CS 598sm

Probabilistic & Approximate Computing

http://misailo.web.engr.Illinois.edu/courses/cs598
Today’s Topic

The software is written by humans, and thus can have errors.

How do we find errors or make sure they are absent?
Testing in a Nutshell

Test Inputs

Program Under Test

Test Oracle
Testing in a Nutshell

Test Inputs

1, -1, 0, 2, 3, 100...

Program Under Test

int square(x) {
 return x*x
}

Test Oracle

{ 1 : 1
-1 : 1
0 : 0
2 : 4
3 : 9
100 : 10000 }
But we already know:

Approximate Program Analysis = Accuracy + Safety

How do we adapt the existing testing practices to the new computations?
Analysis Concerns for AI Systems

From: Trustworthy AI by Jeannette M. Wing:

After two decades of investment and advances in research and development, trustworthy has come to mean a set of (overlapping) properties:

- Reliability: Does the system do the right thing?
- Safety: Does the system do no harm?
- Security: How vulnerable is the system to attack?
- Privacy: Does the system protect a person’s identity and data?
- Availability: Is the system up when I need to access it?
- Usability: Can a human use it easily?
Analysis Concerns for AI Systems

AI systems raise the bar in terms of the set of properties of interest. In addition to the properties associated with trustworthy computing (from above), we also want (overlapping) properties such as:

- **Accuracy**: How well does the AI system do on new (unseen) data compared to data on which it was trained and tested?
- **Robustness**: How sensitive is the system’s outcome to a change in the input?
- **Fairness**: Are the system outcomes unbiased?
- **Accountability**: Who or what is responsible for the system’s outcome?
- **Transparency**: Is it clear to an external observer how the system’s outcome was produced?
- **Interpretability/Explainability**: Can the system’s outcome be justified with an explanation that a human can understand and/or that is meaningful to the end user?
- **Ethical**: Was the data collected in an ethical manner? Will the system’s outcome be used in an ethical manner?
- …and others, yet to be identified
Analysis Concerns for AI Systems

The machine learning community considers accuracy as a gold standard, but trustworthy AI requires us to explore tradeoffs among these properties. For example, perhaps we are willing to give up on some accuracy in order to deploy a fairer model. Also, some of the above properties

Traditional software and hardware systems are complex due to their size and the number of interactions among their components. For the most part, we can define their behavior in terms of discrete logic and as deterministic state machines.

Today’s AI systems, especially those using deep neural networks, add a dimension of complexity to traditional computing systems. This complexity is due to their inherent probabilistic nature. Through probabilities, AI systems model the uncertainty of human behavior and the uncertainty of the physical world. More recent advances in machine learning, which rely on big data, add to their probabilistic nature, as data from the real world are just points in a probability space. Thus, trustworthy AI necessarily directs our attention from the primarily deterministic nature of traditional computing systems to the probabilistic nature of AI systems.
How Well Do I Test The Program?

Idea #1:
Coverage:
• Line
• Branch
• Path

```c
int square(x) {
    return x*x
}

float abs(float x) {
    if x > 0
        return x;
    else
        return -x;
}

float f(float x, float eps) {
    float s = 0;
    while (x > eps) {
        s = s + x;
        x = x / 2;
    }
    return s;
}
```
How do We Extend?

Make an analogy with the traditional coverage testing
But for most approximate computations, it matters which values we passed, not just which statements branches we visited!

“Neuron Coverage”

- SOSP paper
- Also: https://github.com/TrustAI/DeepCover

Various works for numerical computations
How Well Did I Test The Program?

Idea #2: Mutation Testing

float f(float x, float eps) {
 float s = 0;
 while (x > eps) {
 s = s + x;
 x = x / 2;
 }
 return s;
}

Mutants change the semantics of the program
The Test Suite is successful if it ‘kills’ all the mutants

Problem: Some mutants may legally pass as reasonable approximations (e.g., Hariri et al. ICST 2018)
An Important Distinction

Testing ML Model: Does the model have the desired property?
• E.g., is the label of a DNN correct wrt human expectation, or is the model robust to noise or perturbations of the inputs

Testing ML System: Is the system implementation correct?
• E.g., is the label of a DNN properly computed, or is the system not crashing on a bad input
What is the Correct Output?

