
CS 526

Advanced

Compiler

Construction
http://misailo.cs.Illinois.edu/courses/cs526

http://misailo.web.engr.illinois.edu/courses/cs526

Goals of the Course

Develop a fundamental understanding of the major

approaches to program analysis and optimization

Understand published research on various novel

compiler techniques

Solve a significant compiler problem by reading the

literature and implementing your solution in LLVM

Learn about current research in compiler technology

Compiler Overview

Program Front-end Optimizer Back-end

Preprocessing Source

• Automatic Parallelization

• Vectorization

• Cache Management

• Performance Modeling

Intermediate

Code

Object

Code

Intermediate

Code

Code Generation

• Source Code Portability

• Back-end Optimizations

• Static Profiling

• Power Management

Linking/Loading

• Interprocedural optimization

• Load-time optimization

• Security checking

Runtime compilation

• JIT code generation

• Runtime optimization

• Fault tolerance

COMPILER =

Program Analysis +

Program Transformation

Compiler Overview

Program Front-end Optimizer Back-end

Why is Optimization Important?
For source-level programming languages

Liberate programmer from machine-related issues and enable

portable programming without unduly sacrificing performance.

John Backus on the first FORTRAN compiler:

“It is our belief that if FORTRAN, during its first months, were to translate any

reasonable scientific program into an object program only half as fast as

its hand-coded counterpart, then acceptance of our system would be in

serious danger.”

“To this day I believe that our emphasis on object program efficiency

rather than on language design was basically correct. I believe that had

we failed to produce efficient programs, the widespread use of languages like

FORTRAN would have been seriously delayed.”

-- John Backus, Fortran I, II and III, Annals of the History of Computing}, vol. 1, no. 1, July 1979

Why is Optimization Important?
For expressive language features

Allow programmer to focus on clean, easy-to-understand

programs; avoid detailed hand-optimizations:

• Expression simplification: Constant folding, associativity,

commutativity

• Redundancy elimination: Loop-invariant code motion, common

subexpressions, equivalent subexpressions

• Dead code elimination: Unreachable code, unused computations

• Control flow simplification: Branch folding, branch elimination

• Procedure call elimination: Single-use functions, frequent

function calls

• Bounds check elimination: Array expressions

Why is Optimization Important?
For more powerful language features

Improve programmer productivity, software reliability without

unduly sacrificing performance

• Type-safe languages: type checking, array bounds checking,

garbage collection (GC)

• Object-oriented programming: encapsulation; reuse;

polymorphic dispatch

• Managed runtimes: just-in-time compilation; code verification

• Scripting languages: interpreters; dynamic typing; domain-

specific languages

• Generic programming: polymorphic algorithms and data types

• First-class functions: functional programming; lambdas/blocks

Why is Optimization Important?
For better performance and portability

Current processors rely heavily on compilers for performance

and domain specific processors and FPGAs require automated

compilation of general purpose software

Why is Optimization Important?
Because Moore’s Law is Dead

How are we

going to leverage

new post-Moore

architectures?

Why is Optimization Important?
For new applications

Wearable computing (e-textiles) Analog nano-computing (Bio)

Edge intelligence

Self

Driving

Cars

Why is Optimization Important?
To Understand

In discussing any optimization, look for three properties:

Safety — Does it change the results of the program?

(static analysis, e.g., dataflow, dependence)

Profitability — Is it expected to speed up execution?

(static or dynamic analysis)

Opportunity — Can we easily locate sites to modify?

(find all sites; updates and orderings)

Why is Program Analysis Important?
Software Reliability and Security

Improve programmer productivity, software reliability without

unduly sacrificing performance

• PREFix, PREFast: Identify many common bugs,

vulnerabilities in Windows, .NET applications

• Microsoft Driver Verifier: Finds memory corruption, deadlocks

and other bugs in Windows drivers

• CodeSonar, Coverity, Fortify, PolySpace: Find a wide range of

programming errors in several different languages

Most tools are based on program analysis, often

flow-sensitive, context-sensitive, interprocedural

Program Analysis Techniques

Figure from Martin Vechev, ETH

COURSE TOPICS

CS 598 SM

List of Topics (Part 1)

The order of topics is subject to change

Static Program Analysis

• Natural loops, intervals, reducibility (refresher)

• Static single assignment (SSA)

• Dataflow analysis

• Pointer analysis

• Array dependence analysis

• Interprocedural analysis

List of Topics (Part 1I)

Optimizations

• Code motions and redundancy elimination

• Induction variable optimizations

• Loop transformations and memory hierarchy
optimizations

• Basic interprocedural optimizations

Advanced topics

• Basics of static analysis

• Checking correctness of compilers

• Compilers for Machine Lenarning

Compiler Overview

Program Front-end Optimizer Back-end

Topics We Will Not Cover

• Back-end code generation, e.g., scheduling,
allocation, software pipelining (CS 426)

• Automatic vectorization, parallelization (CS 598dp)

• Compilers for Machine Learning (CS 598lce)

• New heterogeneous architectures (CS 598sa)

• Program verification (CS 476, CS 477…)

• LLVM hacking (although we have the project )

COURSE LOGISTICS

CS 526 SM

Schedule

Twice a week – Tuesdays and Thursdays 11:00am-12:15 pm

Course Format

• Lectures – most of the weeks (sometimes guest)

• Projects – two programming assignments (LLVM)

• Exams – midterm and final exams

• Mini-quizzes – before (almost) every lecture

Prerequisites

Helpful (I will assume you took it):

