CS 526

Advanced

Compiler
Construction

http://misailo.cs.lllinois.edu/courses/cs526

http://misailo.web.engr.illinois.edu/courses/cs526

Goals of the Course

Develop a fundamental understanding of the major
approaches to program analysis and optimization

Understand published research on various novel
compiler techniques

Solve a significant compiler problem by reading the
literature and implementing your solution in LLVM

Learn about current research in compiler technology

Compiler Overview

Program Front-end
. .

Preprocessing Source

Automatic Parallelization
Vectorization

Cache Management
Performance Modeling

Intermediate Intermediate Object
Code Code Code

Optimizer Back-end

s

Code Generation Linking/Loading

Source Code Portability ¢ Interprocedural optimization
* Back-end Optimizations * Load-time optimization
 Static Profiling * Security checking

* Power Management

Runtime compilation
* JIT code generation

* Runtime optimization
* Fault tolerance

COMPILER =
Program Analysis +

Program Transformation

Compiler Overview

Program

Front-end
- .

Why is Optimization Important?

For source-level programming languages

Liberate programmer from machine-related issues and enable
portable programming without unduly sacrificing performance.

John Backus on the first FORTRAN compiler:

“It is our belief that if FORTRAN, during its first months, were to translate any
reasonable scientific program into an object program only half as fast as
its hand-coded counterpart, then acceptance of our system would be in
serious danger.’

“To this day | believe that our emphasis on object program efficiency
rather than on language design was basically correct. | believe that had

we failed to produce efficient programs, the widespread use of languages like
FORTRAN would have been seriously delayed.”

-- John Backus, Fortran |, Il and Ill, Annals of the History of Computing}, vol. I, no. 1, July 1979

Why is Optimization Important?

For expressive language features

Allow programmer to focus on clean, easy-to-understand
programs; avoid detailed hand-optimizations:

* Expression simplification: Constant folding, associativity,
commutativity

* Redundancy elimination: Loop-invariant code motion, common
subexpressions, equivalent subexpressions

* Dead code elimination: Unreachable code, unused computations
* Control flow simplification: Branch folding, branch elimination

* Procedure call elimination: Single-use functions, frequent
function calls

* Bounds check elimination: Array expressions

Why is Optimization Important?

For more powerful language features

Improve programmer productivity, software reliability without
unduly sacrificing performance

Type-safe languages: type checking, array bounds checking,
garbage collection (GC)

Object-oriented programming: encapsulation; reuse;
polymorphic dispatch

Managed runtimes: just-in-time compilation; code verification
Scripting languages: interpreters; dynamic typing; domain-
specific languages

Generic programming: polymorphic algorithms and data types
First-class functions: functional programming; lambdas/blocks

Why is Optimization Important?

For better performance and portability

Current processors rely heavily on compilers for performance
and domain specific processors and FPGAs require automated
compilation of general purpose software

F1 Instances

New stance Femily With Customizable -
Field Programmable Gate Arrays

RunYour Custom Logic On EGp .

Amazon's A
ws
VD (F1) i, .cloud tomputing service toq
ﬂeld—orogrammab!e ay anno,
2ate arrg

O6GO0OO@e

Why is Optimization Important?

Because Moore’s Law is Dead

Intelligent Machines

DARPA has an ambitious How are we
$1.5 billion planto going to leverage

new post-Moore

reinvent electronics architectures?

The US military agency is worried the country could lose its
edge in semiconductor chips with the end of Moore’s Law.

by Martin Giles July 30,2018

ast year, the Defense Advanced Research Projects Agency
L (DARPA), which funds a range of blue-sky research efforts

relevant to the US military, launched a $1.5 billion, five-year

program known as the Electronics Resurgence Initiative (ERI) to
support work on advances in chip technology. The agency has just

unveiled the first set of research teams selected to explore unproven but

Why is Optimization Important?

For new applications

Wearable computing (e-textiles) Analog nano-computing (Bio)

Self
Driving
Cars

Edge intelligence

Why is Optimization Important?
To Understand

In discussing any optimization, look for three properties:

Safety — Does it change the results of the program!?

(static analysis, e.g., dataflow, dependence)

Profitability — Is it expected to speed up execution!?

(static or dynamic analysis)

Opportunity — Can we easily locate sites to modify!?
(find all sites; updates and orderings)

Why is Program Analysis Important?
Software Reliability and Security

Improve programmer productivity, software reliability without
unduly sacrificing performance

PREFix, PREFast: Identify many common bugs,
vulnerabilities in Windows, .NET applications

Microsoft Driver Verifier: Finds memory corruption, deadlocks
and other bugs in Windows drivers

CodeSonar, Coverity, Fortify, PolySpace: Find a wide range of
programming errors in several different languages

Most tools are based on program analysis, often
flow-sensitive, context-sensitive, interprocedural

Program Analysis Techniques

over-approximation of [[P]]
(e.g. static analysis)

over and under
approximation

of [P]
\/ (e.g. symbolic

—)) execution)
All behaviors in under-approximation of [P]
the universe (e.g. dynamic analysis)

Figure from Martin Vechev, ETH

How Coverity built a bug-finding tool, and
a business, around the unlimited supply
of bugs in software systems.

