Probabilistic &
Approximate

Computing

Sasa Misailovic

UIUC

Operations on Random Variables

X~ N(O,I)
Y ~N(QOI)
XandY are i.i.d.
Z = X +Y is also a Gaussian — N'(0,2)

Why? Lo
Convolution! J fx(x) - fy(z—x)dx

But How About This?

X ~UO,I)
Y ~U(O,I)

XandY are i.i.d.
L= X+Y

What is PDF of Z?

But How About This?

X ~UO,I)
Y ~U(O,I)

XandY are i.i.d.
Z = X+Y

What is PDF of Z?

www.psisolver.org

X := Uniform(0,1)

Y := Uniform(0,1)
L (=X +Y
return Z

$ psi sum_uniform.prb

But How About This?

f(2)
X := Uniform(0,1)
Y := Uniform(0,1)

Z =X +Y
return Z

{ 2ms l=2=e $ psi sum_uniform.prb

Z 0=Z<1

But How About This?

f(z)

X := Uniform(0,1)
Y := Uniform(0,1)
L (=X +Y

observe Z < 1
return Z

$ psi sum_uniform.prb

But How About This?

f(z)

X := Uniform(0,1)
Y := Uniform(0,1)
Z (=X +Y

observe Z < 1
return Z

$ psi sum_uniform.prb

But How About This?
f(z),

X := Uniform(0,1)
Y := Uniform(0,1)

Z =X +Y
observe Z < 1

return Z

$ psi sum_uniform.prb

Probabilistic Programs

Extend Standard (Deterministic) Programs

Distribution X := Uniform(0, 1);
Assertion assert (X >=0);
Observation observe (X >= 0.5);

Query return X;

Probabilistic Programs

Extend Standard (Deterministic) Programs

Distribution X := Uniform(0, 1);
Assertion assert (X >=0);
Observation observe (X >= 0.5);

Query return X;

Probabilistic Programming

Graphic from Frank Wood’s lecture

Probabilistic Model

A ~ Bernoulli(0.5) ;
0.5 0.5
A= 1 0.5
@ head: 1 0
S tail: 0

Probabilistic Model

A ~ Bernoulli(0.5) ;
B ~ Bernoulli(0.5)
C ~ Bernoulli(0.5)
0.5 0.5
_ 0.5
P(A=1)
% head: 1 0
A tail: 0

Probabilistic Model

Posterior Distribution
A ~ Bernoulli(0.5) 5 x

B ~ Bernoulli(0.5)
C ~ Bernoulli(0.5)

P(A=1A+B+C=>2) 0.5

>2 heads

%#@i‘iﬁ“ 0

mQ, m1 m0 m1]
,\

Prior Distribution

Probabilistic Programming

A ~ Bernoulli(0.5)

B ~ Bernoulli(0.5)
C ~ Bernoulli(0.5)

P(A=1A+B+C=>2)

>2 heads

B

head: 1
tail:

def main () {

A:=flip(0.5);
B:=flip (0.5);
C:=flip(0.5);

observe (A+B+C>=2) ;
return A;

Probabilistic Programming

p
def main () { | 1 e
A:=flip(0.5); '"é:;?:;e .
B:=f1lip (0.5);
C:=flip(0.5); 0.5
(

observe (A+B+C>=2) ;
return A;

Probabilistic Programming

p
def main () { | 1
A:=flip(0.5) ; '"gﬁ;?:;e 0.75
B:=flip(0.5); ﬂ
C:=flip(0.5); 5
(

observe (A+B+C>=2) ;
return A;

Probabilistic Programming

P Original Modified

def main () { | 1 0.82
| Inference 0.75
A:=flip(0.5+0.1); Engine

B:=flip(0.5);
C:=flip(0.5); 5.5
observe(A+B+C> 2);

return A;

Probabilistic Applications

X Face Reconstruction

Modeling of

GPS & Navigation
Complex Systems e —————— ,,
Mﬁlﬁ?;‘.n Dia_p_is_alg

/" petwall ®
&
T, | %

\

\ <%

\ i,

\
e

b‘é @

S

&

2, g
TG F
() A s
The Colbumn

School

Scene labeling

Malle! ‘ I
VOLLEYBALL

Volleyball
Smash

y

Observed
Image

AECTE
ABEE

Spam
Filter

Inferred
(reconstruction)

