CS 526
Advanced Compiler Construction

http://misailo.cs.Illinois.edu/courses/cs526
DEPENDENCE TRANSFORMS

The slides adapted from Vikram Adve and David Padua
Motivation

Memory hierarchy optimizations
Goal 1: Improving reuse of data values within loop nest
Goal 2: Exploit reuse to reduce cache, TLB misses

Tiling
Goal 1: Exploit temporal reuse when data size > cache size
Goal 2: In parallel loops, reduce synchronization overhead

Software Prefetching
Goal: Prefetch predictable accesses k iterations ahead

Software Pipelining
Goal: Extract ILP from multiple consecutive iterations

Automatic parallelization Also, auto-vectorization
Goal 1: Enhance parallelism
Goal 2: Convert scalar loop to explicitly parallel
Goal 3: Improve performance of parallel code
Loop Interchange

Informal Definition: Change nesting order of loops in a perfect loop nest, with no other changes.

\[
\begin{align*}
\text{do } i &= 2, N \\
&\quad \text{do } j = 2, M - 1 \\
&\quad \quad A[i, j] = A[i, j] \times 2 \\
&\quad \text{enddo} \\
&\text{enddo}
\end{align*}
\]

\[
\begin{align*}
\text{do } j &= 2, M - 1 \\
&\quad \text{do } i = 2, N \\
&\quad \quad A[i, j] = A[i, j] \times 2 \\
&\quad \text{enddo} \\
&\text{enddo}
\end{align*}
\]
Uses of Loop Interchange

1. Move independent loop innermost
2. Move independent loop outermost
3. Make accesses stride-1 in memory
4. Loop tiling (combine with strip-mining)
5. Unroll-and-jam (combine with unrolling)
Loop Interchange

Direction Vectors and Loop Interchange:
If δ is a direction vector of a particular dependence $S_1 \rightarrow S_2$ in a loop nest and the order of loops in the loop nest is permuted, then the same permutation can be applied to δ to obtain the new direction vector for the conflicting instances of S_1 and S_2.

Direction Matrix: A matrix where each row is the direction vector of a single dependence, i.e.,
each row \leftrightarrow a dependence
each column \leftrightarrow a loop
Direction Matrix

Direction Matrix:
each row ↔ a dependence
each column ↔ a loop

\[
\begin{align*}
A[i,j]/A[i,j] &= = \\
A[i,j]/A[i-1,j] &= + \\
B[l,j]/B[i-1,j-1] &= + \\
\end{align*}
\]

do i=2, N
 do j=2, M-1
 A[i,j] = ... * B[i-1,j-1]
 enddo
endo
enddo
Direction Matrix (Illegal)

Direction Matrix:
each row ↔ a dependence
each column ↔ a loop

\[
\begin{align*}
A[i,j]/A[i,j] &= = \\
A[i,j]/A[i-1,j] &= + - \\
B[l,j]/B[i-1,j-1] &= + +
\end{align*}
\]

\[
\begin{align*}
do \ i &= 2, \ N \\
do \ j &= 2, \ M-1 \\
A[i,j] &= \ldots \times B[i-1,j-1] \\
\end{align*}
\]

enddo
deendo
Loop Interchange Properties

Legality: A permutation of the loops in a perfect nest is legal iff the direction matrix, after the permutation is applied, has no “–” direction as the leftmost non-“=“ direction in any row.

Profitability: machine-dependent:
1. vector machines
2. parallel machines
3. caches with single outstanding loads
4. caches with multiple outstanding loads
Applying Loop Interchange

1. Single ’+’ entry: a “serial loop”
 - Move loop outermost for vectorization
 - Move loop innermost for parallelization

2. Multiple ’+’ entries: Outermost one carries dependence
 - Loop carrying the dependence changes after permutation!
 - May still benefit by moving carried-dependences to outermost loop
Loop Reversal

Informal Definition: Reverse the order of execution of the iterations of a loop

\[
\text{do } i=2, N \\
\quad \text{do } j=2, M-1 \\
\quad \quad \text{do } k=1, L \\
\quad \quad \quad A[i,j] = A[i,j-1,k+1] + A[i-1,j,k+1] \\
\quad \quad \text{enddo} \\
\quad \text{enddo} \\
\text{enddo}
\]

\[
\text{do } i=2, N \\
\quad \text{do } j=2, M-1 \\
\quad \quad \text{do } k=L, 1, -1 \\
\quad \quad \quad A[i,j] = A[i,j-1,k+1] + A[i-1,j,k+1] \\
\quad \quad \text{enddo} \\
\quad \text{enddo} \\
\text{enddo}
\]
Loop Reversal

do i=2, N
 do j=2, M-1
 do k=1, L
 enddo
 enddo
enddo

= + -
++ -

= + +
+++
Uses of Loop Reversal

Convert a ’>’ to a ’<’ in a direction vector to enable other transformations, e.g., loop interchange.

Scalarize a vector statement (e.g., in Fortran 90) by ensuring that values are read before being written.

• Scalarized code:

  ```fortran
  do i = 64, 2, -1
  enddo
  ```
Loop Skewing

Informal Definition: Increase dependence distance by \(n \) by substituting loop index \(j \) with \(jj = j + n \times i \).
E.g., For \(n = 1 \), we use \(jj = j + 1 \)

\[
\begin{align*}
do \ i=2,N \\
&do \ j=2,N \\
&enddo \\
&enddo
\end{align*}
\]

\[
\begin{align*}
do \ i=2,N \\
&do \ jj=i+2,i+N \\
&enddo \\
&enddo
\end{align*}
\]
Uses of Loop Skewing

• Improve parallelism by converting ‘=’ to ‘+’ in a direction vector
• Improve vectorization in a similar way
• (Rarely) Could be used to simplify index expressions
Unimodular Loop Transformations

These transformations can be represented by a unimodular transformation matrix T.

For Loop Interchange

$$
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
$$

For Loop Reversal

$$
\begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix}
$$

For Loop Skewing

$$
\begin{pmatrix}
1 & 0 \\
\alpha & 1
\end{pmatrix}
$$