Basic compilers course (e.g., CS 426)

Also helpful:

Basic programming languages course (e.g., CS 421)

Basic computer architecture (e.g., CS 233)

Most important: commitment to learn as you go

Grading

Optimization Project 10%

Midterm Exam Quiz 20%

Final Exam Quiz 20%

Open-ended Project 50%

Exams

First

• Take home (March 12; before the break)

• Focuses on analysis (SSA, dataflow, dependency)

• 75 minutes (within 24 hour time)

Second

• Take home

• Pointer analysis, optimization and special topics

• Also includes the materials from the first one

• 90 minutes (within 24 hour time)

Books
No official book, but many times you will need

to look into one of these:

Available online via

Illinois University Library

And More Books

No official book, but many times you will need

to look into one of these:

Available online via Publisher

And More …

We will point our several classical papers that introduced

the analysis and/or optimization techniques

To access the papers from ACM/IEE prepend the link with

the following:

http://www.library.illinois.edu/proxy/go.php?url=

Projects

Gain experience solving existing compiler problems

• Read the literature for the problems

• Find or develop a solution

• Implement the solution in a realistic compiler

• Test it on realistic benchmarks

Projects

P1 – Warm-up exercise:

• Individual, 2 weeks but do it sooner

• Scalar replacement of aggregates via SSA

(Muchnick, Chapter 12)

• Goal: become familiar with the infrastructure

P2 – Main problem

• Groups of two, 12 weeks, also do it sooner!

• Choose and solve a harder problem

(Suggestions coming soon)

Infrastructure

LLVM: Low Level Virtual Machine http://llvm.org

• Virtual instruction set: RISC-like, SSA-form

• Powerful link-time (interprocedural) optimization system

• Many front-ends: C/C++, D, Fortran, Julia, Haskell,

Objective-C, OpenMP, OpenCL, Python, Swift, ...

• Software: 1.3M+ lines of C++

• Open source: In use at many universities and major

companies

http://llvm.org/

Get in Touch

Email: misailo@illinois.edu

• Please include “[CS 526]” in the subject line

Office: Siebel Center, office 4110

Office Hours:

• By appointment (send me an email)

• I am typically free right after the class

• We can organize dedicated office hours
before the exams

mailto:misailo@illinois.edu

QUESTIONS SO FAR?

CS 526

CONTROL FLOW ANALYSIS

The slides adapted from Vikram Adve

Flow Graphs

Flow Graph: A triple G=(N,A,s), where (N,A) is a (finite)

directed graph, s ∈ N is a designated “initial” node, and there

is a path from node s to every node n ∈ N.

• An entry node in a flow graph has no predecessors.

• An exit node in a flow graph has no successors.

• There is exactly one entry node, s. We can modify a

general DAG to ensure this. How?

Control Flow Graph (CFG)

Flow Graph: A triple G=(N,A,s), where (N,A) is a (finite)

directed graph, s ∈ N is a designated “initial” node, and there is a

path from node s to every node n ∈ N.

Control Flow Graph (CFG) is a flow graph that represents

all paths (sequences of statements) that might be traversed

during program execution.

• Nodes in CFG are program statements, and edge (S1,S2)

denotes that statement S1 can be followed by S2 in execution.

• In CFG, a node unreachable from s can be safely deleted. Why?

• Control flow graphs are usually sparse. I.e., | A |= O(| N |). In

fact, if only binary branching is allowed | A | ≤ 2 | N |.

Control Flow Graph (CFG)

Basic Block is a sequence of statements S1 ... Sn

such that execution control must reach S1 before

S2, and, if S1 is executed, then S2 . . . Sn are all

executed in that order

• Unless a statement causes the program to halt

Leader is the first statement of a basic block

Maximal Basic Block is a basic block with a

maximum number of statements (n)

Control Flow Graph (CFG)
Let us refine our previous definition

CFG is a directed graph in which:

• Each node is a single basic block

• There is an edge b1 → b2 if block b2 may be
executed after block b1 in some execution

We typically define it for a single procedure

A CFG is a conservative approximation of the
control flow! Why?

Example

Source Code

unsigned fib(unsigned n) {
int i;
int f0 = 0, f1 = 1, f2;

if (n <= 1) return n;

for (i = 2; i <= n; i++) {
f2 = f0 + f1;
f0 = f1;
f1 = f2;

}

return f2;
}

LLVM bitcode (ver 3.9.1)

define i32 @fib(i32) {
%2 = icmp ult i32 %0, 2
br i1 %2, label %12, label %3

; <label>:3:
br label %4

; <label>:4:
%5 = phi i32 [%8, %4], [1, %3]
%6 = phi i32 [%5, %4], [0, %3]
%7 = phi i32 [%9, %4], [2, %3]
%8 = add i32 %5, %6
%9 = add i32 %7, 1
%10 = icmp ugt i32 %9, %0
br i1 %10, label %11, label %4

; <label>:11:
br label %12

; <label>:12:
%13 = phi i32 [%0, %1], [%8, %11]
ret i32 %13

}

See You Next Time!

Review in the next few weeks:

Muchnick, Chapter 21: Case Studies of Compilers

Review by next Tuesday:

Cytron, Ferrante, Rosen, Wegman, and Zadeck,

“Efficiently Computing Static Single Assignment

Form and the Control Dependence Graph,”

ACM Trans. on Programming Languages and Systems,
13(4), Oct. 1991, pp. 451–490.

If you see this, I pressed

a wrong button

