
CONTROL FLOW ANALYSIS

The slides adapted from Vikram Adve



Flow Graphs

Flow Graph: A triple G=(N,A,s), where (N,A) is a (finite) 

directed graph, s ∈ N is a designated “initial” node, and there 

is a path from node s to every node n ∈ N.

• An entry node in a flow graph has no predecessors.

• An exit node in a flow graph has no successors.

• There is exactly one entry node, s. We can modify a 

general DAG to ensure this. How?

• In a control flow graph, any node unreachable from s can 

be safely deleted. Why?

• Control flow graphs are usually sparse. I.e., | A |= O(| N |). 

In fact, if only binary branching is allowed | A | ≤ 2 | N |.



Control Flow Graph (CFG)

Basic Block is a sequence of statements S1 ... Sn

such that execution control must reach S1 before 

S2, and, if S1 is executed, then S2 . . . Sn are all 

executed in that order

• Unless a statement causes the program to halt

Leader is the first statement of a basic block

Maximal Basic Block is a basic block with a 

maximum number of statements (n)



Control Flow Graph (CFG)

CFG is a directed graph in which:

• Each node is a single basic block

• There is an edge b1 → b2 if block b2 may be 

executed after block b1 in some execution

We define it typically for a single procedure

A CFG is a conservative approximation of the 

control flow! Why?



Example

Source Code

unsigned fib(unsigned n) {
int i;
int f0 = 0, f1 = 1, f2;

if (n <= 1) return n;

for (i = 2; i <= n; i++) {
f2 = f0 + f1;
f0 = f1;
f1 = f2;

} 

return f2;
}

LLVM bitcode

define i32 @fib(i32) {
%2 = icmp ult i32 %0, 2
br i1 %2, label %12, label %3

; <label>:3:                        
br label %4

; <label>:4:
%5 = phi i32 [ %8, %4 ], [ 1, %3 ]
%6 = phi i32 [ %5, %4 ], [ 0, %3 ]
%7 = phi i32 [ %9, %4 ], [ 2, %3 ]
%8 = add i32 %5, %6
%9 = add i32 %7, 1
%10 = icmp ugt i32 %9, %0
br i1 %10, label %11, label %4

; <label>:11:
br label %12

; <label>:12: 
%13 = phi i32 [ %0, %1 ], [ %8, %11 ]
ret i32 %13

}



Dominance in Flow Graphs

Let d, d1, d2, d3, n be nodes in G.

d dominates n (“d dom n”) iff every path in G from s 
to n contains d

d properly dominates n if d dominates n and d ≠ n

d is the immediate dominator of n (“d idom n”) 
if d is the last proper dominator on any path from 
initial node to n,    

DOM(x) denotes the set of dominators of x.



Dominator Properties

Lemma 1: DOM(s) = { s }.

Lemma 2: s dom d, for all nodes d in G.

Lemma 3: The dominance relation on nodes in a flow 

graph is a partial ordering

• Reflexive— n dom n is true for all n.

• Antisymmetric — If d dom n, then not n dom d

• Transitive — d1 dom d2 ∧ d2 dom d3 ⇒ d1 dom d3

Lemma 4: The dominators of a node form a list.

Lemma 5: Every node except s has a unique immediate 

dominator.



Finding Dominators in a Flow Graph

Input : A flow graph G = (N,A,s).

Output : The sets DOM(node) for each node ∈ N.



Finding Dominators in a Flow Graph

Input : A flow graph G = (N,A,s).

Output : The sets DOM(node) for each node ∈ N.

Initialize

Iterate



Loops

while (b) { … }  ⇒ ?



Loops

The right definition of “loop” is not obvious.

Obviously bad definitions

• Cycle: Not necessarily properly nested or disjoint

• Strongly Connected Components: 

Too coarse; no nesting information

What properties of the loops do we want to 

extract from CFG?