0.2 + 0.2 ?

if Bernoulli (0.5) return 1.0 else return -1.0?

img = readImage(...)
label = DNN(img) ?
Metamorphic Testing

Test oracle problem = hard to determine the expected outcomes

Metamorphic test = establish a relation that holds between multiple inputs and also between their outputs; if the input gets transformed in a particular way, we will also know how the output will be transformed. E.g., $\exp(x) = Y$. then $\exp(x+1) = Y*e$

Identifying Implementation Bugs in Machine Learning Based Image Classifiers using Metamorphic Testing (ISSTA 2018)

(1) MR-1: Permutation of training & test features
(2) MR-2: Permutation of order of training instances
(3) MR-3: Shifting of training & test features by a constant (only for RBF kernel)
(4) MR-4: Linear scaling of the test features (only for linear kernel)

Figure 8: Permutation of RGB channels for one instance of training data. The test data is permuted in similar fashion. The results should be very similar whether the ResNet application is trained & tested on the original or permuted data.
Fuzz Testing

Generate many inputs randomly.
See if the system fails (crashes, hangs, etc.)
or develop some metamorphic relation to use as the oracle

Had a lot of success in traditional programming systems
• Compilers
• Security
CSmith

Generates arbitrary C programs that conform to the C99 standard.

- Finding and Understanding Bugs in C Compilers Xuejun Yang, Yang Chen, Eric Eide, John Regehr (PLDI ’11)
- Explores atypical combinations of C language features
- Found many bugs in existing compilers
- Key challenge is targeting program generation to more likely reveal potential problems
- Trivia: the program size that helped discover most bugs was around 82KB

Fuzzing (for various purposes) is a vibrant research area these days
Checking for Correctness

1. Make sure the compiler is not behaving unexpectedly: crashing, diverging, etc.

2. Compare generated programs:
 - Compile with multiple compilers/versions or optimization levels and see if the results differ (see e.g., CSmith)
 - Change a program in some controlled manner (V. Le at al. PLDI’14, OOPSLA’15)
 http://web.cs.ucdavis.edu/~su/emi-project/
Test Oracles

1. Detect crashing or hanging compilers

2. Differential Testing
 • Try multiple compilers – do they result in the same outcome
 • Cross-compiler, Cross-optimization, Cross-version
 • Compare the results of the compiled program or the code itself

3. Metamorphic testing
 • Change the input program in a way that you expect the output to change.
 • E.g., if the program compiles \(f(x) \{ \text{return } x \} \) then it should compile
 \(g(x) \{ \text{return } 2\times x \} \)
 • But more often, these relations are equivalences, even for a particular input, e.g.,
 \(f(x) \{ \text{return } x + 2 \} \) and \(g() \{ \text{return } 4 \} \) are equivalent when testing \(f(2) \) and \(g() \).
Example from EMI (PLDI’14)

```c
struct tiny { char c; char d; char e; }; void foo(struct tiny x) { if (x.c != 1) abort(); if (x.e != 1) abort(); } int main() { struct tiny s; s.c = 1; s.d = 1; s.e = 1; foo(s); return 0; }
```

Figure 2: Reduced version of the code in Figure 1b for bug reporting. (http://llvm.org/bugs/show_bug.cgi?id=14972)

A bug in the LLVM optimizer causes this miscompilation. The developers believe that the Global Value Numbering (GVN) optimization turns the struct initialization into a single 32-bit load. Subsequently, the Scalar Replacement of Aggregates (SROA) optimization decides that the 32-bit load is undefined behavior, as it reads past the end of the struct, and thus does not emit the correct instructions to initialize the struct. The developer who fixed the issue characterized it as

"... very, very concerning when I got to the root cause, and very annoying to fix."

Partial Redundancy Elimination (PRE) detects the expression
"e2147483647 - b" as loop invariant. Loop Invariant Motion (LIM) tries to move it up from the innermost loop to the body of the outermost loop. Unfortunately, this optimization is problematic, as GCC then detects a signed overflow in the program’s optimized version and this (incorrect) belief of the existence of undefined behavior causes the compiler to generate non-terminating code (and the bogus warning at -02).

```c
int a, b, c, d, e; int main() { for (b = 4; b > -30; b--) for (; c;) for (;;) { e = a > 2147483647 - b; if (d) break; } return 0; }
```

Figure 3: GCC miscompiles this program to an infinite loop instead of immediately terminating with no output. (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=58731)
Example Metamorphic Relations

