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Original Accuracy

Computation Requirement

. [ I

Accuracy-Aware Optimization

*  Find an approximate program

*  Various automatic or user-guided
approaches




ACCURACY ~ CORRECTNESS



Precision

Repeatability or fineness of control

Less precise More precise

From Phillip Stanley-Marbell, Martin Rinard: Error-Efficient Computing Systems. (2017)



Accuracy

Difference from the correct value

More accurate

Less accurate

From Phillip Stanley-Marbell, Martin Rinard: Error-Efficient Computing Systems. (2017)



Reliability

Probability that a system has been functioning
correctly, continuously over the time interval [0, £]

Conventionally denoted by the function R(9

Sometimes we implicitly use without t, meaning
that reliability is over the period of operation

From Phillip Stanley-Marbell, Martin Rinard: Error-Efficient Computing Systems. (2017)



Another Thought Experiment

R 99
G 186
B 237

What if we change magnitude of the pixel?
What if we change frequency of the pixel (sometimes it’s just black)?



Function’s and Program’s Accuracy
Magnitude of Noise

230 190 150 |10 70 30 2

Difference d between the exact and approximate
pixel values that interpolation kernel produces
(for all color components)



Function’s and Program’s Accuracy

Frequency of Noise

20% 40% 60% 80% 90% 99% 99.9%

Probability p with which interpolation kernel
produces the correct pixel



We observe
Small Errors

Most of the Time



Accuracy Requirement

Specify Metric and Threshold ;/-g‘w%’ 3
Definition [edit] %\ %: V_}
+ Each application has its own (0TI L
* Requires demain problem expertise ™ ""ppm"‘mi‘“ﬂ’_"lf_sf‘s efned s
* For visual data, historically PSNR MSB= oo 2 2 M) — KG.)F
has often been used (with all its The PSNR (in dB) s defined as:
imperfections) PSNE = 10 log, ( VAK; )
* But one can think of other better :zo.logm(\ﬂ;f%)
perceptory metrics = 20 - log,o (MAX;) — 10 - log,, (MSE)

Here, MAX; is the maximum possible pixel value of the
image. When the pixels are represented using 8 bits per

. . sample, this is 255. More generally, when samples are
More details on the roles of metrics: Pe, d Y P

Karpuzcu et al., On Quantification of Accuracy Loss represented using linear PCM with B bits per sample, MAX;
in Approximate Computing, WDDD 2015. is 2B-1.



Accuracy Requirement

Specify Metric and Threshold

Acceptable
Quality



Accuracy Specifications

End-to-end: program output
* You can compare outputs only at the end of the run

* Often better understood for representative domains

Kernel-level: each function has it specification
* Fine-grained control + checking of intermediate results

e (Often ad-hoc or not intuitive

*  While in general can lead to composition, hard to
propagate all errors



PSNR

Accuracy Requirement
Specify Metric and Threshold

70

60

50
Acceptable

40 Quality 1

30
20

10

0 0.99 0.999 0.9999 0.99999
Interpolation Reliability



Analytic Derivation

Use properties of the algorithm and implementation

Local Specification: Kernel computes the pixel
with reliability r
Global Specification: PSNR of the image

Computation Pattern: Data parallel loop

1
PSNR(D,D") = 20 - log(255) — 10 - log WZ(DU—D{]-)Z
i,j |

r-04+(Q1—r)-255




Analytic Derivation

Use properties of the algorithm and implementation

Local Specification: Pixel kernel reliability r
Global Specification: PSNR of the image

Computation Pattern: Data parallel loop

L[PSNR(D,D")] = —10 - log(1 — r)
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Original
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Any pixel
difference




Original

Perforated

> 1% pixel
difference




Original

Perforate

> 5% pixel
difference




x264 Motion Estimation

Reference Frame Current Frame




Block Matching

score = 0;

for (1 = @; i < block height; i++) {
©; j < block width; j++) {

for (j

idx1l = IDX(i, j, cur_start);

idx2 = IDX(i, j, prev_start);

diff = cur_frame[idx1l] - prev_frame[idx2];
adif = abs(diff);

score = score + adif;

