CS 598sm

“robabilistic &
Approximate

Computing

http://misailo.web.engr.lllinois.edu/courses/cs598

http://misailo.web.engr.illinois.edu/courses/cs598

Today’s Topic

The software is written by humans, and thus can have errors.

How do we find errors or make sure they are absent?

Testing in a Nutshell

Program Under Test

Testing in a Nutshell

int square(x) {

Program Under Test return x*x
}
{1:1
_ _1 : 1
0 : 0
2 4
3 :9
100 : 10000 }

But we already know:

Approximate
Program Analysis =

+

How do we adapt the existing testing
practices to the new computations?

Analysis Concerns for Al Systems

From:Trustworthy Al by Jeannette M.Wing:

After two decades of investment and advances 1n research and development, frustworthy has
come to mean a set of (overlapping) properties:

Reliability: Does the system do the right thing?

Safety: Does the system do no harm?

Security: How vulnerable 1s the system to attack?

Privacy: Does the system protect a person’s 1dentity and data?
Availability: Is the system up when I need to access 1t?

e Usability: Can a human use 1t easily?

From:Trustworthy Al by Jeannette M.Wing:

Analysis Concerns for Al Systems

Al systems raise the bar in terms of the set of properties of interest. In addition to the properties
assoclated with trustworthy computing (from above), we also want (overlapping) properties such
as:

e Accuracy: How well does the Al system do on new (unseen) data compared to data on
which it was trained and tested?

e Robustness: How sensitive 1s the system’s outcome to a change in the input?
e Fairness: Are the system outcomes unbiased?
e Accountability: Who or what 1s responsible for the system’s outcome?

e Transparency: Is it clear to an external observer how the system’s outcome was
produced?

e Interpretability/Explainability: Can the system’s outcome be justified with an explanation
that a human can understand and/or that 1s meaningful to the end user?

e FEthical: Was the data collected in an ethical manner? Will the system’s outcome be used
in an ethical manner?

e ...and others, yet to be i1dentified

From:Trustworthy Al by Jeannette M.Wing:

Analysis Concerns for Al Systems

The machine learning community considers accuracy as a gold standard, but trustworthy Al
requires us to explore tradeoffs among these properties. For example, perhaps we are willing to
give up on some accuracy in order to deploy a fairer model. Also, some of the above properties

Traditional software and hardware systems are complex due to their size and the number of
interactions among their components. For the most part, we can define their behavior in terms of
discrete logic and as deterministic state machines.

Today’s Al systems, especially those using deep neural networks, add a dimension of complexity
to traditional computing systems. This complexity 1s due to their inherent probabilistic nature.
Through probabilities, Al systems model the uncertainty of human behavior and the uncertainty
of the physical world. More recent advances in machine learning, which rely on big data, add to
their probabilistic nature, as data from the real world are just points in a probability space. Thus,
trustworthy Al necessarily directs our attention from the primarily deterministic nature of
traditional computing systems to the probabilistic nature of Al systems.

How Well Do | Test The Program?

int square(x) {

Idea #1: return x*x
}
Coverage:
. float abs(float x) {
 Line if x > 0
return Xx;
* Branch else
return -Xx;
 Path }
float f(float x, float eps) {

float s = 0O;
while (x > eps) {
S =S + X3
X =X/ 2;
}

return s;

}

How do We Extend?

Make an analogy with the traditional coverage testing

But for most approximate computations, it matters which values we
passed, not just which statements branches we visited!

“Neuron Coverage”
* SOSP paper
* Also: https://github.com/TrustAl/DeepCover

Various works for numerical computations

https://github.com/TrustAI/DeepCover

How Well Did | Test The Program?

o o float f(float x, float eps) {
Idea #2: Mutation Testing Flost s =03
while (x > eps
S =S - X;
X =X * 2;

float f(float x, float eps) {

float s = 0; @ E‘etur‘n S;
while (x > eps) { t
S =S + X; > float f(float x, float eps) {
— . float s = 1;
}X—X/Z, % while (x < eps) {
S =S + X;
return s; X = X / 2
} ieturn S;
}
float f(float x, float eps) {
Mutants change the semantics of the program float s = @;

while (x > eps) {
S =S + eps;
X =X/ 2;

The Test Suite is successful if it ‘kills’ all the mutants

Problem: Some mutants may legally pass as reasonable ietum y
approximations (e.g., Hariri et al. ICST 2018)) ’

An Important Distinction

Testing ML Model: Does the model have the desired property!?