Inferred model
re-rendered with
novelposes

¢o
Qv
ve

G@

Inferred model
re-rendered with
novel lighting

8
g9
€
¢e

=™ Microsoft

facebook

facebook

UBER .J[

Pyro Tensorflow

WWW.WEBPPL.ORG

Probability Refresher

2.1. Basic definition.

We define a probability triple or (probability) measure space or probability
space to be a triple (2, 7, P), where:

e the sample space €) is any non-empty set (e.g. 2 = [0, 1] for the uniform
distribution considered above);

e the o-algebra (read “sigma-algebra”) or o-field (read “sigma-field”) F
is a collection of subsets of €2, containing itself and the empty set 0,
and closed under the formation of complements™ and countable unions
and countable intersections (e.g. for the uniform distribution considered
above, F would certainly contain all the intervals [a, b], but would con-

tain many more subsets besides);
e the probability measure P is a mapping from F to 0, 1], with P(0) =0
and P(Q) = 1, such that P is countably additive as in (L. 28

Rosenthal J.; A First Look at Rigorous Probability Theory 2 ed.

obability Refresher

Probability Distribution
e Discrete Distributions
e (Continuous Distributions

* Hybrid Joint Distributions

Distribution Function

Probability Distribution Function
Probability Mass Function

Probability Density Function

Expectation

Expected value: measure of central tendency

Variance: measure of spread

Probabilistic Programs
and Graphical Models

X := Uniform(0,1)
Y := Uniform(0,1)
L = X+ Y

return Z Dependency Graph

Bayes’ Rule

Belief Revision

Thomas Bayes
1701 -1761

Bayes’ Rule

Belief Revision Hypothesis

\

Pr(x | 8) - Pr(6)
j\ Pr(x)

Data

Pr(6 | x) =

Bayes’ Rule

Belief Revision Prior
Likelihood Distribution
Posterior

Distribution
\;[t \(1],/
Pr(x | 8) - Pr(6)

Pr(6 | x) = Pr(x)
T
Normalization

Constant

s Our Brain Statistical?™*

Probability of sickness is 1%

If a patient is sick, the probability that medical test returns
positive is 80% (true positive)

If a patient is not sick, the probability that medical test returns
positive is 9.6% (false positive)

For a given patient, the test returned positive.

What is the probability that the patient is sick?

* Kahneman and Tversky (1974)

Is Our Brain Statistical?

var test_effective = function() {
var PatientSick = f11p(0.01);

var PositiveTest = 0922
PatientSick? f1i1p(0.8): f11p(0.096);

condition (PositiveTest == true);

return PatientSick;

}
Infer ({method: 'enumerate'}, .
test_effective) Fallacy:
Base rate
neglect 0.078

For discussion: Goodman & Tenenbaum,
Probabilistic Models of Cognition (Ch. 3) mTRUE ®FALSE

Bayesian Nets

Alternative representation of probabilistic models

Graphical representation of dependencies
among random variables:

* Nodes are variables

* Links from parent to child nodes are direct
dependencies between variables

* Instead of full joint distribution, now terms
Pr(X| parents(X)).

The graph has no cycles! DAG

Queries

Posterior distribution — what we got

Expected value - E(X) = Z x - Pr(x)

xeEDom(X)

Most likely value — Mode of the distribution

Variable Dependencies

var test_effective = function() {
var PatientSick = flip(0.01);

var PositiveTest =
PatientSick? f1ip(0.8): f11p(0.096);

condition (PositiveTest == true);

return PatientSick;

}

Infer ({method: 'enumerate'},
test_effective)

Variable Dependencies

var test_effective = function()
var PatientSick = flip(0.01);

var PositiveTest =

PatientSick? f1ip(0.8): flip(

condition (PositiveTest == true

return PatientSick;

}

Infer ({method: 'enumerate'},
test_effective)

-

Patient
Siclk

Positive
Jest

Variable Dependencies

var test_x = function() {
var x = f1ip(0.50);

var y = Xx?
f1ip(0.1): f1ip(0.2);

var z = X?
f1ip(0.3): f11p(0.4);

condition(x == 1)

return Ly, z]