¥

return score;




%264 Block Matching

score = 0;

for (1 = 0; 1 < block height; i+=2) {
for (j = @; j < block width; j+=2) {

idx1l = IDX(i, j, cur_start);

idx2 = IDX(i, j, prev_start);

diff = cur_frame[idx1l] - prev_frame[idx2];
adif = abs(diff);

score = score + adif;

¥

return score;




%264 Block Matching

score = 0;

for (1 = @; 1 < block height; i+=2) {
for (j = @; j < block width; j+=2) {

idx1l = IDX(i, j, cur_start);

idx2 = IDX(i, j, prev_start);

diff = cur_frame[idx1l] - prev_frame[idx2];
adif = abs(diff);

score = score + adif;

¥

return score * 4;




Frequency of error

Absolute Error of Perforation
With Bias Compensation

Kernel Error

Program Tradeoff
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Most of the time errors of individual
approximation computations are small!
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Several Patterns Amenable to Approximation

* Map

* Reduce (sum, average, min, max, median)
* Stencil

* Scatter/Gather

* l|terative refinement loop



Computation Requirement

. [ I

Accuracy-Aware Optimization

*  Find an approximate program

*  Apply transformations that change
semantics




1 Tradeoffs

Quality
}

0%

Cost (Time and Energy)



Key
Intuition

Transformations
and induce a space
of approximate
executions

Many of these
executions will be
similar to the
original execution

Original
Program
Execution

Sometimes,
we can
enforce that
approximate
programs
must always
execute near
the original.

It can help the
analysis, but is
not necessary.

We want their final results to be similar (i.e.,low accuracy loss)
Ideally, we want the execution that runs the fastest



General Optimization Problem

Select Program Configuration X € Configs to

maximize (Speedup(X ,1), Accuracy(X, i))
forall i € InputSet

But these are most often competing objectives.

Rephrase: for every accuracy loss threshold 6

maximize Speedup(X,i)
subject to AccuracyLoss(X,i) < 6
forall i € InputSet



Multiobjective Optimization

Functions to optimize are called objectives

* Accuracy Loss — lower is better (or accuracy — higher is better)

* Speedup — higher is better (or normalized time — lower is better)

* Energy saving — higher is better (or consumption — lower is better)

They are the functions of program configuration — setting of knobs

Two candidate program configurations X andY:

X Pareto dominates Y if X is as good as Y in all objectives, and is better
in at least one objective

Pareto frontier: the set of points that are not dominated by other points

We will come back and formalize these notions later in the course!



Speedup

Accuracy Loss



Speedup

Accuracy Loss



Speedup

Accuracy Loss



Speedup

Accuracy Loss



Speedup

Accuracy Loss



Speedup

Accuracy Loss



Speedup

Example

®
Pareto (non-dominated) front

Accuracy Loss



Speedup

Example

True Pareto front (theoretical optimum)

Pareto front

v

Accuracy Loss



Pareto Fronts (aka Tradeoff curves)

Convex Non-Convex

Discontinuous Concave

Speedup

Accuracy Loss



Spread of Solutions:

VS.

Speedup
@
Speedup
®
o
®
®
®
®

0 Accuracy Loss 0 Accuracy Loss

Often to have a useful set of points, a developer would like to have points
spread across the entire space, not located only at the corners

v



Computation Requirement

. [ I

Accuracy-Aware Optimization

*  Find an approximate program

* Apply transformations that change
semantics




SOFTWARE
TRANSFORMATIONS



Transformations

Dimensions of impact:

* Reducing computation
* Reducing data

* Reducing communication/synchronization



Floating Point Optimizations

double[] x, vy
double z = f(x,y)

<

float[] x, y
float z = f(Xx,y)

Rubio-Gonzalez et al., Precimonious: Tuning Assistant for Floating-Point Precision, SC 2013