* E.g.,is the label of a DNN correct wrt human expectation, or is
the model robust to noise or perturbations of the inputs

Testing ML System: Is the system implementation correct!?

* E.g.,is the label of a DNN properly computed, or is the system
not crashing on a bad input

What is the Correct Output?

0.2 + 0.2 ?

if Bernoulli (©.5) return 1.0 else return -1.0?

img = readImage(...)
label = DNN(img) °?

Metamorphic Testing

Test oracle problem = hard to determine the expected outcomes

Metamorphic test = establish a relation that holds between multiple inputs and also
between their outputs; if the input gets transformed in a particular way, we will also
know how the output will be transformed. E.g., exp(x) =Y. then exp(x+1) =Y*e

Identifying Implementation Bugs in Machine Learning

Based Image Classifiers using Metamorphic Testing -~ |
(ISSTA 2018) E E

=} Original train- (b) BGR (c) BRG

s data (RGB) (a) Original train- (b) Matrix Trans- (c) 90° rotation of (d) Transform of

ing data form of original original 90¢ rotation

(1) MR-1: Permutation of training & test features

(2) MR-2: Permutation of order of training instances P—— ' -
(3) MR-3: Shifting of training & test features by a constant (only l'j-ﬁl E E g m m g

for RBF kernel)
. . N (e) 180 rotation (f) Transform of (g) 270 rotation (h) Transform of
(4) MR-4: Linear scaling of the test features (only for linear (DGR () GRD (1 RBE 180° rotation 2700
kernel) : Permutation of RGB channels for one instance of Figure 8: Permutation of CONV order for one instance of

training data. The test data is permuted in similar fashion. training data. The test data is permuted in similar fashion
The results should be very similar whether the ResNet appli-
cation is trained & tested on the original or permuted data.

Fuzz Testing

Generate many inputs randomly.
See if the system fails (crashes, hangs, etc.)

or develop some metamorphic relation to use as the oracle

Had a lot of success in traditional programming systems
* Compilers

* Security

CSmith

Generates arbitrary C programs that conform to the C99
standard.

* Finding and Understanding Bugs in C Compilers Xuejun Yang,
Yang Chen, Eric Eide, John Regehr (PLD/I °1])

* Explores atypical combinations of C language features
* Found many bugs in existing compilers

* Key challenge is targeting program generation to more likely
reveal potential problems

* Trivia: the program size that helped discover most bugs was
around 82KB

Fuzzing (for various purposes) is a vibrant research area these days

Checking for Correctness

|. Make sure the compiler is not behaving
unexpectedly: crashing, diverging, etc.

2. Compare generated programs:

* Compile with multiple compilers/versions or
optimization levels and see if the results differ
(see e.g., CSmith)

* Change a program in some controlled manner
(V.Le at al. PLDI’14, OOPSLA'’[5)
http://web.cs.ucdavis.edu/~su/emi-project/

http://web.cs.ucdavis.edu/~su/emi-project/

Test Oracles

|. Detect crashing or hanging compilers

2. Differential Testing

* Try multiple compilers — do they result in the same outcome

* Cross-compiler, Cross-optimization, Cross-version

* Compare the results of the compiled program or the code itself

3. Metamorphic testing
* Change the input program in a way that you expect the output to change.

* E.g,if the program compiles f(x) { return x } then it should compile
g(x) { return 2*x }

* But more often, these relations are equivalences, even for a particular input, e.g.,
f(x) { return x + 2 } and g() { return 4 } are equivalent when testing f(2) and g().

