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Probability

“the chance that something will happen”

Approximation
“an amount or figure that is almost correct
and is not intended to be exact”

* Merriam-Webster Dictionary



Uncertainty

“something that is doubtful or unknown"

Probability quantitatively represents uncertainty
(captures the degree of belief)

Approximation efficiently copes with uncertainty
(ignores it or tractably computes with it)
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Data Classification

Are all red points in the
same cluster?



Pattern Recognition
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Multimedia
Machine Vision
Extended Reality

Autonomus Systems



Some Common Traits

Noisy Data coming from sensors
Redundancy in data and computation
Models that effectively compress such redundancy

Environments that we don’t fully understand



For Modeling, Context is Important
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“All models are wrong,
but some are useftul!”

George E. P. Box
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Two ways the brain forms
thoughts:

System 1: fast, instinctive,
and emotional

System 2: slow, conscious,
and logical

Daniel Kahneman




Classical Computing Stack

Applications

Languages and
Compilers

Y

are
Architectures

‘ e program code to
4] machine code

Dynamically schedules program to
minimize time

Execute the machine code
in unambiguous manner




Observation (1965):

“The number of gates on
a chip doubles every 24
months”

Gordon Moore




Dennard Scaling (1974)*:

Voltage and current should
be proportional to the linear
dimensions of a transistor.

Thus, as transistors shrink,
so do necessary voltage and
current.

Power is proportional to the

area of the transistor (while
the transistor is still reliable)

Robert Dennard

* Robert Dennard (from W. Gropp; UIUC CS 598WG)



End of Dennard Scaling (2005-now)
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How Much Can We Shrink?
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GET READY FOR OUR FIRST
THOUGH EXPERIMENT...



CMOS Transistors
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Probabilistic CMOS Transistors

Simple Invertor

Vdd 1

Al Q
_c”: ) P>0.99

P<0.01
P>0.99
P<0.01

\/ss .

See Probabilistic CMOS Technology:A Survey and Future Directions (VLSI 2006)



https://ieeexplore.ieee.org/document/4107595/authors#authors

Breaking Digital Abstraction

Approximate and Unreliable Hardware
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Programming Language Support

Specifications

Verification

<@.99*R(X)> f(x) { . } Rely (OOPLSA'I3)

@approx int x = .. Ener) (PLDI'l 1)

X := Gaussian (0,1); Kozen (CSS'81)

assert Pr[ Error ] < 0.001

assert Expected[ Error ] = ©

Key Concept

Probability Theory




Compilers Pick Approximations
Loop Perforation (ICSE’10, FSE’I 1)

for(i=0;i<n;i++){...}

v

for(i=0;i<n;i+=2){...}



Compilers Pick Approximations
Loop Perforation (ICSE’10, FSE’I 1)

for(i=0;i<n;i++){...}

v

for(i=0;i<n;i+=2){...}

It’s not going to work!

Program will produce
incorrect result!
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Not a correctness issue

Accuracy issue



PROBABILISTIC LOGICS AND THE SYNTHESIS OF RELIAELE
ORGANISMS FROM UNRELIABLE COMPONENTS

J. von Neumann

1. INTRODUCTION

The paper that follows 1s based on notes taken by Dr. R. 3. Plerce
on five lectures given by the author at the California Institute of
Technology in January 1952. They have been revised by the author but they
reflect, apart from minor changes, the lectures as they were delivered.

The subject-matter, as the title suggests, is the role of error
in logics, or in the physical implementation of logics — in automata-
synthesis. Error 1s viewed, therefore, not as an extraneous and misdirected
or misdirecting accident, but as an essential part of the process under con-
gideration — its importance in the synthesis of automata belng fully com-
parable to that of the factor which is normally considered, the intended and
correct logical structure.

OQur present treatment of error is unsatisfactory and ad hoc. It
1s the author's conviction, volced over many years, that error should be
treated by thermodynamical methods, and be the subject of a thermodynamical
theory, as information has been, by the work of L. Szilard and C, E. Shannon
(Cf. 5.2). The present treatment falls far short of achieving this, but 1t
assembles, it is hoped, some of the building materials, which will have to
enter into the final structure.