Original program time

Speedup =
peeaup Approximate program time

Table 2: Speedup observed after precision tuning
Error Threshold

Program 10— 10—"5 10—*® 10—4
arclength  41.7% 41.7% 11.0% 33.3%
simpsons  13.7% T1% AT 1% ATA%
bessel 0.0% 0.0% 0.0% 0.0%
gaussian 0.0% 0.0% 0.0% 0.0%
roots 6.8% 6.8% 4.5% 7.0%
polyroots  0.0% 0.0% 0.0% 0.0%
rootnewt, 0.5% 1.2% 4.5% 0.4%
S111 0.0% 0.0% 0.0% 15.0%
it 0.0% 0.0% 13.1% 13.1%
blas 0.0% 0.0% 24. 7% 24.7T%
ep 33.2% 32.3% 32.8%
cg 4.6% 2.3% 0.0% 15.9%

Rubio-Gonzalez et al., Precimonious: Tuning Assistant for Floating-Point Precision, SC 2013



Loop Perforation

for(i=0;i<n;i++){...}
for(i=0;i<n;i+=2){...}

Misailovic, Sidiroglou, Hoffmann, Rinard Quality of Service Profiling (ICSE 2010)
Sidiroglou, Misailovic , Hoffmann, Rinard Managing Performance vs. Accuracy Trade-offs With Loop Perforation (FSE 201 )



Loop Perforation

for(i=0;i<n;i++) {...}

v

for(i=0;i<n/2;i++){... }



Loop Perforation

for(i=0;i<n;i++) {...}

v

for(i=0;i<n;i++){
if (rand(0.5)) continue;
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Reduction Sampling

for (i =0; 1 < n; i++) {

y = f( x[1] );
S =S + VY;

Sy
for (i1 =0, z =0; i< n; i++) {

if (rand(0.75)) {z++; continue;}

y = f( x[1] );
S =S + VY;

}

s =s * n/f(n-2);

Zhu et al. Randomized Accuracy-Aware Program Transformations For Efficient Approximate Computations, POPL ‘12



Tradeoff curve for the main component of Bodytrack

12

0.8
0.6
(1)

o

0.2

Expected Time (Normalized)

0 01 0.2 3 A o G 0. 0.4 LN 1

Expected Absolute Error

Misailovic et al. Synthesis of Randomized Accuracy-Aware Map-Fold Programs (WACAS 2014)



Approximate Memoization

InType[] x; OutType[] y;
for (i =9; i < n; i++) { y[i] = fF(x[i]); }

-

var table = new Map<InType, OutType>;
for (i = @; i < n; i++) {
if Ix’,v . x’€[x[i]-e, x[1]+e] && (x’,Vv) € table
y[i] = v;
else {
y[i] = f(x[1i]);
table[x[1]] = y[i];

} } Chaudhuri et al. Proving Programs Robust, FSE 201 |
Samadi et al., Paraprox Pattern-Based Approximation for Data Parallel Applications, ASPLOS’ |4



Approximate Tiling

InType[] x; OutType[] y;
for (i =0; i < n; i++) { y[i] = f(x[1i]); }

W

InType prev;
for (1 =0; i < n; i++) {
if (i%2 == 1)
y[i] = prev;

else {
y[i] = f(x[1]);
prev = y[i];
} } Chaudhuri et al. Proving Programs Robust, FSE ‘I |

Samadi et al., Paraprox Pattern-Based Approximation for Data Parallel Applications, ASPLOS’ | 4
Image Perforation: Automatically Accelerating Image Pipelines by Intellisently Skipping Samples, SIGGRAPH’ 16



Speedup

Figure 15: The impact of approximate memoization on four func-
lions on a GPU. Two schemes are used 1o handle inpuls that do not
map o precomputed outputs: nearest and linear. Nearest chooses
the nearest value in the lookup table to approximate the output. Lin-
ear uses linear approximation between the two nearest values in the
lable. For all [our [unclions, nearest provides beller speedups than
linear al the cost of greater quality loss.
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Samadi et al., Paraprox Pattern-Based Approximation for Data Parallel Applications, ASPLOS’ | 4
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Image Perforation: Automatically Accelerating Image Pipelines by Intelligently Skipping Samples, SIGGRAPH’| 6