Example from EMI (PLDI’14)

struct tiny { char c; char d; char e; };

void foo(struct tiny x) {
if (x.c '= 1) abort();
if (x.e !'= 1) abort();

A bug in the LLVM optimizer causes this miscompilation.
The developers believe that the Global Value Numbering (GVN)
optimization turns the struct initialization into a single 32-bit

load. Subsequently, the Scalar Replacement of Aggregates (SRoA)
]:) optimization decides that the 32-bit load is undefined behavior, as it
int main()) { reads past the end of the struct, and thus does not emit the correct
struct tiny s; instructions to initialize the struct. The developer who fixed the issue
s.c=1; s.d=1; s.e =1; characterized it as
foo(s);
return 0;

}

“... very, very concerning when I got to the root cause, and
very annoying to fix."”

Figure 2: Reduced version of the code in Figure 1b for bug reporting.
(http://1lvm.org/bugs/show_bug.cgi?id=14972)

int a, b, ¢, d, e;
int main() {
for (b =4; b > -30; b--)
for (; c;)
for (5;) {
e = a > 2147483647 - b;
if (d) break;
}
Partial Redundancy Elimination (PRE) detects the expression return 0;
“e2147483647 - b” as loop invariant. Loop Invariant Motion (LIM) }
tries to move it up from the innermost loop to the body of the

outermost loop. Unfortunately, this optimization is problematic, as Figum 3- GCC miscompilcs this program to an infinite]00p instead
GCC then detects a signed overflow in the program’s optimized

version and this (incorrect) belief of the existence of undefined of lmmedlately terminating “_I]th no output. .
behavior causes the compiler to generate non-terminating code (and (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=58731)
the bogus warning at -02).

Example Metamorphic Relations

Paper

Metamorphic
relation

How to construct metamorphic relations

Tao et al. [114]

Le et al. [72]

Le et al. [73]

Sun et al. [111]

Donaldson and
Lascu [43]
Nakamura and
Ishiura [89]
Donaldson et al.
[42]

Samet [99-101]

Equivalence relation

Equivalence relation
under a given set of
test inputs

Equivalence relation
under a given set of
test inputs

Equivalence relation
under a given set of
test inputs

Equivalence relation

Equivalence relation

Equivalence relation

Equivalence relation

Constructing equivalent expressions, assignment
blocks, and submodules

Deleting [code in the dead regions under the set of
test inputs

Deleting and inserting code in the dead regions
under the set of test inputs

Inserting code in both the live and dead regions
by synthesizing valid semantic-preserving code
snippets under the set of test inputs

Injecting dead code into test programs

Applying a set of equivalent transformation rules
on test programs

Applying a set of (essentially)
semantics-preserving transformations on
high-value graphics shaders

Converting a source program and the object
program into an intermediate representation,
respectively

Table from A Survey of Compiler Testing, CSUR February 2020

Fuzz Testing of Probabilistic
Programming Systems

Probabilistic Programming System

x : [1.0, 2.0, ...
vy : [7.01, 14.2,

;17

w ~ Normal(l , 10);
b ~ Normal(l , 5);
observe (y==Normal (w*x + b, 1.0));

posterior w;

posterior b;

Probabilistic
Model

—

160

o

140
120
100

> 80

60
40

20

J

Probabilistic Programming

System

0 5 10 I5 20

Estimates the values for
the parameters

22

Probabilistic Programming System

x : [1.0, 2.0, ...
vy : [7.01, 14.2,

;17

w ~ Normal(l , 10);
b ~ Normal(l , 5);
observe (y==Normal (w*x + b,1.0));

posterior w;

posterior b;

Probabilistic
Model

—

160

o

140
120
100

> 80

60
40

20

J

Probabilistic Programming

System

0 5 10 I5 20

Estimates the values for
the parameters

23

In principle, computing probabilities is simple!

x : [1.0, 2.0, ...
vy : [7.01, 14.2, ...

1;
-y 17

w ~ Normal(l , 10);

b ~ Normal(l , 5);
observe (y==Normal (w*x +b, 1.0));

posterior w;

posterior b;

Probabilistic
Model

160
/ 140
120

100

> 80

P(i16) - P(6)
:> PG | O :> .

20

Bayes Rule!

