
CS 598sm

Probabilistic &

Approximate

Computing
http://misailo.web.engr.Illinois.edu/courses/cs598

http://misailo.web.engr.illinois.edu/courses/cs598

High quality,

High cost

Low quality,

Low cost

Medium quality,

Medium cost

High quality,

High cost

Low quality,

Low cost

Medium quality,

Medium cost
Q

u
al

it
y

Cost (Time and Energy)

0%

100%

High quality,

High cost

Low quality,

Low cost

Medium quality,

Medium cost
Q

u
al

it
y

Cost (Time and Energy)

0%

100%

Q
u

al
it

y

0%

100%
Developer

Optimization

System

Cost (Time and Energy)

Original

Computation

Accuracy-Aware Optimization

Accuracy

Requirement

• Find an approximate program

• Various automatic or user-guided

approaches

Optimized Computation +

ACCURACY ~ CORRECTNESS

Safari:

Precision
Repeatability or fineness of control

From Phillip Stanley-Marbell, Martin Rinard: Error-Efficient Computing Systems. (2017)

Accuracy
Difference from the correct value

From Phillip Stanley-Marbell, Martin Rinard: Error-Efficient Computing Systems. (2017)

Reliability

Probability that a system has been functioning

correctly, continuously over the time interval [0, t]

Conventionally denoted by the function R(t)

Sometimes we implicitly use without t, meaning

that reliability is over the period of operation

From Phillip Stanley-Marbell, Martin Rinard: Error-Efficient Computing Systems. (2017)

Another Thought Experiment

What if we change magnitude of the pixel?

What if we change frequency of the pixel (sometimes it’s just black)?

R 99

G 186

B 237

Function’s and Program’s Accuracy

230 190 150 110 30 270

Difference 𝒅 between the exact and approximate

pixel values that interpolation kernel produces

(for all color components)

Magnitude of Noise

Function’s and Program’s Accuracy

20% 40% 60% 80% 99% 99.9%90%

Probability 𝒑 with which interpolation kernel

produces the correct pixel

Frequency of Noise

We observe

Small Errors

Most of the Time

Accuracy Requirement
Specify Metric and Threshold

• Each application has its own

• Requires domain problem expertise

• For visual data, historically PSNR

has often been used (with all its

imperfections)

• But one can think of other better

perceptory metrics

More details on the roles of metrics:

Karpuzcu et al., On Quantification of Accuracy Loss

in Approximate Computing, WDDD 2015.

Accuracy Requirement
Specify Metric and Threshold

Accuracy Specifications

End-to-end: program output

• You can compare outputs only at the end of the run

• Often better understood for representative domains

Kernel-level: each function has it specification

• Fine-grained control + checking of intermediate results

• Often ad-hoc or not intuitive

• While in general can lead to composition, hard to

propagate all errors

Accuracy Requirement
Specify Metric and Threshold

Analytic Derivation
Use properties of the algorithm and implementation

𝑃𝑆𝑁𝑅 𝐷, 𝐷′ = 20 ⋅ log 255 − 10 ⋅ log
1

ℎ ⋅ 𝑤
෍

𝑖,𝑗

(𝐷𝑖𝑗−𝐷𝑖𝑗
′)2

𝒓 ⋅ 0 + (1 − 𝒓) ⋅ 255

Local Specification: Kernel computes the pixel

with reliability r

Global Specification: PSNR of the image

Computation Pattern: Data parallel loop

𝔼[𝑃𝑆𝑁𝑅 𝐷, 𝐷′] ≥ −10 ⋅ log 1 − 𝒓

Analytic Derivation
Use properties of the algorithm and implementation

Local Specification: Pixel kernel reliability r

Global Specification: PSNR of the image

Computation Pattern: Data parallel loop

Perforated

Original

Perforated

Original

Any pixel

difference

Perforated

Original

> 1% pixel

difference

Perforated

Original

> 5% pixel

difference

x264 Motion Estimation

Current FrameReference Frame

x264 Block Matching

score = 0;

for (i = 0; i < block_height; i++) {

for (j = 0; j < block_width; j++) {

idx1 = IDX(i, j, cur_start);

idx2 = IDX(i, j, prev_start);

diff = cur_frame[idx1] – prev_frame[idx2];

adif = abs(diff);

score = score + adif;