The author wants to express hls thanks to K. A. Brueckner and
M. Gell-Mann, then at the University of I1linois, to whose discussions in
19%1 he owes some important stimili on this subject; to Dr. R. S. Plerce at
the Californis Institute of Technology, on whose excellent notes this ex-
position 4s based; and to the Californie Institute of Technology, whose
invitation to deliver these lectures combined with the very warm reception
by the audience, caused him to write this peper in its present form, and
whose cooperation in connection with the present publication 1s much

appreciated.
43




Classical Computing Stack

Applications

Languages and
Compilers

Y

are
Architectures

‘ e program code to
4] machine code

Dynamically schedules program to
minimize time

Execute the machine code
in unambiguous manner




Approximate Computing

New-Reality Computing Stack

Applications
(tolerate errors)

f4,
\%s’
\.\"

Languages and
Compilers

Systems
Software

Hardware
Architectures

Translates the program code to
automatically approximate code

Dynamically schedules program to
minimize time by trading accuracy

Execute the code approximately
and non-deterministically

>
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Goal of the Course

Embarlcon a journey to
rethink computing in the world

where absolute correctness is elusive

— Learn from recent papers
— Discuss new research ideas
— Do a fun project



PEEK PREVIEW



Date

8/25

8727

91

9/3

9/8

Topic

Introduction
Background Read: Exploiting Errors for Efficiency: A Survey from Circuits to
Algorithms (CSUR 2020)

Approximations in Software Systems
Background Read: Exploiting Errors for Efficiency: A Survey from Circuits to
Algorithms (CSUR 2020)

Approximations: Numerical Computations
Background Read: What Every Computer Scientist Should Know About Floating-
Point Arithmetic (ACM 1991)

Approximations: Machine Learning
Background Read: Neural Network Quantization Survey
Background Read: A Survey of Model Compression and Acceleration for Deep

Neural Networks (IEEE Signal Processing Magazine, 2020)

Approximations: Non-deterministic
Background Read: Approximate Communication: Techniques for Reducing

Communication Bottlenecks in Large-Scale Parallel Systems (CSUR 2018)

Background Read: Probabilistic CMOS Technology: A Survey and Future Directions

(VLSI 2006)

Tentative Lectures

Presenter

Sasa
Slides

Sasa
Slides

Sasa

Slides

Sasa
Slides

Sasa
Slides

Notes

Fun Facts: ). von Neumann. Probabilistic
logics and synthesis of reliable organisms
from unreliable components (Automata
Studies, 1956)

Fun Facts: Computing, Approximately -- Ravi
Nair's talk (WACI@ASPLOS 2008)

Additional Read: Towards a Compiler for
Reals (TOPLAS 2017)

Software: Precimonious

Fun Facts: How Accurate is Scientific
Software? (IEEE 1994)

Additional read: Tensorflow: A system for
large-scale machine learning (OSDI 2016)
Additional read: Demystifying Parallel and
Distributed Deep Learning: An In-depth
Concurrency Analysis (ACM CSUR 2019)
Software: Intel Distiller

Additional Read: Ener): Approximate Data
Types for Safe and General Low-Power
Computation (PLDI 2011)

Additional Read: Unconventional
Parallelization of Noneterministic
Applications (ASPLOS 2018)

9/10

9/10

9/15

9/17

9/22

9/24

Submit Your Paper Choices: Link

Quality-Aware Optimization Systems
Background Read: Metaheuristics Book (Ch.1, Ch.2, Ch.3, Ch.7)

Probabilistic Programming (1)
Background Read: Probabilistic Programming (ICSE/FoSE 2014)

Background Read: An Introduction to Probabilistic Programming

Probabilistic Programming (2)

Background Read: Probabilistic Models of Cognition, Ch.7
Examples: Examples worked out in class

Background Read: PPAML Summer School 2016

Probabilistic Programming (3)
Background Read: Bayesian inference using data flow analysis (FSE 2013)

Testing and Verifying Approximate, Nondeterministic, and
Probabilistic Software

Background Read: A Comprehensive Study of Real-World Numerical Bug
Characteristics (ASE 2017)

Background Read: Testing Probabilistic Programming Systems (FSE 2018)

Background Read: A practical guide for using statistical tests to assess randomized

algorithms in software engineering (ICSE 2011)