Probabilistic Programming
System

0 5 10 I5 20

Estimates the values for
the parameters

24

In practice, it is complicated!

x : [1.0, 2.0, ...
v : [7.01, 14.2,

1;

P

w ~ Normal(l , 10);

b ~ Normal(l , 5);
observe (y==Normal (w*x+ b, 1.0));

posterior w;

posterior b;

Probabilistic
Model

—

*
\\‘_ Libraries _///
Probabilistic Programming
System

160
140
120
100
> 80
60
40
20

25

What if the system has bugs!?

X o

y -

[1.0, 2.0, ...

1,
[7.01, 14.2,

w ~ Normal (1l ,
b ~ Normal(l ,

10);
5);

observe (y==Normal (w*x+b,1.0)) ;

posterior w;

posterior b;

26

What if the system has bugs!?

x ¢ [1.0, 2.0, ...

vy : [7.01, 14.2,

w ~ Normal(l , 10);

b ~ Normal(l , 5);

observe (y==Normal (w*x+b,1.0)) ;
posterior w;

posterior b;

InvalidArgumentError:
Tensor had NaN values

Runtime Errors

27

What if the system has bugs!?

x : [1.0, 2.0, ...
v : [7.01, 14.2,

w ~ Normal(l , 10);

b ~ Normal(l , 5);

observe (y==Normal (w*x+b,1.0)) ;
posterior w;

posterior b;

W : nan
b : inf

Numerical Errors

28

What if the system has bugs!?

x : [1.0, 2.0, ...
v : [7.01, 14.2,

160
140
w ~ Normal(l , 10); 120
b ~ Normal(l , 5); 100
observe (y==Normal (w*x+b,1.0)) ; > ig
posterior w; 40
posterior b; 23
0 5 10 I5 20
X

Inaccurate outputs

How can we automatically test such systems!?

29

ProbFuzz

Automates Testing of Probabilistic Programming Systems
Leverages domain knowledge for code and data generation

Partial programs (Templates) for targeted program generation
Common language for representing probabilistic programs
Differential testing with accuracy reasoning

ProbFuzz has found more than 50 bugs in 3 PP Systems:
, and and underlying frameworks: and

’

weight := ?¢
Generator « bias := 2°?

ProbFuzz WorkFlow

‘ Template »
Translator » \ —
x : [1.0,2.0,... 1; ,
y : [7.01,14.2,...1;
Stane

Data

observe (y==Normal (w*x+b,1.0)) ;

posterior w;
posterior b; \ Edward‘
7 Translator » \ I» S

Model —

w ~ Normal(l , 10); » Program
b ~ Normal (1 , 5): Translator , Checker

Probabilistic Programming Systems

Intermediate Language X

Challenge | : Random Generation is non-trivial

« genant sm Random Test Generator needs
knowledge about properties of

Generator

‘ Template and
Translator
x : [1.0,2.0,... 1;
y ¢ [7.01,14.2,...1; ’

to produce
Data

w ~ Normal(l , 10);
Translator
b ~ Normal(l , 5);

observe (y==Normal (w*x+b,1.0)) ;

Program
Checker

Edward
posterior w; ‘

posterior b; \ »
Translator [I== 2 —
7 ,\

Model Pyrodl

Intermediate Language Probabilistic Programming Systems
32

weight :=

Generator bias :=

\ 4

@

Template

x : [1.0,2.0,... 1

y « [7.01,14.2,...]1;

Data

w ~ Normal(l , 10);

b ~ Normal(l , 5);
observe (y==Normal (w*x+b,1.0)) ;

posterior w;

posterior b;

4

Model

?7?

?7?

’

‘ Translator

“...!.lliiaiiiall

Intermediate Language

Need to generate both

Challenge 2: Code and Data Generation

(Model) and
(for Conditioning)

Program

Edward @

=8

Pyro91

Checker

Probabilistic Programming Systems

33

Challenge 3: Lack of Common Language

weight := ?°?

