CS 598sm

Probabilistic & Approximate Computing

http://misailo.web.engr.Illinois.edu/courses/cs598
(Recap)
Numerical Error Analysis:
Information-flow Type Systems
Relational Logic Reasoning
Numb3rs

Integers vs Machine Integers
• Precision
• Signed/unsigned

Reals vs Rationals vs Floats vs FixedPoint
• Precision
• Special values

Complex numbers etc.
Error Metric

For idealized computation \(P \) (running on idealized input \(x \)) and approximate computation \(P' \) (running on the approximated input \(x' \)):

\[
Err = \max_{x, x'} \left| P(x) - P'(x') \right|
\]
Lipschitz Continuity

Sets a linear bound on error propagation:

\[\forall x_1, x_2 . \quad |f(x_1) - f(x_2)| \leq K \cdot |x_1 - x_2| \]

Locally Lipschitz continuous in neighborhood \(U \)

\[\forall x_1, x_2 \in U(x_1) . \quad |f(x_1) - f(x_2)| \leq K \cdot |x_1 - x_2| \]
Error Propagation

\[f, x \text{ original, } f', x' \text{ approximate/noisy} \]

\[|f(x) - f'(x')| \leq |f(x) - f'(x) + f'(x) - f'(x')| \]

\[\leq |f(x) - f'(x)| + |f'(x) - f'(x')| \]

\[\leq \text{ErrorApprox} + \text{ErrorPropagate}^* \]

*assuming that \(f' \) propagates error in the same way as \(f \)
Adding Some Randomness

Coin Flip:
• Heads,
• Tails
• Each outcome is uncertain

Fair Coin: Probability of heads/tails is equal, ½

Biased Coin: Probabilities of heads/tails differ
Dice

Select one of 6 options

Fair or Loaded Dice

Can be simulated using the coin

• How many flips are necessary for a roll?
Example: Simulating a Dice Roll

Implement a dice roll using a fair coin (*)

* Example from “Probabilistic Programming”, Gordon, Henzinger, Nori, Rajamani (ICSE-FoSE, 2014)
Random Number Generators

Most are not really random
• However can have long cycles
• Pseudorandom number generators should satisfy various important properties
• Parallelization brings its own challenges

How much randomness do we need for approximation?
USING RANDOMNESS
Example Computation

```java
for (i=0; i < m; i++) {
    sum = sum + f(i)
}

avg = sum / m
```
Selecting Implementations

Implementation A:
• Fully accurate
• Runs in time T_a

Implementation B:
• Has absolute error E
• Runs in time T_b

How do we implement a program that has an expected error of $E/2$?

For how much time does such a program run (on average)?
Selecting Implementation

for (i=0; i < m; i++) {
 t = 0;
 if (coinflip(pf_1))
 t = f_a(i);
 else
 t = f_b(i);
 sum = sum + t
}
avg = sum / m
Sampling

Select a subset of elements from a list

Does the order matter?
Sampling Example

s = ...

for (i=0; i < m; i++) {
 if (!coinflip (s/m))
 continue;
 sum = sum + f(i)
}

avg = sum / s
Bringing it all together
• Nodes represent computation
• Edges represent flow of data
• Functions – process individual data
• Reduction nodes – aggregate data
• Functions – process individual data
• Reduction nodes – aggregate data
Function substitution

- Multiple implementations
- Each has expected error/time \((E, T)\)
Function substitution
• Multiple implementations
• Each has expected error/time (E, T)
Sampling inputs of reduction nodes
• Reductions consume fewer inputs
Sampling inputs of reduction nodes

- Reductions consume fewer inputs
Previously:
Now:
Analysis

• What if we know the distribution of the inputs?

• What if we just know that the procedure is random?
CASE 1: Sum Computation

• Original sum computation

  ```
  s = 0;
  for (i = 0; i < n; i++) s = s + f(i);
  ```

• Perforated, extrapolated sum computation

  ```
  s = 0;
  for (i = 0; i < n; i += 2) s = s + f(i);
  s = s * 2;
  ```
Step 1: Represent Result Difference

• Original sum computation

 \[
 s = 0; \\
 \text{for (i = 0; i < n; i++) } s = s + f(i);
 \]

• Perforated, extrapolated sum computation

 \[
 s = 0; \\
 \text{for (i = 0; i < n; i += 2) } s = s + f(i); \\
 s = s * 2;
 \]

• Perforation noise: \[D = s_{\text{original}} - s_{\text{perforated}} \]
Step 2: Probabilistic Modeling

• Original sum computation

 \[
 s = 0; \\
 \text{for } (i = 0; i < n; i++) \quad s = s + f(i);
 \]

• Perforated, extrapolated sum computation

 \[
 s = 0; \\
 \text{for } (i = 0; i < n; i += 2) \quad s = s + f(i); \\
 s = s * 2;
 \]

• Perforation noise: \[D = s_{\text{original}} - s_{\text{perforated}} \]
Step 2: Probabilistic Modeling

- Original sum computation

 \[
 s = 0; \\
 \text{for (} i = 0; i < n; \ i++ \text{)} \quad s = s + X_i;
 \]

- Perforated, extrapolated sum computation

 \[
 s = 0; \\
 \text{for (} i = 0; i < n; \ i += 2 \text{)} \quad s = s + X_i; \\
 s = s \times 2;
 \]

