ ∈ 𝐿 and 𝐼 ≤ 𝐼′ where 

1. There is a feasible path from instance 𝐼 of statement S1 to instance 
𝐼′ of statement S2, 

SA: X[f1(I), …, fk(I)] = ...

...
SB:  ... = X[g1(I’), …, gk(I’)]

2. f1(I) = g1(I’), f2(I) = g2(I’),..., fk(I) = gk(I’) 

The statement SA in iteration 𝐼 writes and SB in iteration 𝐼′ reads from 
the same memory location M



Antidependence in Loops

We say that SA↛SB (SA𝛿−1SB) iff there exist 𝐼, 𝐼′ ∈ 𝐿 and 𝐼 ≤ 𝐼′:

1. There is a feasible path from instance 𝐼 of statement SA to 

instance 𝐼′ of statement SB, 

SA: ... = X[f1(I), …, fk(I)) 

...
SB:   X[g1(I’), …, gk(I’)] = ...

2. f1(I) = g1(I’), f2(I) = g2(I’),..., fk(I) = gk(I’) 

The statement SA in iteration 𝐼 reads and SB in iteration 𝐼′ writes to 

the same memory location M



Output Dependence in Loops

We say that SA↬SB (SA𝛿0SB) iff there exist 𝐼, 𝐼′ ∈ 𝐿 and 𝐼 ≤ 𝐼′:

1. There is a feasible path from instance 𝐼 of statement SA to 

instance 𝐼′ of statement SB, 

SA: X[f1(I), …, fk(I)] = ...

...
SB: X[g1(I’), …, gk(I’)] = ...

2. f1(I) = g1(I’), f2(I) = g2(I’),..., fk(I) = gk(I’) 

The statement SA in iteration 𝐼 and SB in iteration 𝐼′ both write to 

the same memory location M



Dependence Testing

Dependence testing requires finding a solution to

f1(I) = g1(I’), 
f2(I) = g2(I’), ..., 
fk(I) = gk(I’) 

under the inequality constraints I ∈ L and I’ ∈ L

do i1 = L_1 to U_1
do i2 = L_2 to U_2
. . .
do ik = L_k to U_k
statements

enddo
. . .

enddo
enddo

Complexity: undecidable in general

• Indirection arrays (e.g. X[Y[i]]). 
They may only be known at 
runtime, without a specific 
application knowledge

• General alias analysis

• Non-linear subscript expressions



Dependence Testing: Formulate

Since we assume affine subscript expressions, each f(I) and g(I) is

c0 + c1i1 + … + cnin,

where i1 … in are loop index variables and c’s are constants.

So we now have a system of equations 

a10 + a11i1 + … + a1nin = b10 + b11j1 + … + b1njn 
…

ak0 + ak1i1 + … + aknin = bk0 + bk1j1 + … + bknjn

And for all 𝐼: L1  i1  U1 … Ln  in  Un and same for 𝐼′

Instance of integer programming

⇒ NP-complete in general (but don’t be scared by it!!!)



Simplifications

Two major simplifications in practice:

• Subscript expressions are usually simple:
most often ik or a1ik + a0

• Induction variable transformations help

• Be conservative: 
Check if a dependence may exist.



Simplifications

ZIV, SIV, MIV A subscript expression containing zero, single, or 
multiple index variable respectively: 

E.g., A[3],  A[ 2 * i1 - 3 ],  A[2 * i1 + 3 * i2 + 5]

Separable Subscripts : A subscript position is said to be 
separable if the index variables used in that subscript position 
are not used in any other subscript position.

E.g., A[i+1, j, k] and A[i, j, k]

Coupled Subscripts : Two subscript positions are said to be 
coupled if the same index variable is used in both positions.

E.g., A[i+1, i, k] and A[i, j+i, k]



Exact Solutions for SIV

A pair of subscripts with index variable ik are Strong SIV if 
the subscript expressions are the form a ik + b1 and a ik + b2

• The loop iterates between one and nk. 