Generator « bias := ?°? Each Probabilistic
‘ Programming System has

Template

its own custom
x : [1.0,2.0,... 1 | Translator » ,
y ¢ [7.01,14.2,...1; | Elr](j

Data
v omarlt "‘ Translator » > ug’
b ~ Normal(l , 5);
observe (y==Normal (w*x+b,1.0)) ;
posterior w; Edward‘
posterior b; L »

7 | Translator » \ S
Model Pyrodl
Intermediate Language Probabilistic Programming Systems

34

Challenge 4: Reasoning about Accuracy is Hard

1ght := ?°?
Generator « e We need to account for

= 2?7

observe (y==22...)) natU re Of

‘ Template compare rather than
—— simple values and choose reasonable
y + [7.01,14.2,...1; “””i"

Data
» » Program
, Checker

w ~ Normal(O , 1);
Translator
b ~ Normal(l , 5);
posterior w; Edward‘

observe (y==Normal (w*x+b,1.0)) ;
posterior b; \ »
7 Translator » , S—

Model Pyrodl

Intermediate Language Probabilistic Programming Systems
35

ProbFuzz Intermediate Language

General Language for Probabilistic Programs with
, , and

statement for conditioning
Key aspect: (2?) for and
Query statements for estimating parameters

Can be used for representing several models like Linear

Regression, Bayesian Networks, Hierarchical Models,
Hidden Markov Models, etc.

Generation of Concrete Programs

Specification of
Distributions

— and legal ranges

Xx: Float[10] x: [1.0, 2.0, 3.0, ..]
] |w: Float w: 5.0
o on boat ‘ o ?5551 10.48, 15.0]
v: w*x + Db v S .48, .0, ..
ior {]veionc = 72 = M) |l e 0,010
F’Iodel{ blas := ?? observe (y==Normal (weight*x+bias, 1.5))
. observe (y==?? (weight*x+bias, ??)) posterior weight;
Querle{ posterior weight; posterior bias;
S

“posterior bias;

Template for Linear Regression Generated Instances of Code
and Data

37

Generation of Concrete Programs

Specification of
Distributions

— and legal ranges

x: Float[10] x: [2.1, .9, 111.0, ..]
Datad | W Float w: 1.0
b Float ' o C[)élzl 7.1, 111.11]
v: w*x + Db . ! . A e
: . ht := Gamma(21.0,7.0)
.= 29 Generator » weld !
Prior { weight := 2% » - bias := Gamma(1.0,1.0)
F’Iodel{ blas := ?? observe (y==Gamma (weight*x+bias, 1.5))
. observe (y==?7? (weight*x+bias, ??)) posterior weilght;
Querle{ posterior weight; posterior bias;
S “posterior bias; [’ ’
Template for Linear Regression Generated Instances of Code

and Data

38

Generation of Concrete Programs

Specification of
Distributions

— and legal ranges

x: Float[10] x: [-1.0, 52.3, 0.1, ..]
Data w: Float ' w: 3.0
o Froat o C[)é 89, 157.1, 0.39]
y: W*X + b Y’I - ’._I N 4 . V4 ees
Prior { weight := 2? » Generator » welght := Beta(21.0,7.0)
, bias := Exponential (2.0)
F’Iodel{ blas := ?? observe (y==Normal (weight*x+bias, 1.5))
. observe (y==?? (weight*x+bias, ??)) posterior weight;
Querle{ posterior weight; posterior bias;
S “posterior bias; [T v 7
| T A) [4
Template for Linear Regression Generated Instances of Code

and Data

39

Xx: Float[10]
w: Float
b: Float

v: w*x + D

Generating Data

= 2 =

Template for Linear Regression

Generated Datasets

40

Generating Data with Noise

Float[10]

® O = X

: Normal (0.1,0.1)[10
: w*x + b + e

= i =
: Float
]

e

Template for Linear Regression

O X

Generated Datasets

41

Prior %:

Generating Distributions and Parameters

O = X

= 2 =

.43, ..

x: Float[10]
w: Float

b: Float

v: w¥x + b
weight := ?2°?
L bias := ?2°?

Can we fill in any random distribution here!?

No! We need to do dependence analysis and interval analysis

42

Generating Distributions and Parameters

Specification of

and legal ranges

x: Float[10]
w: Float

b: Float

%

: w*x + D
weight := 2?9 - Generator »
bias := ?°?

observe (y==27? (weight*x+bias, 2?))

