
Probabilistic &

Approximate

Computing

Sasa Misailovic

UIUC

Operations on Random Variables

X ~ 𝓝(0,1)

Y ~ 𝓝(0,1)

X and Y are i.i.d.

Z = X + Y is also a Gaussian – 𝓝(0,2)

Why?

Convolution! න

−∞

+∞

𝑓𝑋 𝑥 ⋅ 𝑓𝑌 𝑧 − 𝑥 𝑑𝑥

But How About This?

X ~ 𝓤(0,1)

Y ~ 𝓤(0,1)

X and Y are i.i.d.

Z = X+Y

What is PDF of Z?

But How About This?

X := Uniform(0,1)

Y := Uniform(0,1)

Z := X + Y

return Z

$ psi sum_uniform.prb

X ~ 𝓤(0,1)

Y ~ 𝓤(0,1)

X and Y are i.i.d.

Z = X+Y

What is PDF of Z?

www.psisolver.org

But How About This?

X := Uniform(0,1)

Y := Uniform(0,1)

Z := X + Y

return Z

$ psi sum_uniform.prb

0 21

z

f(z)

1

But How About This?

X := Uniform(0,1)

Y := Uniform(0,1)

Z := X + Y

observe Z < 1

return Z

$ psi sum_uniform.prb

0 21

1

z

f(z)

But How About This?

X := Uniform(0,1)

Y := Uniform(0,1)

Z := X + Y

observe Z < 1

return Z

$ psi sum_uniform.prb

0 21

1

z

f(z)

But How About This?

X := Uniform(0,1)

Y := Uniform(0,1)

Z := X + Y

observe Z < 1

return Z

$ psi sum_uniform.prb

0 21

1

z

f(z)

2

Probabilistic Programs

Distribution X := Uniform(0, 1);

Assertion assert (X >= 0);

Observation observe (X >= 0.5);

Query return X;

Extend Standard (Deterministic) Programs

Probabilistic Programs

Distribution X := Uniform(0, 1);

Assertion assert (X >= 0);

Observation observe (X >= 0.5);

Query return X;

Extend Standard (Deterministic) Programs

Probabilistic Programming

Graphic from Frank Wood’s lecture

Probabilistic Model

0.5 0.5

0

0.5

1

0 1

𝑨 ~ 𝑩𝒆𝒓𝒏𝒐𝒖𝒍𝒍𝒊 𝟎. 𝟓

𝑷(𝑨= 𝟏)

𝒉𝒆𝒂𝒅: 𝟏
𝒕𝒂𝒊𝒍: 𝟎

p

Probabilistic Model

𝑨 ~ 𝑩𝒆𝒓𝒏𝒐𝒖𝒍𝒍𝒊 𝟎. 𝟓
𝑩 ~ 𝑩𝒆𝒓𝒏𝒐𝒖𝒍𝒍𝒊(𝟎. 𝟓)
𝑪 ~ 𝑩𝒆𝒓𝒏𝒐𝒖𝒍𝒍𝒊 𝟎. 𝟓

𝑷(𝑨= 𝟏)

p

0.5 0.5

0

0.5

1

0 1

𝒉𝒆𝒂𝒅: 𝟏
𝒕𝒂𝒊𝒍: 𝟎

0.5 0.5

0

0.5

1

0 1

0.25

0.75

0

0.5

1

0 1

Probabilistic Model

𝑨 ~ 𝑩𝒆𝒓𝒏𝒐𝒖𝒍𝒍𝒊 𝟎. 𝟓
𝑩 ~ 𝑩𝒆𝒓𝒏𝒐𝒖𝒍𝒍𝒊(𝟎. 𝟓)
𝑪 ~ 𝑩𝒆𝒓𝒏𝒐𝒖𝒍𝒍𝒊 𝟎. 𝟓

𝑷(𝑨= 𝟏|𝑨+𝑩+𝑪≥𝟐)

≥2 heads

Posterior Distribution

Prior Distribution

p

𝒉𝒆𝒂𝒅: 𝟏
𝒕𝒂𝒊𝒍: 𝟎

Probabilistic Programming

def main(){

A:=flip(0.5);

B:=flip(0.5);

C:=flip(0.5);

observe(A+B+C>=2);

return A;

}

𝑨 ~ 𝑩𝒆𝒓𝒏𝒐𝒖𝒍𝒍𝒊 𝟎. 𝟓
𝑩 ~ 𝑩𝒆𝒓𝒏𝒐𝒖𝒍𝒍𝒊(𝟎. 𝟓)
𝑪 ~ 𝑩𝒆𝒓𝒏𝒐𝒖𝒍𝒍𝒊 𝟎. 𝟓

𝑷(𝑨= 𝟏|𝑨+𝑩+𝑪≥𝟐)