Sasa
Slides

Sasa
Slides

Sasa
Slides

Sasa
Slides

Sasa
Slides

Additional Read: Evolutionary Algorithms
for Solving Multi-Objective Problems (Ch.1)
Additional Read: Language and Compiler
Suppert for Auto-Tuning Variable-Accuracy
Algerithms (CGO 2011)
Software: OpenTuner

Additional Read: Probabilistic Models of
Cognition (online book)

Additional Read: Modeling Agents with

Probabilistic Programs (online book)

Additional Read: The Design and
Implementation of Probabilistic

Programming Languages (online book)



9/29

10/1

10/6

10/8

Tentative Paper List

Approximate Systems (1)
Primary Read: Managing Performance vs. Accuracy Trade-offs With Loop Perforation
(FSE 2011)

Best-Effort Parallel Execution Framework for Recognition and
Mining Applications (IPDPS 2009)

Approximate Systems (2)
Primary Read: Input responsiveness: using canary inputs to dynamically steer
approximation (PLDI 2016)

Crayon: Saving Power through Shape and Color Approximation on
Next-Generation Displays (EuroSys 2016)

Approximate Systems (3)

Primary Read: Proactive control of approximate programs (ASPLOS 2016)
JouleGuard: Energy Guarantees for Approximate Applications

(SOSP 2015)

Approximate Systems (4)

Primary Read: Rigorous floating-point mixed-precision tuning (POPL 2017)
Chisel: Reliability- and Accuracy-Aware Optimization of

Approximate Computational Kernels (OOPSLA 2014)

10/13

10/15

10/20

10/22

10/27

10/29

11/3

Accuracy-Aware DNN Inference
Primary Read: ApproxHPVM: A Portable Compiler IR for Accuracy-aware
Optimizations (OOPSLA 2019)

PerforatedCNNs: Acceleration through Elimination of Redundant
Convolutions (NIPS 2016)

Pruning/Distilling in Neural Networks
Primary Read: Scalpel: Customizing DNN Pruning to the UnderlyingHardware
Parallelism (ISCA 2017)

ExTensor: An Accelerator for Sparse Tensor Algebra (MICRO 2019)

Quantization of Neural Networks
Primary Read: Deep Compression: Compressing Neural Networks With Pruning,
Trained Quantization, and Huffman Coding (ICLR 2016)

Quantized neural networks: training neural networks with low

precision weights and activations (JMLR 2017)

Training DNNs in Low-Precision
Primary Read: Understanding and Optimizing Asynchronous Low-Precision
Stochastic Gradient Descent (ISCA 2017)

Training Deep Neural Networks with 8-bit Floating Point Numbers
(NeurlPS 2018)

Testing: Deep Learning Applications
Primary Read: DeepXplore: automated whitebox testing of deep learning systems
(SOSP 2017)

Is Neuron Coverage a Meaningful Measure for Testing Deep Neural
Networks? (FSE 2020)

Testing: Numerical Applications
Primary Read: Efficient Generation of Error-Inducing Floating-Point Inputs via
Symbolic Execution (ICSE 2020)

Effective Floating-Point Analysis via Weak-Distance Minimization
(PLDI 2019)

Testing: Probabilistic Applications
Primary Read: Statistical Algorithmic Profiling for Randomized Approximate
Programs (ICSE 2019)

Detecting Flaky Tests in Probabilistic and Machine Learning
Applications (ISSTA 2020)

11/5

11/10

11/12

11/17

12/1

10/6

Probabilistic Programming Systems (1)
Primary Read: Design and Implementation of Probabilistic Programming Language
Anglican (IFL 2016)

Stan: A Probabilistic Programming Language (Journal of Statistical
Software)

Probabilistic Programming Systems (2)
Primary Read: Compiling Markov Chain Monte Carlo Algorithms for Probabilistic
Modeling (PLDI 2017)

AcMC 2: Accelerating Markov Chain Monte Carlo Algorithms for
Probabilistic Models (ASPLOS 2019)

Probabilistic Programming Systems (3)
Primary Read: Gen: a general-purpose probabilistic programming system with
programmable inference

Pyro: Deep Universal Probabilistic Programming (JMLR 2018)

Probabilistic Programming Systems (4)
Primary Read: R2: An Efficient MCMC Sampler for Probabilistic Programs (AAAI
2014)

