Hoare Triple

{ \{ P \} S \{ Q \} }

Precondition Statement Postcondition
Hoare Triple

\{
 x=3
\} \ x*=2 \ { x>0 \}
Hoare Triple

\{ x=3 \} \quad x^* = 2 \quad \{ \quad \}

Strongest Postcondition: \(X = 6 \)
Hoare Triple

\{ \quad \} \quad x^* = 2 \quad \{ \quad x > 0 \quad \}

Weakest Precondition: \(X > 0 \)
Weakest Precondition

Weakest precondition \(P_{\text{weak}} = \text{wp}(S, Q) \)

(1) \(\{ P_{\text{weak}} \} S \{ Q \} \) is valid and

(2) \(P \Rightarrow P_{\text{weak}} \) for all \(P \) such that \(\{ P \} S \{ Q \} \)
Deterministic Language

Step 1:
No-operation
Abort computation
Assignment
Conditional
While loop

Step 2:
Probabilistic Choice
Nondeterministic Choice

S::=

 skip
 fail
 x = e
 if (b) then S1 else S2
 while (b) S
 S1 [p] S2
 S1 [] S2
Weakest Precondition Analysis

\{ _____ \} \ x^* = 2 \ \ { x > 0 \}
Weakest Precondition Analysis

\{ \quad \} \quad S \quad \{ \quad Q \quad \}
Weakest Precondition Analysis

\{ \text{wp}(S, Q) \} \quad S \quad \{ Q \}
Weakest Precondition Analysis for Deterministic Programs

Program: Predicate Transformer

Predicate: \(Q \in \mathbb{Q}: \{States\} \rightarrow \{True, False\} \)

Analysis: \(wp: Stmt \times \mathbb{Q} \rightarrow \mathbb{Q} \)

\[
wp \ (\text{skip}, Q) = Q
\]
\[
wp \ (\text{fail}, Q) = false
\]
\[
wp \ (x = e, Q) = Q[x/E]
\]

Substitutes the variable \(x \) with the expression \(E \) in the predicate \(Q \)
\[
\begin{array}{c}
\{ \quad \{ ?? \} \quad \}
\end{array}
\]

\[
x = y + 2
\]

\[
\begin{array}{c}
\{ \quad x > 0 \quad \}
\end{array}
\]
\[
\{ (x>0)[(x/y)+2] \} \\
x = y + 2 \\
\{ x>0 \}
\]
\[
\begin{align*}
\{ y + 2 & > 0 \} \\
\{ x & = y + 2 \} \\
\{ x & > 0 \}
\end{align*}
\]
\{ \text{??} \}

\textbf{x} = \textbf{x} + 2

\{ \textbf{x} \geq 0 \}
\{ x+2 > 0 \}

x = x + 2

\{ x \geq 0 \}
Weakest Precondition Analysis for Deterministic Programs

\[
\begin{align*}
\text{wp } (\text{skip}, Q) &= Q \\
\text{wp } (\text{fail}, Q) &= \text{false} \\
\text{wp } (x = e, Q) &= Q \left[x/E \right] \\
\text{wp } (s_1; s_2, Q) &= \text{wp } (s_1, \text{wp } (s_2, Q)) \\
\text{wp } (\text{if } b \text{ then } S_1 \text{ else } S_2, Q) &= (b \Rightarrow \text{wp } (S_1, Q)) \land \\
&\quad (\neg b \Rightarrow \text{wp } (S_2, Q))
\end{align*}
\]

(We will discuss loops later)
Example

\{
(\text{True}) \land (\text{True})\}

x = 2;
\{
(x > 0 \Rightarrow 2 \cdot x > 3) \land (x \leq 0 \Rightarrow -2 \cdot x > 3)\}

y = 0;
\{
(x > 0 \Rightarrow 2 \cdot x > 3) \land (x \leq 0 \Rightarrow -2 \cdot x > 3)\}

if (x > 0) y = x;
else y = -x
\{
2 \cdot y > 3\}

z = 2 \cdot y;

\text{Postcondition: } \{ z > 3 \}
Probabilistic Analysis

Expectation \(\mathbb{E} : \{ProgramStates\} \rightarrow [0, +\infty) \)

Intuitively, adds weights to Boolean predicates
Embeds Boolean predicates numerically \([Q] \rightarrow \{0, 1\}\)

Probabilistic Analysis

Expectation Transformer \(WP : Stmt \times \mathbb{E} \rightarrow \mathbb{E} \)

Allows for both probabilistic choice \(S_1 \ [p] \ S_2 \) and nondeterministic choice \(S_1 \ [] \ S_2 \)

Meaning of expectation predicates:

The probability that program will establish \(\{ \text{Postcondition} \} \) is at least \(p \).