The distribution support must match the dataset y

F N - l\
Distributions |____',‘ Normal

Distributi | Support u o
on
(-00,) | (-0,00) | (0,)
x: [-1.0, 52.3, 0.1, ..]
w: 3.0
b: 0.1
y: [-2.89, 157.1, 0.43,
welight := ?°?
bias := ?°?

43

Generating Distributions and Parameters

Specification of

F---l\

Distributi
on

Support u o

(-00,0) | (-,0) | (0,)

Distributions = = — — _',‘ Normal

and legal ranges

Xx: Float[1l0]
w: Float

b: Float

%

: w*x 4+ D
weight := 2?9 - Generator »
bias : 7

observe (y==2? (weight*x+bias, 2?))

The distribution support must match the dataset y

.0,

.89,
welght :=

bias := ?°?

52.3, 0.1, ..]

157.1, 0.43, ..]
27

observe (y==Normal (weight*x+bias,1.9))

The other missing parameter must be a positive value (variance of Normal distribution)

44

Generating Distributions and Parameters

Distributi | Support u o
on
Specification of = _ _ __ I
Distributions Il | Normal (-00,) (-00, 00) (0,)
and legal ranges g
x: Float[10] x: [-1.0, 52.3, 0.1, ..]
w: Float w: 3.0
b: Float b: 0.1
, y: [-2.89, 157.1, 0.43, ..]
weight := Gamma(21.0,7.0)

: w*x 4+ D
weight := 2?9 - Generator »
bias : 7

observe (y==?7? (weight*x+bias, ??))

The distribution support must match the dataset y

The other missing parameter must be a positive value (variance of Normal distribution)

The priors for weight and bias can have any support

bias := Exponential (2.0)
observe (y==Normal (weight*x+bias,1.5))

45

Generating Distributions and Parameters

Distributi | Support u o
on

Specification of N N
Distributions Il | Normal (-00,) (-00, 00) (0,)
and legal ranges g

Xx: Float[1l0] x: [-1.0, 52.3, 0.1, ..]
w: Float w: 3.0
b Froat o ?.é 89, 157.1, 0.43]
v: w*x + b y:l -2. , .1, . ;o
. weight := Gamma(21.0,7.0
Wélght =77 - » biazI 1= Exponenis_ial(Z.O))
bias := ?? observe (y==Normal (weight*x+bias,1.5))
observe (y==?7? (weight*x+bias, 2?)) posterior weilight;
posterior weight; posterior bias;

posterior bilas;
he distribution support must match the dataset y

The other missing parameter must be a positive value (variance of Normal distribution)

The priors for weight and bias can have any support
46

Program Checker

weight := ?°?
Generator « bias := 2°?

‘ Template »
Translator » \ —
x : [1.0,2.0,... 1; ,
y : [7.01,14.2,...1;
Stane

Data

w ~ Normal (O , 1); ‘ T | » » Program
ran r
b ~ Normal(l , 1); Bk , Checker
observe (y==Normal (w*x+b,1.0)) ;
. Edward‘
posterior w;
posterior b; »
7 Translator » \ S—

Model | —

Probabilistic Programming Systems

Intermediate Language M

weight

Generator bias

@

?7?
?7?

\ 4

Template

x : [1.0,2.0,... 1

y « [7.01,14.2,...]1;

Data

w ~ Normal(O , 1);

b ~ Normal(l , 1);
observe (y==Normal (w*x+b,1.0)) ;

posterior w;

posterior b;

4

Model

\

Intermediate Language

Program Checker

S

Translator

= [= (R

v

Translator [I== 2 ,\» o

Edward @

a8 &R &N N N N N _§ &R _§N N _N_§N_§_§ §N_§N_ §N_

4

Pyro9l

Probabilistic Programming Systems
48

il ENN NN BN B .y

Crash
Checker

Performance
Checker

Numerical
Checker

Accuracy
Checker

-_—— - .

oo

C
0Q

-~

Reasoning about Accuracy

Accuracy Checker implements various kinds of checks:
* Comparison with Reference Result, e.g.: Symbolic Inference: PSI*, Hakaru®

* Comparison amongst the Probabilistic Programming Systems

We used several metrics for comparing posterior distributions, e.g :