- Perforation noise: \(D = s_{\text{original}} - s_{\text{perforated}} \)
Analysis: Input/Output Relation

Perforation noise:

\[D = s_{\text{original}} - s_{\text{perforated}} \]
Analysis: Input/Output Relation

Perforation noise:

\[D = s_{\text{original}} - s_{\text{perforated}} \]

\[= X_0 + X_1 + X_2 + X_3 + X_4 + X_5 + X_6 + X_7 + \ldots \]

\[- 2 \cdot (X_0 + X_2 + X_4 + X_6 + \ldots) \]
Analysis: Input/Output Relation

Perforation noise:

\[D = s_{\text{original}} - s_{\text{perforated}} \]

\[= X_0 + X_1 + X_2 + X_3 + X_4 + X_5 + X_6 + X_7 + \ldots \]

\[- X_0 - X_0 - X_2 - X_2 - X_4 - X_4 - X_6 - X_6 - \ldots \]
Analysis: Input/Output Relation

Perforation noise:

\[D = s_{\text{original}} - s_{\text{perforated}} \]

\[= X_0 + X_1 + X_2 + X_3 + X_4 + X_5 + X_6 + X_7 + \ldots \]

\[- X_0 - X_0 - X_2 - X_2 - X_4 - X_4 - X_6 - X_6 - \ldots \]

\[= \sum_{0 \leq i < \frac{n}{2}} (X_{2i+1} - X_{2i}) \]
Analysis Results

Perforation noise:

\[D = \varphi(X_0, X_2, \ldots, X_{n-1}) \]
Analysis Results

Perforation noise: \(D = \varphi(X_0, X_2, \ldots, X_{n-1}) \)

Location: Mean

\[E(D) = \mu \]
Perforation noise:

\[D = \varphi(X_0, X_2, \ldots, X_{n-1}) \]

Location: Mean

\[E(D) = \mu \]

Spread: Variance

\[\text{Var}(D) = \sigma^2 \]
Analysis Results

Perforation noise:
\[D = \varphi(X_0, X_2, \ldots, X_{n-1}) \]

Location: Mean
\[E(D) = \mu \]

Spread: Variance
\[\text{Var}(D) = \sigma^2 \]

Bound: Distribution tail
\[\Pr[|D| > \delta] < \varepsilon \]
Case 2: Warmup
Case 2: Probabilistic Modeling

- Original sum computation
 \[s = 0; \]
 \[\text{for } (i = 0; i < n; i++) \quad s = s + X_i; \]

- Perforated, extrapolated sum computation
 \[s = 0; \]
 \[\text{for } (i = 0; i < n; i++) \quad s = s + X_i; \]
 \[s = s \times 2; \]

- Then derive in the similar manner as before

\text{coinflip}(0.5)? \ f(i) : 0
SUBLINEAR TIME ALGORITHMS
Property Checking

Main idea: make decisions just by visiting a subset of elements
• Sufficient to distinguish good elements from the clearly bad elements

It will give at most a probabilistic argument, but valid for all input sequences

Repeat multiple times for better effect.

See Ronit Rubenfeld’s course on Sublinear time algorithms: http://www.cs.tau.ac.il/~ronit/COURSES/F14sublin//
Property Checking: Input space

- Good inputs: Algorithm always returns correct
- Does not satisfy the property, but may be recognized as satisfying
- Does not satisfy the property, and is recognized as such
Checking Uniqueness

Input: x_1, x_2, \ldots, x_n

Determine between:

1. All x_i are distinct
2. The number of distinct elements is $< (1-\varepsilon)n$
Checking Uniqueness

Input: \(x_1, x_2, \ldots, x_n\)

Determine between:
1. All \(x_i\) are unique
2. The number of unique elements is \(< (1-\text{eps})n\)

Algorithm:
1. Take \(s\) samples
2. If any duplicate in the sample, return FALSE
 else return TRUE
Checking Uniqueness

Input: x1, x2, … xn

Determine between:
1. All xi are unique
2. The number of unique elements is < (1-\(\varepsilon\))\(n\)

Algorithm:
1. Take s samples
2. If any duplicate in the sample, return FALSE
 else return TRUE
Checking Sortedness

Input: \(x_1, x_2, \ldots, x_n \)
Bound: \(\varepsilon \)

Check Sortedness:
1. Select a random number \(i, 0 < i \leq n \)
2. Do a binary search for the element \(x_i \)
3. If problems during binary search
 return FAIL
4. If ended at position \(i \), return PASS
 else return FAIL
5. Repeat the procedure \(2/\varepsilon \) times
Checking Sortedness

Check Sortedness:
1. Select a random number i, $0 < i \leq n$
2. Do a binary search for the element x_i
3. If problems during binary search return FAIL
4. If ended at position i, return PASS else return FAIL
5. Repeat the procedure $2/\varepsilon$ times

Time: $O(\log(n)/\varepsilon)$
Accuracy: if input likely to pass the test, then at least $(1 - \varepsilon)n$ elements are sorted with probability $2/3$
Checking Sortedness

Time: $O(\log(n)/\epsilon)$

Accuracy: if input likely to pass the test, then at least $(1-\epsilon)n$ elements are sorted with probability $2/3$

How useful is bound $2/3$?

Can we get better probability?