Probabilistic Programming with Densities in SlicStan: Efficient,
Flexible and Deterministic (POPL 2019)

Application of Probabilistic Analysis 1
Primary Read: Static Analysis for Probabilistic Programs: Inferring Whole Program
Properties from Finitely Many Paths (PLDI 2013)

Bayonet: Probabilistic Inference for Networks (PLDI 2018)

Application of Probabilistic Analysis 2
Primary Read: Verifying Quantitative Reliability for Programs that Execute on
Unreliable Hardware (OOPSLA 2013)

Approxilyzer: Towards A Systematic Framework for Instruction-Level

Approximate Computing and its Application to Hardware Resiliency (MICRO 2016)
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Study Dynamic Approximation

swaptions
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Study Dynamic Approximation

Normalized Performance
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Approximations in ML Frameworks
in software and hardware

; i SIMD-Aware
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Figure 7: Main steps of SIMD-aware weight pruning.
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Figure 8: (A) Weights grouping; (B) Sparse weight matrix after
pruning weight groups; (C) Modified CSR format for SIMD-

aware weight pruning.



Testing Approximate and
Probabilistic Programs

DeepXplore, SOSP 2017

(a) Input 1 (b) Input 2 (darker version of 1)
Figure 1: An example erroneous behavior found by DeepXplore
in Nvidia DAVE-2 self-driving car platform. The DNN-based
self-driving car correctly decides to turn left for image (a) but
incorrectly decides to turn right and crashes into the guardrail
for image (b), a slightly darker version of (a).



Probabilistic Programming
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Probabilistic Programs

Extend Standard (Deterministic) Programs

Distribution X := Uniform(9, 1);
Assertion assert ( X >=0 );
Observation observe ( X >= 0.5 );

Query return X;



== Microsoft
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Diagram by Frank Wood



COURSE LOGISTICS



Schedule

—Tuesdays and Thursdays | lam-12:15pm

We first do several lectures: tutorial style introductions to
* Approximate computing
* Probabilistic programming

* Covers key ideas and classical results

In the majority of the course, we will discuss recent papers
* Typically, discussion focus is on one paper at a time
* One student presents the paper

* Everyone participates in the discussion



Course Format

Research-oriented Course;
* Discussing latest research
* Reading from primary literature (papers)

* Focus on finding new ideas and building new systems,
not lecturing and grading

Research project is the main outcome of the course

* Be able to publish your work at a conference

* Itis hard! Unpredictable + requires time and effort



The Show Must Go On...

Bad Internet connection, Zoom, other sites, students cannot
access some services in their area, life happens...

Lesson from approximate computing:

Something will fail occasionally
What matters is how we respond and recover.



Prerequisites

Basic Probability (e.g., CS 361)

Basic Compilers and/or PL course (e.g., CS 421, CS 426)
Basic Computer Architecture (e.g., CS 233)

Basic Machine Learning (e.g., CS 446)

(or a commitment to learn as you go)



Real Prerequisites

Being comfortable with the
idea of doing research

(If you don’t know what you’re getting into,
talk to me after the class)



Grading

Reviews & Discussion 20%
Paper Presentations 25%
Project 50%
Homework 2%

10% XC



Papers

For the majority of the class, we will jointly read
and discuss recent research results

We focus on one paper in each class discussions

* but for most part we put it in context with at least
another related paper

Make sure you can make it to the class on the day
you’re presenting the paper!



Selecting Papers

Submit at least 5 candidate papers you'd like to present
* List of papers is on the website (use the week and number)

* Splitin the primary read — the one we will focus the most in
the discussion and secondary read — the one we will use to
expand our understanding of the topic

* If you'd like a paper outside of the list, email me and make a case

Submission deadline is September 10

* Link: http://misailo.web.engr.lllinois.edu/courses/598sm/

*  Will get back with the assignments by the class after


http://misailo.web.engr.illinois.edu/courses/598sm/

Reviews and Discussions

For each paper, write a review of between 500-1000 words:

Summarize the primary paper:
state main contributions in one/two paragraphs (use your own
words!)

Evaluate the contribution and discuss pros and cons:
give a honest critique of the approach (main part)

Two questions:
about the paper, the general topic, its impact, or extensions (key!)