<table>
<thead>
<tr>
<th>Paper</th>
<th>Metamorphic relation</th>
<th>How to construct metamorphic relations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tao et al. [114]</td>
<td>Equivalence relation</td>
<td>Constructing equivalent expressions, assignment blocks, and submodules</td>
</tr>
<tr>
<td>Le et al. [72]</td>
<td>Equivalence relation under a given set of test inputs</td>
<td>Deleting code in the dead regions under the set of test inputs</td>
</tr>
<tr>
<td>Le et al. [73]</td>
<td>Equivalence relation under a given set of test inputs</td>
<td>Deleting and inserting code in the dead regions under the set of test inputs</td>
</tr>
<tr>
<td>Sun et al. [111]</td>
<td>Equivalence relation under a given set of test inputs</td>
<td>Inserting code in both the live and dead regions by synthesizing valid semantic-preserving code snippets under the set of test inputs</td>
</tr>
<tr>
<td>Donaldson and Lascu [43]</td>
<td>Equivalence relation</td>
<td>Injecting dead code into test programs</td>
</tr>
<tr>
<td>Nakamura and Ishiura [89]</td>
<td>Equivalence relation</td>
<td>Applying a set of equivalent transformation rules on test programs</td>
</tr>
<tr>
<td>Donaldson et al. [42]</td>
<td>Equivalence relation</td>
<td>Applying a set of (essentially) semantics-preserving transformations on high-value graphics shaders</td>
</tr>
<tr>
<td>Samet [99–101]</td>
<td>Equivalence relation</td>
<td>Converting a source program and the object program into an intermediate representation, respectively</td>
</tr>
</tbody>
</table>
Fuzz Testing of Probabilistic Programming Systems
Probabilistic Programming System

Probabilistic Model

\[
x : [1.0, 2.0, \ldots];
\]

\[
y : [7.01, 14.2, \ldots];
\]

\[
w \sim \text{Normal}(1, 10);
\]

\[
b \sim \text{Normal}(1, 5);
\]

\[
\text{observe}(y=\text{Normal}(w \times x + b, 1.0));
\]

\[
\text{posterior } w;
\]

\[
\text{posterior } b;
\]

Data

Estimates the values for the parameters
Probabilistic Programming System

\[x : [1.0, 2.0, \ldots]; \]
\[y : [7.01, 14.2, \ldots]; \]

\[w \sim \text{Normal}(1, 10); \]
\[b \sim \text{Normal}(1, 5); \]
\[\text{observe}(y\equiv\text{Normal}(w \times x + b, 1.0)); \]
\[\text{posterior } w; \]
\[\text{posterior } b; \]

Estimates the values for the parameters
In principle, computing probabilities is simple!

\[
\begin{align*}
x & : [1.0, 2.0, \ldots]; \\
y & : [7.01, 14.2, \ldots]; \\
w & \sim \text{Normal}(1, 10); \\
b & \sim \text{Normal}(1, 5); \\
\text{observe}(y = \text{Normal}(w \times x + b, 1.0)); \\
\text{posterior } w; \\
\text{posterior } b;
\end{align*}
\]

\[
P(x|\theta) \cdot P(\theta) = P(\theta|x)
\]

Bayes Rule!

Estimates the values for the parameters
In practice, it is complicated!

$$x : [1.0, 2.0, \ldots];$$
$$y : [7.01, 14.2, \ldots];$$

\[
w \sim \text{Normal}(1, 10);
b \sim \text{Normal}(1, 5);
\text{observe}(y=\text{Normal}(w \times x + b, 1.0));
\text{posterior } w;
\text{posterior } b;
\]
What if the system has bugs?

Data

\[
x \sim \text{Normal}(1.0, 10);
\]
\[
y \sim \text{Normal}(7.01, 14.2);
\]

x : [1.0, 2.0, ...];
y : [7.01, 14.2, ...,];

Data

w \sim \text{Normal}(1, 10);
b \sim \text{Normal}(1, 5);
observe(y = \text{Normal}(w \times x + b, 1.0));
posterior w;
posterior b;
What if the system has bugs?

Data

\[x : [1.0, 2.0, \ldots]; \]
\[y : [7.01, 14.2, \ldots]; \]

w ~ Normal(1, 10);
b ~ Normal(1, 5);
observe(y==Normal(w*x+b,1.0));
posterior w;
posterior b;

InvalidArgumentError: Tensor had NaN values

Runtime Errors
What if the system has bugs?