Weakest Precondition Analysis for Deterministic Programs

\[wp \left(\text{skip, } Q \right) = Q \]
\[wp \left(\text{fail, } Q \right) = \text{false} \]
\[wp \left(x = e, Q \right) = Q \left[x/e \right] \]
\[wp \left(s_1 ; s_2, Q \right) = wp \left(s_1, wp(s_2, Q) \right) \]
\[wp \left(\text{if } b \text{ then } S_1 \text{ else } S_2, Q \right) = \left(b \Rightarrow wp(S_1, Q) \right) \land \left(\neg b \Rightarrow wp(S_2, Q) \right) \]
Weakest Precondition Analysis for Probabilistic Programs

\[wp \text{ (skip, } Q) = Q \]
\[wp \text{ (fail, } Q) = 0 \]
\[wp \text{ (} x = e, Q \text{) } = Q \left[x/e \right] \]
\[wp \text{ (} s_1; s_2, Q \text{) } = wp \text{ (} s_1, wp(s_2, Q) \text{) } \]
\[wp \text{ (if } b \text{ then } S_1 \text{ else } S_2, Q \text{) } = [b] \text{ wp(} S_1, Q \text{) } + [\neg b] \text{ wp(} S_2, Q \text{) } \]
\[wp \text{ (} s_1 [p] s_2, Q \text{) } = p \cdot wp(s_1, Q) + (1-p) \cdot wp(s_2, Q) \]
\[wp \text{ (} s_1 [] s_2, Q \text{) } = \min(\text{ wp(} s_1, Q \text{), wp(} s_2, Q \text{) }) \]
Example

Precondition (1): \(\{ p \cdot [1 = 1] + (1 - p) \cdot [1 = 3] \} \)

Program: \(x = 1 \ [p] \ x = 3; \)

Postcondition (1): \(\{ [x = 1] \} \)

\[
wp \ (x = e, Q) = Q \ [x/e] \\
wp \ (s1 \ [p] \ s2, Q) = p \cdot \wp(s1, Q) + (1-p) \cdot \wp(s2, Q)
\]
Example

Precondition (1): \(\{ p \cdot [1 = 1] + (1 - p) \cdot [1 = 3] \} \)

Program: \(x = 1 \ [p] \ x = 3; \)

Postcondition (1): \(\{ [x = 1] \} \)

\[
wp\ (x = e, Q) = Q \ [x/e] \\
wp\ (s1 \ [p] \ s2, Q) = \ p \cdot wp(s1, Q) + (1-p) \cdot wp(s2, Q)
\]
Example

Precondition (1): \{ p \}

Program: \(x = 1 [p] x = 3; \)

Postcondition (1): \{ [x = 1] \}

\[
wp (x = e, Q) = Q [x/e]
\]

\[
w p (s1 [p] s2, Q) = p \cdot wp(s1, Q) + (1-p) \cdot wp(s2, Q)
\]
Example

Precondition (2): \{ 1 - p \}

Program: \(x = 1 \ [p] \ x = 3; \)

Postcondition (2): \{ [x = 3] \}
Example

Precondition (3): \{ 0 \}

Program: \texttt{x = 1 [p] x = 3;}

Postcondition (3): \{ [x = 10] \}
Example: Statement Sequence

Program:

\[
\{ p \} \\
\{ p \cdot [1 + 1 = 2] + (1 - p) \cdot [1 - 1 = 2] \} \\
x = 1; \\
\{ p \cdot [x + 1 = 2] + (1 - p) \cdot [x - 1 = 2] \} \\
x = x + 1 \ [p] \\
\{ [x = 2] \} \\
x = x - 1;
\]

Postcondition: \{ [x = 2] \}
Example: Probability and Nondeterminism

Program:

\{
\ 1 \\
\}
\{
\ \text{min}([3 + 1 > 0], [3 - 1 > 0])
\}
x = 3;
\{
\ \text{min}([x + 1 > 0], [x - 1 > 0])
\}
x = x + 1 \ [] x = x - 1;

Postcondition: \{ [x > 0] \}
Example: Probability and Nondeterminism

Program:

\{ \ p \ \} \\
\{ \ \min([3 + 1 > 0],p \cdot [3 - 1 > 0]) \ \} \\
x = 3; \\
\{ \ \min([x + 1 > 0],p \cdot [x - 1 > 0] + (1 - p) \cdot [\text{false}] \ \} \\
x = x + 1 \ [\ p \] fail \\

Postcondition: \ { \ [x > 0] \ }
Example: Probability and Nondeterminism

Average and Worst-Case Analyses

Program (1):

\[
\begin{align*}
\{ & \frac{2}{3} \} \\
\{ & \frac{1}{3} \cdot [1 > 1] + \frac{2}{3} \cdot \left(\frac{1}{2} \cdot [2 > 1] + \frac{1}{2} [3 > 1] \right) \}
\end{align*}
\]

\((x=1) \left\lceil \frac{1}{3} \right\rceil \ ((x=2) \left\lceil \frac{1}{2} \right\rceil \ (x=3))\)

Postcondition: \(\{ [x > 1] \}\)

Program (2):

\[
\begin{align*}
\{ & 0 \} \\
\{ & \text{min}([1 > 1], \text{min}([2 > 1], [3 > 1])) \}
\end{align*}
\]

\((x=1) \left[\right] \ ((x=2) \left[\right] \ (x=3))\)

Postcondition: \(\{ [x > 1] \}\)