𝒉𝒆𝒂𝒅: 𝟏
𝒕𝒂𝒊𝒍: 𝟎

≥2 heads

def main(){

A:=flip(0.5);

B:=flip(0.5);

C:=flip(0.5);

observe(A+B+C>=2);

return A;

}

Probabilistic Programming

0.25

0.75

0

0.5

1

0 1

p

Inference
Engine

def main(){

A:=flip(0.5);

B:=flip(0.5);

C:=flip(0.5);

observe(A+B+C>=2);

return A;

}

Probabilistic Programming
p

0.25

0.75

0

0.5

1

0 1

Inference
Engine

0.25
0.18

0.75
0.82

0

0.5

1

0 1

0

0.5

1

0 1

def main(){

A:=flip(0.5+0.1);

B:=flip(0.5);

C:=flip(0.5);

observe(A+B+C>=2);

return A;

}

Probabilistic Programming
p Original Modified

Inference
Engine

Probabilistic Applications

Scene labeling

Spam

Filter

Face Reconstruction

GPS & Navigation
Modeling of

Complex Systems

Pyro Tensorflow

WWW.WEBPPL.ORG

Example Language:

Probability Refresher

Rosenthal J.; A First Look at Rigorous Probability Theory 2 ed.

Probability Distribution

• Discrete Distributions

• Continuous Distributions

• Hybrid Joint Distributions

Probability Refresher

Distribution Function

Probability Distribution Function

Probability Mass Function

Probability Density Function

Expectation

Expected value: measure of central tendency

Variance: measure of spread

Probabilistic Programs

and Graphical Models

X := Uniform(0,1)

Y := Uniform(0,1)

Z := X + Y

return Z

X Y

Z

Dependency Graph

Bayes’ Rule
Belief Revision

Thomas Bayes

1701 –1761

Bayes’ Rule
Belief Revision

Pr 𝜃 𝑥) =
Pr 𝑥 𝜃) ⋅ Pr(𝜃)

Pr(𝑥)

Hypothesis

Data

Bayes’ Rule
Belief Revision

Pr 𝜃 𝑥) =
Pr 𝑥 𝜃) ⋅ Pr(𝜃)

Pr(𝑥)

Prior

DistributionLikelihood
Posterior

Distribution

Normalization

Constant

Is Our Brain Statistical?*

Probability of sickness is 1%

If a patient is sick, the probability that medical test returns

positive is 80% (true positive)

If a patient is not sick, the probability that medical test returns

positive is 9.6% (false positive)

For a given patient, the test returned positive.

What is the probability that the patient is sick?

* Kahneman and Tversky (1974)

Is Our Brain Statistical?

var test_effective = function() {
var PatientSick = flip(0.01);

var PositiveTest =
PatientSick? flip(0.8): flip(0.096);

condition (PositiveTest == true);

return PatientSick;
}

Infer ({method: 'enumerate'},
test_effective) Fallacy:

Base rate

neglect 0.078

0.922

TRUE FALSE
For discussion: Goodman & Tenenbaum,

Probabilistic Models of Cognition (Ch. 3)

Bayesian Nets
Alternative representation of probabilistic models

Graphical representation of dependencies
among random variables:

• Nodes are variables

• Links from parent to child nodes are direct
dependencies between variables

• Instead of full joint distribution, now terms
Pr 𝑋 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋)).

The graph has no cycles! DAG

Queries

Posterior distribution – what we got

Expected value –

Most likely value – Mode of the distribution

𝔼 𝑿 = ෍

𝒙∈𝑫𝒐𝒎(𝑿)

𝒙 ⋅ Pr(𝒙)

Variable Dependencies

var test_effective = function() {
var PatientSick = flip(0.01);

var PositiveTest =
PatientSick? flip(0.8): flip(0.096);

condition (PositiveTest == true);

return PatientSick;
}

Infer ({method: 'enumerate'},
test_effective)

Variable Dependencies

var test_effective = function() {
var PatientSick = flip(0.01);

var PositiveTest =
PatientSick? flip(0.8): flip(0.096);

condition (PositiveTest == true);

return PatientSick;
}

Infer ({method: 'enumerate'},
test_effective)

Patient

Sick

Positive

Test

Variable Dependencies

var test_x = function() {

var x = flip(0.50);

var y = x?

flip(0.1): flip(0.2);

var z = x?

flip(0.3): flip(0.4);

condition(x == 1)

return [y, z]

}

X

Y Z

Variable Dependencies

var test_x = function() {

var x = flip(0.50);

var y = x?

flip(0.1): flip(0.2);

var z = x?

flip(0.3): flip(0.4);

condition(x == 1)

return [y, z]

}

X

Y Z

Reminder: Independence

Definition:

𝑷𝒓 𝑿, 𝒀 = 𝑷𝒓 𝑿 ⋅ 𝑷𝒓(𝒀)