Data

\[
x : [1.0, 2.0, \ldots]; \\
y : [7.01, 14.2, \ldots]; \\
\]

\[
w \sim \text{Normal}(1, 10); \\
b \sim \text{Normal}(1, 5); \\
\text{observe}(y = \text{Normal}(w \times x + b, 1.0)); \\
\text{posterior } w; \\
\text{posterior } b; \\
\]

Numerical Errors

\[
w : \text{nan} \\
b : \text{inf} \\
\]
What if the system has bugs?

\[x : [1.0, 2.0, \ldots]; \]
\[y : [7.01, 14.2, \ldots]; \]

\[
\begin{align*}
 w & \sim \text{Normal}(1, 10); \\
 b & \sim \text{Normal}(1, 5); \\
 \text{observe}(y = \text{Normal}(w \times x + b, 1.0)); \\
 \text{posterior } w; \\
 \text{posterior } b;
\end{align*}
\]

How can we automatically test such systems?
ProbFuzz

Automates Testing of Probabilistic Programming Systems
Leverages domain knowledge for code and data generation
Partial programs (Templates) for targeted program generation
Common language for representing probabilistic programs
Differential testing with accuracy reasoning

ProbFuzz has found more than 50 bugs in 3 PP Systems: Stan, Edward, and Pyro and underlying frameworks: Tensorflow and Pytorch
x : [1.0, 2.0, ...];
y : [7.01, 14.2, ...];

w ~ Normal(1, 10);
b ~ Normal(1, 5);
observe(y==Normal(w*x+b, 1.0));
posterior w;
priorior b;

ProbFuzz WorkFlow

Data

Model

Intermediate Language

Translator

Translator

Translator

Program Checker

Bug?

Probabilistic Programming Systems
Challenge 1: Random Generation is non-trivial

Random Test Generator needs knowledge about properties of Distributions and Inference mechanisms to produce meaningful programs.

Model

\[x \sim \text{Normal}(1, 10); \]
\[b \sim \text{Normal}(1, 5); \]
\[\text{observe}(y = \text{Normal}(w \cdot x + b, 1.0)); \]
\[\text{posterior } w; \]
\[\text{posterior } b; \]

Data

\[x : [1.0, 2.0, ...]; \]
\[y : [7.01, 14.2, ...]; \]

Intermediate Language

Generator

... weight := ??
 bias := ??
 observe(y=??...))
...

Translator

Translator

Translator

Program Checker

Bug?

Probabilistic Programming Systems
Challenge 2: Code and Data Generation

Data

\[x : [1.0, 2.0, \ldots] ; \]
\[y : [7.01, 14.2, \ldots] ; \]

Model

\[w \sim \text{Normal}(1, 10) ; \]
\[b \sim \text{Normal}(1, 5) ; \]
\[\text{observe}(y = \text{Normal}(w \times x + b, 1.0)) ; \]
\[\text{posterior } w ; \]
\[\text{posterior } b ; \]

Intermediate Language

Generator

Translator

Translator

Translator

Translator

Probabilistic Programming Systems

Stan

Edward

Pyro

Program Checker

Need to generate both Code (Model) and Data (for Conditioning)

Bug?
Challenge 3: Lack of Common Language

Model

\[
\begin{align*}
 x & : [1.0, 2.0, \ldots] \\
 y & : [7.01, 14.2, \ldots]
\end{align*}
\]

Data

\[
\begin{align*}
 w \sim \text{Normal}(0, 1) \\
 b \sim \text{Normal}(1, 5) \\
 \text{observe}(y = \text{Normal}(w x + b, 1.0)) \\
 \text{posterior } w; \\
 \text{posterior } b
\end{align*}
\]

Each Probabilistic Programming System has its own custom DSL, Specialized Inference Engine, and Programming Model.
Challenge 4: Reasoning about Accuracy is Hard

We need to account for stochastic nature of Inference Algorithms compare distributions rather than simple values and choose reasonable distance measures.

```
x : [1.0, 2.0, ...];
y : [7.01, 14.2, ...];

w ~ Normal(0, 1);
b ~ Normal(1, 5);
observe(y == Normal(w*x + b, 1.0));
posterior w;
posterior b;
```
ProbFuzz Intermediate Language