• Assumes: nk, a, b1, b2 are known

Dependence exists iff either of these hold:

1. a = 0 and b1 = b2, or

2. | dk |≤ nk − 1, where dj = (b1−b2)/a and integer

Proof:  We assume I < I’ and solve for f(I) = g(I’). Then a I + b1 = a I’ + b2. We get I’-I 
= (b1- b2)/a. The dependence exists if the formula can be satisfied within the range of 
the indices, i.e. if this expression is smaller than the loop bound



Some special cases of SIV

Special cases:

• Weak-zero SIV: compare a1 ik + b1 with b2

I = (b2-b1)/a1 and solution exists if I ≤ nk-1

• Weak-crossing SIV: compare a1 ik + b1 with -a1 ik + b2

Here the distance changes to (b2-b1)/a1



Weak SIV: GCD Test

Simplifications

1. ignore loop bounds!

2. only test if a solution is possible (GCD property)

3. test each subscript position separately

GCD Property for Single Variable

Let   f( I ) = a1I + a0 and    g( I ) = b1I + b0
f(I) = g(I’) ⇒ a1I + a0 = b1I’ + b0.

GCD Property: If there is a solution to the previous equation, then

g = gcd(a1, b1) divides a0 − b0.

Proof: Let a1 = n1g, b1 = m1g. Then g × (n1I − m1I’) = a0 − b0, and the 
term in parenthesis must be an integer.



GCD Test for Multiple Indices

Let f(I) = anin + . . . + a1i1 + a0 and 
g(I) = bnin + . . . + b1i1 + b0.

GCD Property: If there is a solution to the equation

anin1 + . . . + a0 = bnin2 + . . . + b0, then

g = gcd(a1, . . . , an, b1, . . . , bn) divides (a0 − b0).

More tests: E.g., Banerjee test, Lamport test, Delta test…



Exact Solutions for Weak SIV

The set of subscripts with index variable ik are Weak SIV
if the subscripts are of the form a1 ik + b1 and a2 ik + b2

Each such subscript position j gives an equation of the 
form:

a1 ik = a2 ik + b2 − b1

Approach for each index variable ik :

1. Solve up to r simultaneous equations in 2 unknowns.

2. Check if solutions satisfy 2 inequalities from the 
previous slide



Exact Solutions for Weak SIV

Special case: one of a1 or a2 is zero: Weak-Zero SIV
(solution is similar to strong SIV)

General problem:  Find if  a1I + a0 = b1I’ + b0

(Lemma) An extended GCD property: 
For any pair of values (x, y), the Euclidian GCD algorithm 
can also compute a triplet (g, nx, ny) such that

g = nxx + nyy = gcd(x, y)



Exact Solutions for Weak SIV
Theorem. Let (g, na, nb) be such a triplet for pair (a1,−b1). 

Let xk and yk be given by:

Then (xk, yk) is a solution of a1i1 + a0 = b1i2 + b0 for an integral value of k. 
Furthermore, for any solution (x,y) there is a k such that x = xk and y = yk

Solution strategy: 

1. Compute x0, y0 using the above equations

2. Then find all values of k for which x0 + k b1/g falls within loop bounds, 
and similarly for yk.

3. For dependence to exist, the solution (xk, yk) must be within the 
region bounded by loop bounds



Solving Complicated Indices

E.g.    A[x+2y-1, 2y, z, w+z, v, 1]. 

(reminder: )

Separable Subscripts : A subscript position is said to be 
separable if the index variables used in that subscript 
position are not used in any other subscript position.

E.g., A[i+1, j, k] and A[i, j, k]

Coupled Subscripts : Two subscript positions are said to be 
coupled if the same index variable is used in both positions.

E.g., A[i+1, i, k] and A[i, j+i, k]



Solving Complicated Indices

E.g.    A[x+2y-1, 2y, z, w+z, v, 1]. 

Simplify the problem by identifying common cases:

1. Separate subscript positions into coupled groups

2. Label each subscript as ZIV, SIV, or MIV

3. For each separable subscript, apply appropriate test 

(ZIV, SIV, or MIV). 