Loops:  Two Definitions

Natural loop — Defined using dominators

Intervals — Defined in terms of reachability in 

flow graph



Natural Loops

Def. Back Edge: An edge n → d where d dom n

Def. Natural Loop: Given a back edge, n → d, the 
natural loop corresponding to n → d is the set of 
nodes {d + all nodes that can reach n without 
going through d}

Def. Loop Header: A node d that dominates all 
nodes in the loop

• Header is unique for each natural loop Why?

• Implies d is the unique entry point into the loop

• Uniqueness is very useful for many optimizations



Natural Loops

Pros: 

+ Intuitive, and similar to SCC.

+ Single entry point: “loop header”.

+ Identifies nested loops (if different headers)

Cons:

- Nested loops are not disjoint.

- Some nodes are not part of any natural loop.

- Does not include some cycles in “irreducible” flow 
graphs.



Reducibility of Flow Graphs

Def. Reducible* flow graph: a flow graph G is called 

reducible iff we can partition the edges into 2 disjoint sets:

• forward edges: should form a DAG in which every 

node is reachable from initial node s (or also header)

• remaining edges must be back edges: i.e., only 

those edges n → d such that d dom n

Idea: 

Every “cycle” has at least one back edge

⇒ All “cycles” are natural loops

Otherwise graph is called irreducible. 
* Well-structured



Loops:  Two Definitions

Natural loop — Defined using dominators

Intervals — Defined in terms of reachability in 

flow graph



Interval Analysis*

Idea:  Partition flow graph into disjoint subgraphs so 

that each subgraph has a single entry (header). 

Definition:  The interval with node h as header, 

denoted I(h), is the subset of nodes of G constructed as:

* It’s different from the interval analysis on numerical quantities



Transformation Rules T1 and T2

T1 : Reduce a self-loop 

x → x to a single node

T2 : If x → y, and there is 

no other predecessor of y, 

then reduce x and y to a 

single node.

Important: If G is reducible, successive applications of T1 
and T2 produce the trivial graph.

⇒ Reducibility by T1 and T2 is equivalent to reducibility 
by intervals.

X X⇒

X

Y

XY⇒



Node Splitting

Claim: If a node has n > 1 predecessors and m > 1 
successors, split the node into n copies:

T2 is always applicable to a graph after a node is split

⇒ Any graph can be reduced to the trivial graph by 
applying T1, T2, and splitting.

Challenge: Finding a “minimal” splitting of a graph is 
not easy. Typically involves an NP-complete problem.



Interval Analysis*

Idea:  Partition flow graph into disjoint subgraphs so 

that each subgraph has a single entry (header). 

Definition:  The interval with node h as header, 

denoted I(h), is the subset of nodes of G constructed as:

* It’s different from the interval analysis on numerical quantities



Derived Flow Graphs

Def. Derived Flow Graph, I(g): If G is a flow graph, then its I(G) is:

(a) The nodes of I(G) are the intervals of G

(b) The initial node of I(G) is I(s)

(c) There is an arc from node I(h) to I(k) in I(G) if there is any 

arc from a node in I(h) to node k in G.

Def. Derived sequence: the sequence G = G0,G1, ...,Gk is derived iff

• Gi+1 = I(Gi) for 0 ≤ i < k,

• Gk−1 ≠ Gk, 

• I(Gk) = Gk. Gk is called the limit flow graph of G.

Definition: A flow graph is reducible iff its limit flow graph is a single 

node with no arc. Otherwise it is called irreducible.



Intervals Properties

Lemma 6. I(h) is unique: does not depend on 

order of node insertion. (See Hecht for proof)

Lemma 7. The subgraph generated by I(h) is 

itself a flow graph.

Lemma 8.

(a) Every arc entering a node of the interval I(h) 

from the outside enters the header h.

(b) h dominates every node in I(h)

(c) every cycle in I(h) includes h



See You Next Time!

Review in the next few weeks:

Muchnick, Chapter 21: Case Studies of Compilers

Review by next class: Sections from Muchnick Sections 

§4.1-4.5, 4.9: Intermediate Representations

Section §7.1: Control Flow Graphs

(or equivalent sections in Cooper & Torczon or Aho, 

Lam, Sethi & Ullman)