General Language for Probabilistic Programs with mathematical operations, distributions, conditionals and loops

Observe statement for conditioning

Key aspect: **Holes** (??) for Distributions and Parameters

Query statements for estimating parameters

Can be used for representing several models like **Linear Regression**, **Bayesian Networks**, **Hierarchical Models**, **Hidden Markov Models**, etc.
Generation of Concrete Programs

Template for Linear Regression

Data
- x: Float[10]
- w: Float
- b: Float
- y: w*x + b
- weight := ??
- bias := ??
- observe(y==??(weight*x+bias,??))
- posterior weight;
- posterior bias;

Prior

Model

Querries

Specify the distribution and legal ranges

Generator

Generated Instances of Code and Data

x: [1.0, 2.0, 3.0, …]
- w: 5.0
- b: 0.5
- y: [5.51, 10.48, 15.0, …]
- weight := Normal(0.0,1.0)
- bias := Gamma(1.0,1.0)
- observe(y==Normal(weight*x+bias,1.5))
- posterior weight;
- posterior bias;
Generation of Concrete Programs

Data
- x: Float[10]
- w: Float
- b: Float

Prior
- y: $w \times x + b$
- weight := ??
- bias := ??

Model
- observe($y == ??(weight \times x + bias, ??))$
- posterior weight;
- posterior bias;

Queries
- expectation(weight)
- expectation(bias)

Specification of Distributions and legal ranges

Generated Instances of Code and Data
- x: [2.1, 6.9, 111.0, ...]
- w: 1.0
- b: 0.1
- y: [2.21, 7.1, 111.11, ...]
- weight := \texttt{Gamma}(21.0, 7.0)
- bias := \texttt{Gamma}(1.0, 1.0)
- observe($y == \texttt{Gamma}(weight \times x + bias, 1.5)$)
- posterior weight;
- posterior bias;

Template for Linear Regression
Generation of Concrete Programs

Template for Linear Regression

Data
x: Float[10]
w: Float
b: Float
y: w*x + b
weight := ?

Prior
bias := ?

Model
observe(y==??(weight*x+bias,??))
posterior weight;
posterior bias;

Queries

Generated Instances of Code and Data

x: [-1.0, 52.3, 0.1, ...]
w: 3.0
b: 0.1
y: [-2.89, 157.1, 0.39, ...]
weight := Beta(21.0,7.0)
bias := Exponential(2.0)
observe(y==Normal(weight*x+bias,1.5))
posterior weight;
posterior bias;
Generating Data

Template for Linear Regression

\(x: \text{Float}[10] \)
\(w: \text{Float} \)
\(b: \text{Float} \)
*\(y: w \cdot x + b \)___

Generator

Generated Datasets

\(x: [-1.0, 52.3, 0.1, ...] \)
\(w: 3.0 \)
\(b: 0.1 \)
*\(y: [-2.89, 157.1, 0.43, ...] \)___
Generating Data with Noise

Template for Linear Regression

\[x: \text{Float}[10] \]
\[w: \text{Float} \]
\[b: \text{Float} \]
\[e: \text{Normal}(0.1,0.1)[10] \]
\[y: w \times x + b + e \]

Generated Datasets

\[x: [-1.0, 52.3, 0.1, \ldots] \]
\[w: 3.0 \]
\[b: 0.1 \]
\[y: [-2.88, 157.1, 0.43, \ldots] \]
Generating Distributions and Parameters

Prior

x: Float[10]
w: Float
b: Float
y: w*x + b
weight := ??
bias := ??

Can we fill in any random distribution here?

No! We need to do dependence analysis and interval analysis

Generator

x: [-1.0, 52.3, 0.1, ...]
w: 3.0
b: 0.1
y: [-2.89, 157.1, 0.43, ...]
Generating Distributions and Parameters

The distribution support must match the dataset \(y \)

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Support</th>
<th>(\mu)</th>
<th>(\sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>(-(\infty), (\infty))</td>
<td>(-(\infty), (\infty))</td>
<td>(0, (\infty))</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

\[x: \text{Float}[10] \]
\[w: \text{Float} \]
\[b: \text{Float} \]
\[y: w \times x + b \]
weight := ??
bias := ??
observe(\[y == ??(weight \times x + bias, ??) \])

\[x: [-1.0, 52.3, 0.1, \ldots] \]
\[w: 3.0 \]
\[b: 0.1 \]
\[y: [-2.89, 157.1, 0.43, \ldots] \]
weight := ??
bias := ??
Generating Distributions and Parameters

