Probabilistic & Approximate Computing

Sasa Misailovic

UIUC

Distribution of sum of two uniforms

Probabilistic Programs

Extend Standard (Deterministic) Programs

Distribution X := Uniform(0, 1);

Assertion assert $(X \ge 0)$;

Observation observe $(X \ge 0.5)$;

Query return X;

Probabilistic Model

 $A \sim Bernoulli(0.5)$

$$P(A=1)$$

head: 1 tail: 0

Probabilistic Model

 $A \sim Bernoulli(0.5)$

 $B \sim Bernoulli(0.5)$

 $C \sim Bernoulli(0.5)$

$$P(A=1)$$

head: 1

tail: 0

Probabilistic Model

 $A \sim Bernoulli(0.5)$

 $B \sim Bernoulli(0.5)$

 $C \sim Bernoulli(0.5)$

$$P(A=1|A+B+C\geq 2)$$

head: 1

tail: 0

Prior Distribution

 $A \sim Bernoulli(0.5)$

 $B \sim Bernoulli(0.5)$

 $C \sim Bernoulli(0.5)$

$$P(A=1|A+B+C\geq 2)$$

≥2 heads

head: 1

tail: 0

```
def main() {
    A:=flip(0.5);
    B:=flip(0.5);
    C:=flip(0.5);
    observe(A+B+C>=2);
    return A;
}
```


Probabilistic Applications

Modeling of Complex Systems

GPS & Navigation

Sobserved Image Inferred (reconstruction)

Inferred model re-rendered with novel poses

Inferred model re-rendered with novel lighting

Image Inferred model re-rendered with novel lighting

Image Inferred model re-rendered with novel lighting

Scene labeling

Example Language:

WWW.WEBPPL.ORG

Probability Refresher

2.1. Basic definition.

We define a probability triple or (probability) measure space or probability space to be a triple $(\Omega, \mathcal{F}, \mathbf{P})$, where:

- the sample space Ω is any non-empty set (e.g. $\Omega = [0, 1]$ for the uniform distribution considered above);
- the σ -algebra (read "sigma-algebra") or σ -field (read "sigma-field") \mathcal{F} is a collection of subsets of Ω , containing Ω itself and the empty set \emptyset , and closed under the formation of complements* and countable unions and countable intersections (e.g. for the uniform distribution considered above, \mathcal{F} would certainly contain all the intervals [a,b], but would contain many more subsets besides);
- the probability measure **P** is a mapping from \mathcal{F} to [0,1], with $\mathbf{P}(\emptyset) = 0$ and $\mathbf{P}(\Omega) = 1$, such that **P** is countably additive as in (1.2.3).

Probability Refresher

Probability Distribution

Discrete Distributions

Continuous Distributions

Hybrid Joint Distributions

Distribution Function

Probability Distribution Function

Probability Mass Function

Probability Density Function

Expectation

Expected value: measure of central tendency

Variance: measure of spread

Probabilistic Programs and Graphical Models

$$X := Uniform(0,1)$$

$$Y := Uniform(0,1)$$

$$Z := X + Y$$

return Z

Dependency Graph

Belief Revision

Thomas Bayes 1701 –1761

Belief Revision

Hypothesis

$$Pr(\theta \mid x) = \frac{Pr(x \mid \theta) \cdot Pr(\theta)}{Pr(x)}$$
Data

Belief Revision

Posterior Distribution

$$Pr(\theta \mid x) =$$

Prior Likelihood Distribution

$$\frac{\Pr(x \mid \theta) \cdot \Pr(\theta)}{\Pr(x)}$$

1

Normalization Constant

Is Our Brain Statistical?*

Probability of sickness is 1%

If a patient is sick, the probability that medical test returns positive is 80% (true positive)

If a patient is not sick, the probability that medical test returns positive is 9.6% (false positive)

For a given patient, the test returned positive.

What is the probability that the patient is sick?