}

}

return score;

x264 Block Matching

score = 0;

for (i = 0; i < block_height; i+=2) {

for (j = 0; j < block_width; j+=2) {

idx1 = IDX(i, j, cur_start);

idx2 = IDX(i, j, prev_start);

diff = cur_frame[idx1] – prev_frame[idx2];

adif = abs(diff);

score = score + adif;

}

}

return score;

x264 Block Matching

score = 0;

for (i = 0; i < block_height; i+=2) {

for (j = 0; j < block_width; j+=2) {

idx1 = IDX(i, j, cur_start);

idx2 = IDX(i, j, prev_start);

diff = cur_frame[idx1] – prev_frame[idx2];

adif = abs(diff);

score = score + adif;

}

}

return score * 4;

Absolute Error of Perforation

Absolute error for score

F
re

q
u
e
n
cy

 o
f
e
rr

o
r

Kernel Error

…

With Bias Compensation

Most of the time errors of individual

approximation computations are small!

Several Patterns Amenable to Approximation

• Map

• Reduce (sum, average, min, max, median)

• Stencil

• Scatter/Gather

• Iterative refinement loop

• …

Original

Computation

Accuracy-Aware Optimization

Accuracy

Requirement

• Find an approximate program

• Apply transformations that change

semantics

Optimized Computation +

 

Q
u

al
it

y

0%

100%

Optimization

System

Cost (Time and Energy)

Tradeoffs

Key

Intuition

Original

Program

Execution

Transformations

and induce a space

of approximate

executions

Many of these

executions will be

similar to the

original execution

We want their final results to be similar (i.e., low accuracy loss)

Ideally, we want the execution that runs the fastest

Sometimes,

we can

enforce that

approximate

programs

must always

execute near

the original.

It can help the

analysis, but is

not necessary.

General Optimization Problem
Select Program Configuration 𝑋 ∈ 𝐶𝑜𝑛𝑓𝑖𝑔𝑠 to

𝐦𝐚𝐱𝐢𝐦𝐢𝐳𝐞 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝑋, 𝑖 , 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑋, 𝑖

𝐟𝐨𝐫𝐚𝐥𝐥 𝑖 ∈ 𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑡

But these are most often competing objectives.

Rephrase: for every accuracy loss threshold δ

𝐦𝐚𝐱𝐢𝐦𝐢𝐳𝐞 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝑋, 𝑖
𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐿𝑜𝑠𝑠 𝑋, 𝑖 ≤ 𝛿
𝐟𝐨𝐫𝐚𝐥𝐥 𝑖 ∈ 𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑡

Multiobjective Optimization

Functions to optimize are called objectives

• Accuracy Loss – lower is better (or accuracy – higher is better)

• Speedup – higher is better (or normalized time – lower is better)

• Energy saving – higher is better (or consumption – lower is better)

They are the functions of program configuration – setting of knobs

Two candidate program configurations X and Y:

• X Pareto dominates Y if X is as good as Y in all objectives, and is better

in at least one objective

Pareto frontier: the set of points that are not dominated by other points

We will come back and formalize these notions later in the course!

Example

Sp
e
e
d
u
p

Accuracy Loss
1

0

Example

Sp
e
e
d
u
p

Accuracy Loss
1

0

Example

Sp
e
e
d
u
p

Accuracy Loss
1

0

Example

Sp
e
e
d
u
p

Accuracy Loss
1

0

Example

Sp
e
e
d
u
p

Accuracy Loss
1

0

Example

Sp
e
e
d
u
p

Accuracy Loss
1

0

Example

Sp
e
e
d
u
p

Accuracy Loss
1

0

Pareto (non-dominated) front

Example

Sp
e
e
d
u
p

Accuracy Loss
1

0

Pareto front

True Pareto front (theoretical optimum)

Pareto Fronts (aka Tradeoff curves)

Sp
e
e
d
u
p

Accuracy Loss

1
0

Convex

Concave

Non-Convex

Discontinuous

Spread of Solutions:

Sp
e
e
d
u
p

Accuracy Loss
1

0

Sp
e
e
d
u
p

Accuracy Loss
1

0

Often to have a useful set of points, a developer would like to have points

spread across the entire space, not located only at the corners

vs.