. M 1 L :
for linear regression smaPECx, %y, .. %0 V1, Yos s 1) = —2{i=1) |Lx| n ;|Vyl||
i [

x : [1.0,2.0,... 1 2 4

. : 501
y + [7.01,14.02,...1; 0.50 5[’]
w ~ Gamma (97.5, 86.2); l
b ~ Beta(44.0, 44.0); 0.251 \ 95
observe (y==Normal (w*x,b)) ; j }
posterior w; 0.00 : L, /\, 0+ ! | d I () :

7 20 05 3.0 55 80 2005 30 55 80 2005 3.0 55 8.0

Linear Regression Model Stan Result Edward Result Pyro Result

*CAV ‘16, "FLOPS ‘16

Accuracy Checker

Za

X

S
. dcane Edward‘ 70 Pyro‘II 70
21 I
0.50 - %0
0.25 75 | \
000l N 0+—— —L O |
=2.005 30 55 80 2.0 05 3.0 55 8.0 =20 05 3.0 55 8.0

AN S

Does not Match! Match!

50

Compiler Fuzzing

Key idea: Generate many programs and compile
them.The compiler should still be able to produce
(ideally correct) code for these programs

Questions:
* How to generate programs!
* How to know they are correct?

* How to identify where the error may be!

RQ 1: New Bugs Discovered by ProbFuzz

Category Edward Pyro Stan Total
Algorithmic/Accuracy 2 1 2 5
Dimension/Boundary 13 41 0 54
Numerical 0 3
Language/Translation 1 3 1
Total 16 45 6 67

* So far, Developers have , Rejected 8, and 1 was already fixed

e Qut of the 51 accepted bugs, and 1 reported bug was fixed by developers

52

Lessons Learned From Studying and Fixing Bugs

* Dimension/Boundary-Value bugs are often found in Probabilistic
Programming Systems

Lessons Learned From Studying and Fixing Bugs

* Dimension/Boundary-Value bugs are often found in Probabilistic
Programming Systems

Category Edward Pyro Stan Total
AlgQrithmiC/ACCUracy e m e i H— — v — L —
Dimension/Boundary 13 41 0 54
Numerical o 0 37 3 i
Language/Translation 1 3 1

Total 16 45 6 67

54

Example Dimension/Boundary Value Bug : Pyro

X [
[

3.2, .. 1]
y o 6

0.0, .. 1 Data

1.1,
2.1,

w ~ Bernoulli (2.0)

b ~ Normal (1.0, 2.0) //7
observe (y==Normal (x*w + b,1.0))

expectation (w) ; ‘

expectation (b) ;

~

» ‘ Leads to incorrect

results instead of
catching the error

' 4

N /

Pyro 41

Simple fix : Add a check for boundary conditions : 0.0< 6 < 1.0

55

Example Dimension/Boundary Value Bug 2 : Pyro

x + [23.79, 81.77,]
v : [24.79, 82.77,]

Data

W ~ ..

b o~ .. //’

observe (Normal (x*w + b, 1.0), V)

posterior (w) ; ‘

posterior (b) ;

»\
\/ /

Pyro 41

‘ ZeroDivisionError:

float division by zero

Program crashes even though model is correct

56

What went wrong?

Missing check for f parameter in AdamOptimizer

Crash when [contains 1

Fix requires knowledge of the theory involved

The bug was actually found in

57

Published as a conference paper at ICLR 2015

ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION

Diederik P. Kingma® Jimmy Lei Ba®
University of Amsterdam, OpenAl University of Toronto
ABSTRACT

t-based optimization of
tes of lower-order mo-
ient,

T pares Zatic
we discuss AdaMax, a variant of Adam based on the infinity norm.

1 INTRODUCTION

Algorithm 1: Adam, our proposed algorithm -
and for a slightly more efficient (but less clear
square g; @ g;. Good default settings for the
B1 = 0.9, B2 = 0.999 and € = 10~5. All ope
we denote [3; and 3> to the power 7.