}

Variable Dependencies

var test_x = function() {
var x = f1ip(0.50);

var y = Xx?
fl1ip(0.1): f11p(0.2);

var z = X?
f1ip(0.3): f11p(0.4);

condition(x == 1)

return Ly, z]

}

Reminder: Independence

Definition:
Pr(X,Y) = Pr(X) - Pr(Y)

But also™:
Pr(X|Y) = Pr(X)
Pr(Y | X) = Pr(Y)

*Using the fact that for any two variables Pr(X,Y) = Pr(X|Y) - Pr(Y)

Variable Dependencies

var test_z = function({
var x = f11p(0.50);

var y = f11p(0.1);

var z = X+y;
condition(z == 1);
return Xx;

Variable Dependencies

var test_z = function(){
var X = f11p(0.50);

var y = f11p(0.1);
var z = X+y;
condition(z == 1);
return Xx;

Bayes’ Rule

Belief Revision Prior
Likelihood Distribution

Posterior
Di;tribution \(1)/
\'4
Pr(x | 8) - Pr(0)
Pr(6 | x) = Pr(x)
T
Normalization

Constant

Bayes’ Rule

Belief Revision Prior
Likelihood Distribution

Posterior (\
Distribution

v ' V
Pr(6 | x) ~ Pr(x| @) - Pr(0)

Enough to order different interpretations and select the most likely one

Bayes’ Rule

Prior
Likelihood Distribution
Posterior Equvi-probable
Distribution)
v ' V

Pr(6 | x) ~ Pr(x| @) - Pr(0)

Enough to order different interpretations and select the most likely one

Bayes’ Rule

Belief Revision
Likelihood
Posterior
Distribution
v \

Pr(6 | x) ~ Pr(x | 6)

Enough to order different interpretations and select the most likely one

Beyond Bayesian Net Models

Geometric Distribution: Probability of the number of
Bernoulli trials to get one success

var geometric = function() {

return flip(.5) ? 0 : geometric() + |;

}

var dist = Infer({method: 'enumerate’, maxExecutions: 10},
geometric);

viz.auto(dist);

Exact Inference
Naive approach: Compute P(xq1, X5, ..., X;)

Better approach:

Take advantage of (conditional) independencies

* Whenever we can expose conditional independence,
e.g., P(xq1,%;2|x3) = P(x1]x3) - P(X;[x3) the
computation is more efficient

Compute distributions from parents to children

Complexity of Exact Inference

Number of variables: n
Naive enumeration: complexity is 0(2™)

Variable Elimination: if the maximum number of
parents of the nodes is k € {1, ..., n}, then the
complexity is 1 - 0(2%).

For many models this is a good improvement, but
always possible to construct pathological models.

Continuous Models

TrueSkill:
* Measure player skills in various sports

Each player has an unknown parameter skill that
cannot be directly measured (i.e., it is hidden)

What we can observe is how the in-game performance
of the player (which depends on the skill) compares to
the performance of the other player

TrueSkill Model

Player skill: initially, we assume all players have similar
(randomly assigned) skills, centered around some average:

Skill~Gaussian(100,10)

Player performance: it is based on the skill, but can be
either higher or lower, depending on the moment of

inspiration:
Perf~Gaussian(Skill, 15)

Tournament scores: Each player plays against each other,
we can observe that a player with better performance won
PerfPlayerA > PerfPlayerB

TrueSkill Example

var truesSkill = function(){

var skillA = gaussian(100, 10);
var skillB = gaussian(100, 10);
var skillC = gaussian(100, 10);

var perfAl = gaussian(skillA, 15), perfBl
condition (perfAl > perfBl);

gaussian(skillB, 15);

var perfB2 = gaussian(skillB, 15), perfC2
condition (perfB2 > perfcC2);

gaussian(skillc, 15);

var perfA3 = gaussian(skillA, 15), perfcC3
condition (perfA3 > perfcC3);

gaussian(skillc, 15);

return skillA: var res = Infer({method: 'MCMC', samples:
} 50000}, trueskill)
print("Expected value: "+expectation(res));
viz.auto(res);

Inference with Continuous and
HYbI"ICI Models (Exact and Approximate)

Sampling (Rejection — Church)
Sampling (MCMC — Church & Stan & Figaro)

Variational Inference (Fun & Infer.NET)

Exact Symbolic (PSI & Hakaru)