BY AL BESSEY, KEN BLOCK, BEN CHELF, ANDY CHOU,
BRYAN FULTON, SETH HALLEM, CHARLES HENRI-GROS,
ASYA KAMSKY, SCOTT MCPEAK, AND DAWSON ENGLER

A Few Billion
Lines of
Code Later

Using Static Analysis
to Find Bugs in
the Real World

IN 2002, COVERITY commercialized?® a research static
bug-finding tool.** Not surprisingly, as academics,
our view of commercial realities was not perfectly
accurate. However, the problems we encountered
were not the obvious ones. Discussions with tool
researchers and system builders suggest we were
not alone in our naiveté. Here, we document some
of the more important examples of what we learned

the fact that programming rules often
map clearly to source code; thus static
inspection can find many of their vio-
lations. For example, to check the rule
“acquired locks must be released,” a
checker would look for relevant opera-
tions (such as lock() and unlock())
and inspect the code path after flagging
rule disobedience (such as lock() with
nounlock() and double locking).

For those who keep track of such
things, checkers in the research system
typically traverse program paths (flow-
sensitive) in a forward direction, going
across function calls (inter-procedural)
while keeping track of call-site-specific
information (context-sensitive) and
toward the end of the effort had some
of the support needed to detect when a
path was infeasible (path-sensitive).

A glance through the literature re-
veals many ways to go about static bug
finding."**"*1 For us, the central re-
ligion was results: If it worked, it was
ood, and if not, not. The ideal: check
millions of lines of code with little
manual setup and find the maximum
number of serious true errors with the
minimum number of false reports. As
much as possible, we avoided using an-
notations or specifications to reduce
manual labor,

Like the PREfix product® we were
also unsound. Our product did not veri-
fy the absence of errors but rather tried
to find as many of them as possible. Un-
soundness let us focus on handling the
easiestcases first, scalingupasitproved
useful. We could ignore code constructs
that led to high rates of false-error mes-
sages (false positives) or analysis com-
plexity, in the extreme skipping prob-
lematic code entirely (such as assembly
statements, functions, or even entire

Flact Miena AN s emntimdAdrocns sz

COURSE TOPICS

List of Topics (Part |)

The order of topics is subject to change

Static Program Analysis

Natural loops, intervals, reducibility (refresher)
Static single assignment (SSA)

Dataflow analysis

Pointer analysis

Array dependence analysis

Interprocedural analysis

List of Topics (Part |1)

Optimizations

* Code motions and redundancy elimination

* Induction variable optimizations

* Loop transformations and memory hierarchy
optimizations

* Basic interprocedural optimizations

Advanced topics

* Basics of static analysis

* Checking correctness of compilers

* Compilers for Machine Lenarning

Compiler Overview

Program

Front-end
- .

Topics We Will Not Cover

Back-end code generation, e.g., scheduling,
allocation, software pipelining (CS 426)

Automatic vectorization, parallelization (CS 598dp)
Compilers for Machine Learning (CS 598lce)

New heterogeneous architectures (CS 598sa)
Program verification (CS 476, CS 477...)

LLVM hacking (although we have the project ©)

COURSE LOGISTICS

Schedule

— Tuesdays and Thursdays | 1:00am-12:15 pm

Course Format

* Lectures — most of the weeks (sometimes guest)
* Projects — two programming assignments (LLVM)
* Exams — midterm and final exams

* Mini-quizzes — before (almost) every lecture

Prerequisites

Helpful (I will assume you took it):
Basic compilers course (e.g., CS 426)

Also helpful:
Basic programming languages course (e.g., CS 421)

Basic computer architecture (e.g., CS 233)

Most important: commitment to learn as you go

Grading

Optimization Project

Midterm Esxam Quiz

Final Exam Quiz

Open-ended Project

10%

20%

20%

50%

Exams

First

* Take home (March 12; before the break)

* Focuses on analysis (SSA, dataflow, dependency)
* 75 minutes (within 24 hour time)

Second

 Take home

* Pointer analysis, optimization and special topics
e Also includes the materials from the first one

* 90 minutes (within 24 hour time)

Books

No official book, but many times you will need
to look into one of these:

Available online via
lllinois University Library

Advanced

ENGINEERING COMPILER DESIGN

A
COMPILER IMPLEMENTATION

SECOND EDITION

’[’/ﬂf’ﬂ(ﬁ%ﬁff sty '|'I

Steven S. Muchnick

[C2202/ 4NN PPPPIL2 \\\\\\s
(20749 gu\\\:\\ ¢l @ R

{4 #’ \

sensa

And More Books

No official book, but many times you will need
to look into one of these:

Available online via Publisher

AFAFF AR P AR AN TG AIRIANINT

FLEMMING NIELSON

ANNE RIIS NIELSO -
pouN Compilers
Computer Programmes o s
Principles

(Programming

Langiages) of Program '
n Analysis < W £

= 1
\ o %
' ¥E ’
Hecht, Matthew S. A

Principles, Techniques, & Tools

Second Editton

SAlfred V. Aho

Maonica S. Lam
Ravi Sethi
Jeffrev. D. Ullman

And More ...