4. For each coupled group, apply a coupled subscript test; 

e.g., GCD test or Delta test

5. If no test yields independence, a dependence exists: 

Concatenate direction vectors from different groups





Dependence Distance

Dependence Distance: If there is a dependence 
from statement S1 on iteration 𝐼 to statement S2 
on iteration 𝐼′ then the corresponding dependence 
distance vector is

𝑑𝐼,𝐼′ = [𝐼1
′ − 𝐼1, … 𝐼𝑘

′ − 𝐼𝑘]

Note: Computing distance vectors is harder than 
testing dependence



Dependence Distance

Direction Vector: For a distance vector of the form 𝑑𝐼,𝐼′ =

𝐼1
′ − 𝐼1, … , 𝐼𝑘

′ − 𝐼𝑘 the corresponding direction vector is 𝛿𝐼,𝐼′ =

𝛿1, … , 𝛿𝑘, … 𝛿𝑚 , where

𝛿𝑘 =

− , 𝑖𝑓 𝐼𝑘
′ − 𝐼𝑘 < 0

+, 𝑖𝑓𝐼𝑘
′ − 𝐼𝑘 > 0

=, 𝑖𝑓𝐼𝑘
′ − 𝐼𝑘 = 0

∗ , 𝑖𝑓 sign +, − , =

Note: I < J iff the leftmost non-’=’ entry in δ(I, J) is ’+’.

• We use the property of lexicographical ordering



Loop-Independent Dependence

do i = 1 to N

A(i+1) = B(i)

B(i+1) = A(i+1)

enddo

Statement S2 has a loop independent dependence on
statement S1 iff S1 references location M on iteration I,
S2 references M on iteration I and d(I,I’)=0 .

Determines the order in which the code is executed
within the nest of loops (compare to loop carried
dependence!)



Loop-Carried Dependence

Statement S2 has a loop carried dependence on statement S1
iff S1 references location M on iteration I, S2 references M on
iteration I’ and d(I,I’)>0 .

do i = 1 to N

A(i+1) = B(i)

B(i+1) = A(i)

enddo

Level of loop-carried dependence is the leftmost non-“=“
sign in the direction vector

• Forward dependence: S1 appears before S2 in the loop body

• Backward dependence: S2 appears before S1 in the loop body



Loop-Carried Dependence

Recall: Statement S2 has a loop carried dependence on

statement S1 iff S1 references location M on iteration I, S2

references M on iteration I’ and d(I,I’)>0 .

So, in the direction vector for any dependence, the 

leftmost non-’=’ entry must be ’+’ (if any non-’=’ 

entry is present).

Equivalently: the distance vector d(I,J) ≥ 0.



Dependence in Loop Nests

do v1 = 1 to n1
do v2 = 1 to n2

. . .
do vk = 1 to nk

X[f1(I), …, fk(I)] = ...
... = X[g1(I’), …, gk(I’)] 

end
. . .

end
end

I=[v1,v2, …,vk]
I’=[v1’,v2’,…, vk’]

A data dependence exists iff ∃I,I’ ∈ [1..n1]x…x [1..nk]

s.t. [f1(I), …, fk(I)] = [g1(I’), …, gk(I’)]



Dependence in Loops

int X[], Y[], a[], i;

do i = 1 to N

S1:      X[i+1] = a[i] + 2

S2:      Y[i] = X[i] + 1

enddo

S1

S2

S1

S2

S1

S2

S1

S2

S1

S2

S1

S2

S1

S2

S1

S2

…
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S1->S2
We want: 

d = I’ – I
We know:

I=[i0], I’=[i0’]
f:=i+1, g:=i

Dependence 
exists if: f(I)=g(I’)
---
i0+1=i0’
i0’-i0=1
d=[i0’]-[i0]=[1]



Dependence in Loops

int X[], Y[], a[], i;

do i = 2 to N

S1:      X[i] = a[i] + 2

S2:      Y[i] = X[i-1] + 1

enddo

S1

S2

S1

S2

S1

S2

S1

S2

S1

S2

S1

S2

S1

S2

S1

S2

…
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S1->S2
We want: 

d = I’ – I
We know:

I=[i0], I’=[i0’]
f:=i, g:=i-1

Dependence 
exists if: f(I)=g(I’)
---
i0=i0’-1
i0’-i0=1
d=[i0’]-[i0]=[1]



Dependence in Loops

int X[], Y[], a[], i;

do i = 1 to N

S1:      X[i] = a[i] + 2

S2:      Y[i] = X[i+1] + 1

enddo

S1

S2

S1

S2

S1

S2

S1

S2

S1

S2

S1

S2

S1

S2

S1

S2

…
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S2 -|-> S1
We want: 

d = I’ – I
We know:

I=[i0], I’=[i0’]
f:=i+1, g:=i

Dependence 
exists if: f(I)=g(I’)
---
i0+1=i0’
i0’-i0=1
d=[i0’]-[i0]=[1]



Dependence in Loops (Examples)
Task: Compute the dependence distance vector

do i = 1 to 100

S1:      X(2*i-1) = X(i) + 1

enddo

do i = 1 to 100

S1:      X(i+1) = X(i/2) + 1

enddo



Dependence in Loops (Examples)
Task: Compute the dependence distance vector

do j = 1 to 10

do i = 1 to 100

S1:      X(i,j) = W(i,j) + 1

S2:      Y(i,j) = X(100-i,j)

enddo



Dependence in Loops (Examples)
Task: Compute the dependence distance vector

for i = 1 to N

for j = 1 to M

for k = 1 to 100

S1:        X(i,j,k+1) = X(i,j,k) + 1

endfor

endfor

endfor



Dependence in Loops (Examples)
Task: Compute the dependence distance vector

for i = 1 to N

for j = 1 to M

for k = 1 to 100

S1:        X(i+5,j-2,k+1) = X(i-1,j+1,k) + 1

endfor

endfor

endfor



Dependence in Loops (Examples)
Task: Compute the dependence distance vector

for i = 1 to N

for j = 1 to M

for k = 1 to 100

S1:        X(i,j,k+1) = Y(i,j,k) + 1

S2:        Y(i-1,j+1,k) = X(i+1,j-2,2*k)

endfor

endfor

endfor



Control-Flow Analysis

Consider now a program with conditionals:

for j = 1 to n {

A[j] = A[j] * C[j]   // S1 

if (A[j] > k)

B[j] = B[j] + D[j]   // S2

else 

B[j] = B[j] – 1.0f

}

Control flow dependency exists between S1 and S2

(B[j] will be assigned the value only if A[j] has some value)



Control-Flow Analysis
We can convert the control dependency into a data dependency. 

Key steps:

• Consider guarded statements (if (bool_var) Stmt) and

• Transform the program to extract complicated expressions 

from the conditionals

for j = 1 to n {

A[j] = A[j] * C[j]   // S1 

m = A[j] > k

if (m) B[j] = B[j] + D[j]   

if (!m) B[j] = B[j] – 1.0f

}



Control-Flow Analysis (Forward)

for j = 1 to n {
A[j] = A[j] * C[j]   // S1 
m = A[j] > k
if (m) B[j] = B[j] + D[j]   
if (!m) B[j] = B[j] – 1.0f

}
The transformed program preserves all dependencies

This code can be readily vectorized: 

• Compute the mask vector m[1…n]

• Compute the then branch result by filtering on m

• Compute the else branch result by filtering on m

E.g., SSE has operations that admit the mask. 



Control-Flow Analysis (Exit)
for j = 1 to n {

A[j] = A[j] * C[j]   
if (A[j] > k) break; 
B[j] = B[j] + D[j]   

}

This is harder to transform with guarded form:

• If the condition is true once, exiting the loop is the same as if it fully executed 

• The condition depends on all iterations so far.

• Sketch of a solution. What is missing? 

for j = 1 to n {
if (m) break; 
A[j] = A[j] * C[j]
m = m || A[j] > k
if (m) break; // ? 
B[j] = B[j] + D[j] 

}

for j = 1 to n {
m1 = m2 
if (!m1) A[j] = A[j] * C[j]
if (!m1) m2 = m2 || A[j] > k   
if (!m2) B[j] = B[j] + D[j]    

}



Control-Flow Analysis (Backward)

for j = 1 to n {

if (A[j] < m) continue; 

S1: k = k + 1

A[j] = B[k] + D[j]  

if (A[j] > k) goto S1;  

}

Appears when there is an inner loop like structure 

• Applying just the forward analysis would yield potentially wrong 
code when combined with forward analysis

• It is transformed in conjunction with the related forward branches

• Simple heuristic: identify all code affected by a backward branch 
untouched and treat as a black-box. However, inefficient; for a 
more powerful analysis see e.g., Conversion of Control Dependence to Data 
Dependence; J.R. Allen and Ken Kennedy; POPL 1983