Require:_a: Stepsize
Require:| ;. 52 € [0, 1):|Exponential decay 1
Require: [(#): Stochastic objective function

IRequire: 0y: Initial parameter vector :

Lessons Learned From Studying and Fixing Bugs

* Dimension/Boundary-Value bugs are often found in Probabilistic
Programming Systems

* Fixes might extend across the boundaries of individual systems

58

Fixing Dimension/boundary bugs: Pyro-Pytorch

* Found missing boundary checks for several distributions and algorithms

* Proposed Fix in Pytorch for a global validation flag

“@lazypandal Sure, | think an argument validate args=False make sense. You can even add a
generic test to tests/test_distributions.py”

The fix was accepted

* Following this fix, Pyro introduced “enable_validation(True)” flag for
boundary value checking!

59

Pyro now includes a global flag for checking all distributions and parameters

v 02,0

0O dafaldd
@ fritzo released this on Apr 24 - 243 commits to dev since this release

Validation

Model validation is now available via three toggles:

pyro.enable validation()

pyro.infer.enable validation()

Turns on validation for PyTorch distributions.
pyro.distributions.enable validation()

60

Negative Response: Edward-Tensorflow

* Found missing boundary checks for distributions in Edward leading to NaNs

* Proposed Fix in Edward for a global validation flag

“That's an interesting suggestion. | can see that as a potentially useful utility. Can you raise this in
ée)lg’sorF/ow? It seems like a feature request that should be considered upstream in TF Distributions.
evll

* Proposed Fix in Tensorflow

“While we appreciate the sometimes inconvenience of the current design, we're reluctant to
introduce a global mechanism for setting validate args. This means we can't accept this PR.”

Fix was rejected! @

61

Lessons Learned From Studying and Fixing Bugs

* Dimension/Boundary-Value bugs are often found in Probabilistic
Programming Systems

* Fixes might extend across the boundaries of individual systems

* Analyzing accuracy problems is hard and requires extensive
knowledge about probabilistic inference and the underlying systems

62

Reasoning about Accuracy

* Bugis reproduced for any value of the parameters for Beta

* Bounding the parameter p to (0,1) — support of Beta - produces correct result

X 2

y 2

[1.0,2.0,... 1;

[7.01,14.02,...1;

w ~ Gamma (97.5, 86.2);
p ~ Beta(44.0, 44.0);
observe (y==Normal (w*x,p)) ;

posterior w;

4

Linear Regression Model

1.0
0.50 1
0.251
0.00 \ ;e
-2.0 05 3.0 55 8.0
Stan Result

63

7.0 7.0

-

-
Lh

J

0 1 - | 0 1
-2.0 05 30 55 R0 2.0 05 3.0 55 8.0
Edward Result Pyro Result

Reasoning about Accuracy

* Bugis reproduced for any value of the parameters for Beta
* Bounding the parameter p to (0,1) — support of Beta - produces correct result

» Stan actually interprets the sampling statement differently, which runs into errors
when the bounds are not defined

1.0 7.0 7.0

x : [1.0,2.0,... 1 2 -
v : [7.01,14.02,...1; 0.50- 5() -
w ~ Gamma (97.5, 86.2); l
p ~ Beta(44.0, 44.0); 0.25- | 95
observe (y==Normal (w*x,p)) ; }
posterior w; 0.00 - L,__A 0+ ! : I - () .

4 -2.0 05 30 55 80 2005 3.0 55 80 -2005 3.0 55 8.0

Linear Regression Model Stan Result Edward Result Pyro Result
64

Reasoning about Accuracy

Bug is reproduced for any value of the parameters for Beta

Bounding the parameter p to (0,1) — support of Beta - produces correct result

Stan actually interprets the sampling statement differently, which runs into errors

when the bounds are not defined

BUGS produces correct result!

7.0

40

201

0+ .
20 05 3.0 55 8.0
BUGS Result

1.0

0.50-

0.251

!

P> i 5

0.00 A 4 L4 ? 1
-2.0 0.5 3.0 55 8.0
Stan Result

65

7.0 7.0

-3

|

(:I-- T T T — U y
-2.0 05 30 55 R0 20 0.5 30 55 8.0
Edward Result Pyro Result

NEXT: HANDLING RANDOMNESS IN
MACHINE LEARNINGTESTS