Summarize the secondary paper after reading only its

introduction (and maybe example) sections
State main contributions in one/two paragraphs

Relate the two papers
What is similar and what is different (extrapolate what the 2"
paper does from the first two sections)



Reviews and Discussions

Send reviews before the lecture
* By midnight two days before the lecture
e  Submission forms: we will use HotCRP

Discuss papers online before the class

* You will be able to see everyone else’s reviews

* Improve your understanding on the paper’s pros/cons
* Free to update your reviews after reading the other reviews.
* The lead student moderates the discussion

Participate in the discussion during the class
*  We try to reach

* Purpose: practice how to be loud
(at the conferences, board meetings, home...)



Paper Lead: Presentation

Meet with the instructor
* Mandatory! (we can set up 30min meeting)
* Discuss outline and questions you have so far (ok if still rough!)
* Send the recorded video by the time the reviews are due

per presentation (ok to have video):
* Explain motivation for the work
* Clearly present the technical solution and results
* Use your own example (not the one from the paper)
* Outline limitations / improvements
* Focus on concepts, leave out nonessential details
* Discuss the impact on the related/follow-up work



Paper Lead: Roles (Continued)

Before the class:
* Lead the online discussion (I will often help)

* Prepare the response to the questions raised by other
students (by pointing into the paper or other related work)

After your presentation:

* Lead the discussion
(take the online discussion as a starting point)

* Help reach the verdict about the main points of the paper

* Summarize the discussion on the online system after the class



Grading Presentations

Presentation quality:

oW we

oW we

oW we

oW we

C

d

C

d

Te
Te

Te

Te

you understand the work!?
you present it (clarity and grace)?
you answer the questions!

you write the after-class report!?

We will take into account the paper difficulty



Project

Teams of two but individual is also ok this semester
* Teamwork is a great experience!
* But this year is strange in so many ways!

Research projects, some ideas:

* New Software and/or hardware approximations

* Dynamic or input-aware approximations

* Optimize approximate inference algorithms

* New program analysis for probabilistic programs

* New probabilistic analysis of approximate programs
* Implement and compare existing approaches

* Survey literature on an emerging topic



Grading Projects

Proposal by October |3
* Meet with instructor for a quick discussion

Deliverables:
* Short paper — up to 5 pages ACM 10pt format
* Think of e.g.,, DATE (https://www.date-conference.com/)

* Project overview — |0/15 minutes
* Officially, due last weelk of classes (Tuesday)

Real outcome:

* Prepare (or make a good step toward) a publishable
research paper


https://www.date-conference.com/

Grading

Reviews & Discussion

10% XC



RESOURCES FOR READING,
WRITING AND PRESENTING



Reading Papers

“How to Read a Research Paper”,
by Michael Mitzenmacher

http://www.eecs.harvard.edu/~michaelm/postscripts/ReadPaper.pdf

“How to Read an Engineering Research Paper”,
by William Griswold

http://cseweb.ucsd.edu/~wgg/CSE2 | 0/howtoread.html

Advice compiled by Tao Xie:

http://taoxie.cs.illinois.edu/advice.htm#review



http://www.eecs.harvard.edu/~michaelm/postscripts/ReadPaper.pdf
http://cseweb.ucsd.edu/~wgg/CSE210/howtoread.html
http://taoxie.cs.illinois.edu/advice.htm#review

Writing Reviews

“The Task of the Referee”, by Allan Smith

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.177.3844

“Constructive and Positive Reviewing”,
by Mark Hill and Kathryn McKinley

http://www.cs.utexas.edu/users/mckinley/notes/reviewing.html



http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.177.3844
http://www.cs.utexas.edu/users/mckinley/notes/reviewing.html

Presenting Research

“How to give strong technical presentations”
by Markus Puschel

http://users.ece.cmu.edu/~pueschel/teaching/guides/guide-presentations.pdf

Patrick Winston’s talk @ MIT:

https://www.youtube.com/playlist?list=PL9F53600 | A3C605FC

Jean Luc Doumont’s talk
https://www.youtube.com/watch?v=meBXuTIP|Qk



http://users.ece.cmu.edu/~pueschel/teaching/guides/guide-presentations.pdf
https://www.youtube.com/playlist?list=PL9F536001A3C605FC
https://www.youtube.com/watch?v=meBXuTIPJQk

QUESTIONS SO FAR?