But also*:

𝑷𝒓 𝑿 | 𝒀 = 𝑷𝒓 𝑿
𝑷𝒓 𝒀 | 𝑿 = 𝑷𝒓(𝒀)

*Using the fact that for any two variables 𝑷𝒓 𝑿, 𝒀 = 𝑷𝒓 𝑿|𝒀 ⋅ 𝑷𝒓(𝒀)

Variable Dependencies

var test_z = function(){

var x = flip(0.50);

var y = flip(0.1);

var z = x+y;

condition(z == 1);

return x;

}

X Y

Z

Variable Dependencies

var test_z = function(){

var x = flip(0.50);

var y = flip(0.1);

var z = x+y;

condition(z == 1);

return x;

}

X Y

Z

Bayes’ Rule
Belief Revision

Pr 𝜃 𝑥) =
Pr 𝑥 𝜃) ⋅ Pr(𝜃)

Pr(𝑥)

Prior

DistributionLikelihood

Posterior

Distribution

Normalization

Constant

Bayes’ Rule
Belief Revision

Pr 𝜃 𝑥) ~ Pr 𝑥 𝜃) ⋅ Pr(𝜃)

Prior

DistributionLikelihood

Posterior

Distribution

Enough to order different interpretations and select the most likely one

Bayes’ Rule
Belief Revision

Pr 𝜃 𝑥) ~ Pr 𝑥 𝜃) ⋅ Pr(𝜃)

Prior

Distribution

Equvi-probable

Likelihood

Posterior

Distribution

Enough to order different interpretations and select the most likely one

Bayes’ Rule
Belief Revision

Pr 𝜃 𝑥) ~ Pr 𝑥 𝜃)

Likelihood

Posterior

Distribution

Enough to order different interpretations and select the most likely one

Beyond Bayesian Net Models

Geometric Distribution: Probability of the number of

Bernoulli trials to get one success

var geometric = function() {

return flip(.5) ? 0 : geometric() + 1;

}

var dist = Infer({method: 'enumerate', maxExecutions: 10},

geometric);

viz.auto(dist);

Exact Inference

Naïve approach: Compute 𝑃(𝑥1, 𝑥2, … , 𝑥𝑛)

Better approach:

Take advantage of (conditional) independencies

• Whenever we can expose conditional independence,

e.g., P 𝑥1, x2 x3 = P x1 x3 ⋅ P(x2|x3) the

computation is more efficient

Compute distributions from parents to children

Complexity of Exact Inference

Number of variables: 𝒏

Naïve enumeration: complexity is 𝑂 2𝑛

Variable Elimination: if the maximum number of

parents of the nodes is 𝑘 ∈ {1, … , 𝑛}, then the

complexity is 𝑛 ⋅ 𝑂(2𝑘).

For many models this is a good improvement, but

always possible to construct pathological models.

Continuous Models

TrueSkill:

• Measure player skills in various sports

Each player has an unknown parameter skill that
cannot be directly measured (i.e., it is hidden)

What we can observe is how the in-game performance
of the player (which depends on the skill) compares to
the performance of the other player

TrueSkill Model

Player skill: initially, we assume all players have similar

(randomly assigned) skills, centered around some average:

𝑆𝑘𝑖𝑙𝑙~𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 100,10

Player performance: it is based on the skill, but can be

either higher or lower, depending on the moment of

inspiration:

𝑃𝑒𝑟𝑓~𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑆𝑘𝑖𝑙𝑙, 15)

Tournament scores: Each player plays against each other,

we can observe that a player with better performance won

𝑃𝑒𝑟𝑓𝑃𝑙𝑎𝑦𝑒𝑟𝐴 > 𝑃𝑒𝑟𝑓𝑃𝑙𝑎𝑦𝑒𝑟𝐵

TrueSkill Example
var trueSkill = function(){

var skillA = gaussian(100, 10);

var skillB = gaussian(100, 10);

var skillC = gaussian(100, 10);

var perfA1 = gaussian(skillA, 15), perfB1 = gaussian(skillB, 15);

condition (perfA1 > perfB1);

var perfB2 = gaussian(skillB, 15), perfC2 = gaussian(skillC, 15);

condition (perfB2 > perfC2);

var perfA3 = gaussian(skillA, 15), perfC3 = gaussian(skillC, 15);

condition (perfA3 > perfC3);

return skillA;

}

var res = Infer({method: 'MCMC', samples:
50000}, trueSkill)

print("Expected value: "+expectation(res));
viz.auto(res);

Inference with Continuous and

Hybrid Models (Exact and Approximate)

Sampling (Rejection – Church)

Sampling (MCMC – Church & Stan & Figaro)

Variational Inference (Fun & Infer.NET)

Exact Symbolic (PSI & Hakaru)