The distribution support must match the dataset \(y \)
The other missing parameter must be a positive value (variance of Normal distribution)
Generating Distributions and Parameters

The distribution support must match the dataset y
The other missing parameter must be a positive value (variance of Normal distribution)
The priors for weight and bias can have any support
The distribution support must match the dataset y

The other missing parameter must be a positive value (variance of Normal distribution)

The priors for weight and bias can have any support
Program Checker

```
w ~ Normal(0, 1);
b ~ Normal(1, 1);
observe(y == Normal(w*x + b, 1.0));
posterior w;
posterior b;
```

Data
```
x : [1.0, 2.0, ... ];
y : [7.01, 14.2, ... ];
```

Model

Program Checker

Probabilistic Programming Systems
Program Checker

Data

\[
x : [1.0, 2.0, \ldots];
\]
\[
y : [7.01, 14.2, \ldots];
\]

Model

\[
w \sim \text{Normal}(0, 1);
b \sim \text{Normal}(1, 1);
\]
\[
\text{observe}(y\sim\text{Normal}(w \times x + b, 1.0));
\]
\[
\text{posterior } w;
\]
\[
\text{posterior } b;
\]

Intermediate Language

Translators

Stan

Edward

Pyro

Crash Checker

Performance Checker

Numerical Checker

Accuracy Checker

Bug?
Reasoning about Accuracy

Accuracy Checker implements various kinds of checks:

- Comparison with Reference Result, e.g.: Symbolic Inference: PSI*, Hakaru+
- Comparison amongst the Probabilistic Programming Systems

We used several metrics for comparing posterior distributions, e.g.:

SMAPE for linear regression

\[
SMAPE(x_1, x_2, ..., x_n, y_1, y_2, ..., y_n) = \frac{1}{n} \sum_{i=1}^{n} \frac{|x_i - y_i|}{|x_i| + |y_i|}
\]

\[\begin{align*}
x & : [1.0, 2.0, ...]; \\
y & : [7.01, 14.02, ...]; \\
w & \sim \text{Gamma}(97.5, 86.2); \\
b & \sim \text{Beta}(44.0, 44.0); \\
\text{observe}(y \sim \text{Normal}(w \times x, b)); \\
p\text{osterior } w;
\end{align*}\]

Linear Regression Model

Stan Result

Edward Result

Pyro Result

*CAV '16, +FLOPS '16
Accuracy Checker

Stan 1.0

Does not Match!

Edward 7.0

Match!

Pyro 7.0
Compiler Fuzzing

Key idea: Generate many programs and compile them. The compiler should still be able to produce (ideally correct) code for these programs.

Questions:
• How to generate programs?
• How to know they are correct?
• How to identify where the error may be?
RQ 1: New Bugs Discovered by ProbFuzz

<table>
<thead>
<tr>
<th>Category</th>
<th>Edward</th>
<th>Pyro</th>
<th>Stan</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithmic/Accuracy</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Dimension/Boundary</td>
<td>13</td>
<td>41</td>
<td>0</td>
<td>54</td>
</tr>
<tr>
<td>Numerical</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Language/Translation</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>45</td>
<td>6</td>
<td>67</td>
</tr>
</tbody>
</table>

- So far, Developers have **Accepted** 51, **Rejected** 8, 7 are **Pending**, and **1 was already fixed**
- Out of the 51 accepted bugs, we **fixed 50** and **1 reported bug was fixed by developers**
Lessons Learned From Studying and Fixing Bugs

• **Dimension/Boundary-Value** bugs are often found in Probabilistic Programming Systems
Lessons Learned From Studying and Fixing Bugs

- **Dimension/Boundary-Value** bugs are often found in Probabilistic Programming Systems

<table>
<thead>
<tr>
<th>Category</th>
<th>Edward</th>
<th>Pyro</th>
<th>Stan</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithmic/Accuracy</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Dimension/Boundary</td>
<td>13</td>
<td>41</td>
<td>0</td>
<td>54</td>
</tr>
<tr>
<td>Numerical</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Language/Translation</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>45</td>
<td>6</td>
<td>67</td>
</tr>
</tbody>
</table>
Example Dimension/Boundary Value Bug : Pyro

\[
x : [1.1, 3.2, \ldots] \\
y : [2.1, 60.0, \ldots]
\]

\[
w \sim \text{Bernoulli}(2.0) \\
b \sim \text{Normal}(1.0, 2.0) \\
\text{observe}(y = \text{Normal}(x \times w + b, 1.0)) \\
\text{expectation}(w) \\
\text{expectation}(b)
\]