Original

Computation

Accuracy-Aware Optimization

Accuracy

Requirement

• Find an approximate program

• Apply transformations that change

semantics

Optimized Computation +

 



SOFTWARE

TRANSFORMATIONS

Safari:

Transformations

Dimensions of impact:

• Reducing computation

• Reducing data

• Reducing communication/synchronization

Floating Point Optimizations

double[] x, y
double z = f(x,y)

float[] x, y
float z = f(x,y)

Rubio-Gonzalez et al., Precimonious: Tuning Assistant for Floating-Point Precision, SC 2013

Rubio-Gonzalez et al., Precimonious: Tuning Assistant for Floating-Point Precision, SC 2013

Speedup =
Original program time

Approximate program time

for (i = 0; i < n; i++) { … }

for (i = 0; i < n; i += 2) { … }

Loop Perforation

Misailovic, Sidiroglou, Hoffmann, Rinard Quality of Service Profiling (ICSE 2010)

Sidiroglou, Misailovic , Hoffmann, Rinard Managing Performance vs. Accuracy Trade-offs With Loop Perforation (FSE 2011)

for (i = 0; i < n; i++) { … }

for (i = 0; i < n/2; i++) {… }

Loop Perforation

for (i = 0; i < n; i++) { … }

for (i = 0; i < n; i++) {
if (rand(0.5)) continue;
…

}

Loop Perforation

Managing Performance vs. Accuracy Trade-offs With Loop Perforation FSE 2011

Reduction Sampling

for (i = 0; i < n; i++) {
y = f(x[i]);
s = s + y;

}

for (i = 0, z = 0; i < n; i++) {
if (rand(0.75)) {z++; continue;}
y = f(x[i]);
s = s + y;

}
s = s * n/(n-z);

Zhu et al. Randomized Accuracy-Aware Program Transformations For Efficient Approximate Computations, POPL ‘12

Misailovic et al. Synthesis of Randomized Accuracy-Aware Map-Fold Programs (WACAS 2014)

Tradeoff curve for the main component of Bodytrack

Approximate Memoization

InType[] x; OutType[] y;
for (i = 0; i < n; i++) { y[i] = f(x[i]); }

var table = new Map<InType, OutType>;
for (i = 0; i < n; i++) {
if ∃x’,v . x’∈ [x[i]-, x[i]+] && (x’,v) ∈ table

y[i] = v;
else {

y[i] = f(x[i]);
table[x[i]] = y[i];

} } Chaudhuri et al. Proving Programs Robust, FSE 2011

Samadi et al., Paraprox Pattern-Based Approximation for Data Parallel Applications, ASPLOS’14

Approximate Tiling

InType[] x; OutType[] y;
for (i = 0; i < n; i++) { y[i] = f(x[i]); }

InType prev;
for (i = 0; i < n; i++) {
if (i%2 == 1)

y[i] = prev;
else {

y[i] = f(x[i]);
prev = y[i];

} } Chaudhuri et al. Proving Programs Robust, FSE ‘11

Samadi et al., Paraprox Pattern-Based Approximation for Data Parallel Applications, ASPLOS’14

Image Perforation: Automatically Accelerating Image Pipelines by Intelligently Skipping Samples, SIGGRAPH’16

Samadi et al., Paraprox Pattern-Based Approximation for Data Parallel Applications, ASPLOS’14

Tziantzioulis et al., Temporal Approximate Function

Memoization (IEEE Micro Magazine 2017)

Image Perforation: Automatically Accelerating Image Pipelines by Intelligently Skipping Samples, SIGGRAPH’16

Function Substitution

y = f(x);

y = f'(x);