We will point our several classical papers that introduced
the analysis and/or optimization techniques

To access the papers from ACM/IEE prepend the link with
the following:

http://www.library.illinois.edu/proxy/go.php?url=

Projects

Gain experience solving existing compiler problems
* Read the literature for the problems

* Find or develop a solution

* Implement the solution in a realistic compiler

e Test it on realistic benchmarks

Projects

Pl —Warm-up exercise:
e Individual, 2 weeks but do it sooner

* Scalar replacement of aggregates via SSA
(Muchnick, Chapter |2)

e Goal: become familiar with the infrastructure

P2 - Main problem
* Groups of two, |2 weeks, also do it sooner!

* Choose and solve a harder problem
(Suggestions coming soon)

Infrastructure

LLVM: Low Level Virtual Machine http://llvm.org

* Virtual instruction set: RISC-like, SSA-form
* Powerful link-time (interprocedural) optimization system

* Many front-ends: C/C++, D, Fortran, Julia, Haskell,
Obijective-C, OpenMP, OpenCL, Python, Swift, ...

e Software: |.3M+ lines of C++

* Open source: In use at many universities and major
companies

http://llvm.org/

Get in Touch

Email: misailo@illinois.edu
* Please include “[CS 526]” in the subject line

Office: Siebel Center, office 4110

Office Hours:
* By appointment (send me an email)
* | am typically free right after the class

* We can organize dedicated office hours
before the exams

mailto:misailo@illinois.edu

QUESTIONS SO FAR?

CONTROL FLOW ANALYSIS

Flow Graphs

Flow Graph: A triple G=(N,A;s), where (N,A) is a (finite)
directed graph,s € N is a designated “initial” node, and there
is a path from node s to every node n € N.

* An entry nodein a flow graph has no predecessors.
* An exit node in a flow graph has no successors.

* There is exactly one entry node, s.We can modify a
general DAG to ensure this.

Control Flow Graph (CFG)

Flow Graph: A triple G=(N,As), where (N,A) is a (finite)
directed graph,s € N is a designated “initial” node, and there is a
path from node s to every node n € N.

Control Flow Graph (CFG) is a flow graph that represents
all paths (sequences of statements) that might be traversed
during program execution.

* Nodes in CFG are program statements, and edge (S,,S,)
denotes that statement S, can be followed by S, in execution.

* In CFG,a node unreachable from s can be safely deleted.

* Control flow graphs are usually sparse.l.e.,|A |[= O(| N [).In
fact, if only binary branching is allowed |A | =2 | N |.

Control Flow Graph (CFG)

Basic Block is a sequence of statements S, ...S_
such that execution control must reach S, before
S,,and, if S, is executed, then S, ...S_ are all
executed in that order

* Unless a statement causes the program to halt

Leader is the first statement of a basic block

Maximal Basic Block is a basic block with a
maximum number of statements (n)

Control Flow Graph (CFG)

Let us refine our previous definition

CFG is a directed graph in which:
* Each node is a single basic block

* Thereis an edge bl — b2 if block b2 may be
executed after block bl in some execution

We typically define it for a single procedure

A CFG is a conservative approximation of the
control flow! VWhy!

Example

Source Code

LLVM bitcode (ver 3.9.1)

unsigned fib(unsigned n) {
int 1i;
int fo =

0, f1 = 1, f2;

if (n <= 1) return n;

for (1 = 2; 1 <= n; i++) {
f2 = fo + f1;
fo = f1;
1l = f2;

}

return f2;

define i32 @fib(i32) {
%2 = icmp ult i32 %0, 2
br i1 %2, label %12, label %3

; <label>:3:
br label %4

; <label>:4:
%5 = phi i32 [%8, %4], [1,
%6 = phi i32 [%5, %4], [9,
%7 = phi i32 [%9, %4], [2,
%8 = add 132 %5, %6

%9 = add i32 %7, 1
%10 = icmp ugt 132 %9, %0

br i1 %10, label %11, label %4

; <label>:11:
br label %12

; <label>:12:

%3]
%3]
%3]

%13 = phi i32 [%0, %1 1, [%8, %11]

ret i32 %13

See You Next Time!

Review in the next few weeks:
Muchnick, Chapter 21: Case Studies of Compilers

Review by next Tuesday:
Cytron, Ferrante, Rosen,VWegman, and Zadeck,

“Efficiently Computing Static Single Assignment
Form and the Control Dependence Graph,”

ACM Trans. on Programming Languages and Systems,
|3(4), Oct. 1991, pp. 451—-490.

If you see this, | pressed
a wrong button