Leads to incorrect results instead of catching the error

Simple fix : Add a check for boundary conditions : $0.0 < \theta < 1.0$
Example Dimension/Boundary Value Bug 2: Pyro

$$x : [23.79, 81.77, \ldots]\$$

$$y : [24.79, 82.77, \ldots]\$$

Pyro

$$w \sim \ldots$$

$$b \sim \ldots$$

observe($$\text{Normal}(x \cdot w + b, 1.0), y$$)

posterior($$w$$);

posterior($$b$$);

ZeroDivisionError: float division by zero

Program crashes even though model is correct
What went wrong?

• Missing check for β parameter in AdamOptimizer

• Crash when β contains 1

• Fix requires knowledge of the theory involved

• The bug was actually found in Pytorch!
Lessons Learned From Studying and Fixing Bugs

• **Dimension/Boundary-Value** bugs are often found in Probabilistic Programming Systems

• Fixes might extend across the boundaries of individual systems
Fixing Dimension/boundary bugs: Pyro-Pytorch

- Found missing boundary checks for several distributions and algorithms

- Proposed Fix in Pytorch for a global validation flag

 “@lazypanda1 Sure, I think an argument validate_args=False make sense. You can even add a generic test to tests/test_distributions.py”

 The fix was accepted

- Following this fix, Pyro introduced “enable_validation(True)” flag for boundary value checking!
Pyro now includes a global flag for checking all distributions and parameters

Validation

Model validation is now available via three toggles:

```python
pyro.enable_validation()
pyro.infer.enable_validation()
# Turns on validation for PyTorch distributions.
pyro.distributions.enable_validation()
```
Negative Response: Edward-Tensorflow

- Found missing boundary checks for distributions in Edward leading to NaNs

- Proposed Fix in Edward for a global validation flag

 "That's an interesting suggestion. I can see that as a potentially useful utility. Can you raise this in TensorFlow? It seems like a feature request that should be considered upstream in TF Distributions. @dev"

- Proposed Fix in Tensorflow

 “While we appreciate the sometimes inconvenience of the current design, we're reluctant to introduce a global mechanism for setting validate_args. This means we can't accept this PR."

 Fix was rejected! 😞
Lessons Learned From Studying and Fixing Bugs

• **Dimension/Boundary-Value** bugs are often found in Probabilistic Programming Systems

• Fixes might extend across the boundaries of individual systems

• Analyzing **accuracy** problems is **hard** and requires extensive knowledge about probabilistic inference and the underlying systems
Reasoning about Accuracy

- Bug is reproduced for any value of the parameters for Beta
- Bounding the parameter p to $(0,1)$ – **support of Beta** - produces correct result

Linear Regression Model

```plaintext
x : [1.0, 2.0, ... ];
y : [7.01, 14.02, ... ];

w ~ Gamma(97.5, 86.2);
p ~ Beta(44.0, 44.0);
observe(y==Normal(w*x, p));
posterior w;
```

Stan Result

Edward Result

Pyro Result
Reasoning about Accuracy

- Bug is reproduced for any value of the parameters for Beta
- Bounding the parameter p to $(0,1)$ – **support of Beta** - produces correct result
- Stan actually interprets the sampling statement differently, which runs into errors when the bounds are not defined

Linear Regression Model

```
x : [1.0, 2.0, ... ];
y : [7.01, 14.02, ... ];
w ~ Gamma(97.5, 86.2);
p ~ Beta(44.0, 44.0);
observe(y=Normal(w*x, p));
posterior w;
```
Reasoning about Accuracy

• Bug is reproduced for any value of the parameters for Beta
• Bounding the parameter p to $(0,1)$ – **support of Beta** - produces correct result
• Stan actually interprets the sampling statement differently, which runs into errors when the bounds are not defined
• BUGS produces correct result!

![Graphs showing comparison between BUGS, Stan, Edward, and Pyro results.](image)
NEXT: HANDLING RANDOMNESS IN MACHINE LEARNING TESTS