Version TimeSpec ErrorSpec

f(x) Time1 Err1
f'(x) Time2 Err2

For instance, polynomial approximation

of transcendental functions:

sin 𝑥 ≈ 𝑥 −
𝑥3

3!
+

𝑥5

5!
− ⋯ for 𝑥 near 0

𝑅 𝑥 ≤ 𝑥 𝑛+1 / 𝑛 + 1 !s
Baek et al., PLDI 10;

Ansel et al., CGO ’11

Function Substitution

y = f(x);

y = f'(x);

Version TimeSpec ErrorSpec

f(x) Time1 Err1
f'(x) Time2 Err2

Neural Network:

Esmaeilzadeh et al., Neural Acceleration for

General-Purpose Approximate Programs, MICRO ‘12

Esmaeilzadeh et al., Neural Acceleration for General-Purpose Approximate Programs, MICRO ‘12

Dynamic Function Substitution

y = f(x);

y = runtime.executeApprox()?
f'(x): f(x);

Version TimeSpec ErrorSpec

f(x) Time1 Err1
f'(x) Time2 Err2

- Baek et al., Green: A Framework for Supporting Energy-Conscious Programming using Controlled Approximation, PLDI 2010

- Hoffmann et al., Dynamic Knobs for Efficient Power Aware Computing, APSLOS 2011

- Mitra et al., Phase-aware Approximation in Approximate Computing CGO 2017

66

swaptions

Power Cap:

Clock drops

2.4-1.6GHz

Dynamic Approximation

Power Cap lifted:

Clock rises 1.6-2.4

GHz

During the power cap, we either restart or suffer through poor

performance.

67

swaptions

Application returns to

the original

implementation

Application switches

to the alternative

implementation

Dynamic Approximation

Skipping Tasks (at Barrier Points)

task {
x = …
y = …

}

Continue execution after all tasks finish

Continue execution after all tasks finish before timeout,

Otherwise kill delayed or non-responsive tasks

task {
x = …
y = …

}

task {
x = …
y = …

}

task {
x = …
y = …

}

task {
x = …
y = …

}

task {
x = …
y = …

}

task {
x = …
y = …

}

task {
x = …
y = …

}

task {
x = …
y = …

}

task {
x = …
y = …

}

task {
x = …
y = …

}

task {
x = …
y = …

}

Rinard, Probabilistic accuracy bounds for fault-tolerant computations that discard tasks, ICS ’06

Meng et al. Best-Effort Parallel Execution for Recognition and Mining Applications, IPDPS’09

Removing Synchronization

lock();
x = f(x,y);
y = g(x,y);
unlock();

lock();
x = f(x,y);
y = g(x,y);
unlock();

lock();
x = f(x,y);
y = g(x,y);
unlock();

lock();
x = f(x,y);
y = g(x,y);
unlock();

Renganarayana et al. Programming with Relaxed Synchronization, RACES ’12

Misailovic et al. Dancing with Uncertainty, RACES ‘12

Misailovic et al. Dancing with Uncertainty, RACES ‘12

Transformations

Dimensions of impact:

• Reducing computation

(perforation, memoization, tiling, function substitution)

• Reducing data

(floating point optimizations)

• Reducing communication/synchronization

(skipping tasks and lock elision)

Some Key Characteristics:

• Approximate Kernel Computations
(have specific structure + functionality)

• Accuracy vs Performance Knob
(tune how aggressively to approximate kernel)

• Magnitude and Frequency of Errors
(kernels rarely exhibit large output deviations)

Applying Transformations

Selecting where in the code to approximate

• Programmer-guided: programmer writes annotations

• Automatic: system identifies the code and tunes the

approximation

• Combined: programmer writes some annotations, system

infers the rest

• Interactive: system identifies the code and presents the

results to the developer who accepts/rejects

Applying Transformations

Choosing the time to do the approximation:

• Off-line: before execution starts

• On-line: during execution

• Combined: improve off-line models with on-line data

We will discuss the algorithms and systems that

help with approximating programs in detail!