Is Our Brain Statistical?

```
var test_effective = function() {
 var PatientSick = flip(0.01);
 var PositiveTest =
                                                         0.922
   PatientSick? flip(0.8): flip(0.096);
 condition (PositiveTest == true);
 return PatientSick;
Infer ({method: 'enumerate'},
                                       Fallacy:
          test_effective)
                                      Base rate
                                        neglect
                          For discussion: Goodman & Tenenbaum,
                                                    ■ TRUE ■ FALSF
                         Probabilistic Models of Cognition (Ch. 3)
```

Bayesian Nets

Alternative representation of probabilistic models

Graphical representation of dependencies among random variables:

- Nodes are variables
- Links from parent to child nodes are direct dependencies between variables
- Instead of full joint distribution, now terms Pr(X|parents(X)).

The graph has no cycles! DAG

Queries

Posterior distribution - what we got

Expected value –
$$\mathbb{E}(X) = \sum_{x \in Dom(X)} x \cdot \Pr(x)$$

Most likely value - Mode of the distribution

```
var test_effective = function() {
var PatientSick = flip(0.01);
var PositiveTest =
   PatientSick? flip(0.8): flip(0.096);
 condition (PositiveTest == true);
 return PatientSick;
Infer ({method: 'enumerate'},
        test_effective)
```

```
var test_effective = function()
 var PatientSick = flip(0.01);
 var PositiveTest =
   PatientSick? flip(0.8): flip(
 condition (PositiveTest == true
 return PatientSick;
Infer ({method: 'enumerate'},
        test_effective)
```



```
var test_x = function() {
var x = flip(0.50);
var y = x?
   flip(0.1): flip(0.2);
var z = x?
    flip(0.3): flip(0.4);
 condition(x == 1)
 return [y, z]
```



```
var test_x = function() {
var x = flip(0.50);
var y = x?
   flip(0.1): flip(0.2);
var z = x?
    flip(0.3): flip(0.4);
 condition(x == 1)
 return [y, z]
```


Reminder: Independence

Definition:

$$Pr(X,Y) = Pr(X) \cdot Pr(Y)$$

But also*:

$$Pr(X | Y) = Pr(X)$$

 $Pr(Y | X) = Pr(Y)$

```
var test_z = function(){
var x = flip(0.50);
 var y = flip(0.1);
 var z = x+y;
 condition(z == 1);
 return x;
```



```
var test_z = function(){
var x = flip(0.50);
var y = flip(0.1);
 var z = x+y;
 condition(z == 1);
 return x;
```


Belief Revision

Posterior Distribution

$$Pr(\theta \mid x) =$$

Likelihood Distribution

Prior

$$Pr(x \mid \theta) \cdot Pr(\theta)$$

Pr(x)

Normalization Constant

Belief Revision

Posterior Distribution

$$Pr(\theta \mid x) \sim Pr(x \mid \theta) \cdot Pr(\theta)$$

Enough to order different interpretations and select the most likely one

Belief Revision

Posterior Distribution

$$Pr(\theta \mid x) \sim Pr(x \mid \theta) \cdot Pr(\theta)$$

Enough to order different interpretations and select the most likely one

Belief Revision

Posterior Distribution

$$Pr(\theta \mid x) \sim Pr(x \mid \theta)$$

Enough to order different interpretations and select the most likely one

Beyond Bayesian Net Models

Geometric Distribution: Probability of the <u>number</u> of Bernoulli trials to get one success

Exact Inference

Naïve approach: Compute $P(x_1, x_2, ..., x_n)$

Better approach:

Take advantage of (conditional) independencies

• Whenever we can expose conditional independence, e.g., $P(x_1, x_2 | x_3) = P(x_1 | x_3) \cdot P(x_2 | x_3)$ the computation is more efficient

Compute distributions from parents to children

Complexity of Exact Inference

Number of variables: n

Naïve enumeration: complexity is $O(2^n)$

Variable Elimination: if the maximum number of parents of the nodes is $k \in \{1, ..., n\}$, then the complexity is $n \cdot O(2^k)$.

For many models this is a good improvement, but always possible to construct pathological models.