Fig. 8. Image perforation and loop perforation results for four image pipelines from top to bottom: bilateral filter, bilateral grid, blur,
demosaic, median and unsharp mask. Each row compares optimized pipelines computed using each method for similar speedup factors,
Please consull the supplemental document for exlensive comparisons [or each of these pipelines. Nole thal one can zoom in Lo see the Bayer
mosaic pattern (or the demosaic inpul. From top lo bollom row, credils: € Charles RolTey; Trey Ratclifl; Neal Fowler; Eric Wehmeyer; Duncan Harris; Sandy Glass,

Application  Input Image Reference Output Image Perforation Ioop Perforation Application  Input Image Reference Output Image Perforation Loop Perforation

Bilateral Filter ’ Demosaic
34
Bilateral Grid Median
Unsharp Mask

Blur




Function Substitution

y = f(x);
y = £'(x);

Baek et al,, PLDI 10;
Ansel et al., CGO'’I |

Version TimeSpec ErrorSpec

f(x) Timel Errl
' (%) Time2 Err2

For instance, polynomial approximation
of transcendental functions:

. x3  x®
sin(x) =~ x -5t for x near 0

R(x) < |x|™! /(n+ 1)!




Function Substitution

y = 'F(X); Version TimeSpec ErrorSpec
f(x) Timel Errl

<[]7 f'(x) Time2 Err2

Neural Network:

y = £'(x);

Esmaceilzadeh et al., Neural Acceleration for
General-Purpose Approximate Programs, MICRO ‘12
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Figure 6: Cumulative distribution function (CDF) plot of the applica-
tions’ output error. A point (x,y) indicates that y fraction of
the output elements see error less than or equal to .

The Parrot transformation degrades each application’s average output
guality by less than 103, a rate commensurate with other approximate
computing technigues.

Esmaeilzadeh et al., Neural Acceleration for General-Purpose Approximate Programs, MICRO ‘12




Dynamic Function Substitution

y = f (X) 3 Version TimeSpec ErrorSpec
f(x) Timel Errl

<[]7 f'(x) Time2 Err2

y = runtime.executeApprox()?
100 £(x);

- Baek et al., Green: A Framework for Supporting Energy-Conscious Programming using Controlled Approximation, PLDI 2010
- Hoffmann et al., Dynamic Knobs for Efficient Power Aware Computing, APSLOS 201 |
- Mitra et al., Phase-aware Approximation in Approximate Computing CGO 2017



Dynamic Approximation

swaptions
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During the power cap, we either restart or suffer through poor
performance.
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Normalized Performance

Dynamic Approximation
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Ski ppi ng Tasks (at Barrier Points)

task { task { task { task { task { task {

X = .. X = .. X = .. X = .. X = .. X = ..
y = .. y = . y = . y = .. y = .. y = .
} } } } } }

Continue execution after all tasks finish

@

task { task { task { task { task {

X = .. X = .. X = .. X = .. X = ..
y = .. y = .. y = .. y = .. y = ..
} } } } }

Continue execution after all tasks finish before timeout,
Otherwise kill delayed or non-responsive tasks

Rinard, Probabilistic accuracy bounds for fault-tolerant computations that discard tasks, ICS '06
Meng et al. Best-Effort Parallel Execution for Recognition and Mining Applications, IPDPS’09



Removing Synchronization

lock(); lock();

X = f(X,y¥); X = f(X,y);
y = 8(X,¥); y = 8(X,¥);
unlock(); unlock();

<

X
1l
X
1l

f(x,y);
g(x,y);

f(x,y);
y = g(X,Y); y

Renganarayana et al. Programming with Relaxed Synchronization, RACES ’12
Misailovic et al. Dancing with Uncertainty, RACES ‘12



Transformation Speedup (max 8) | Relative Speedup | Accuracy Loss
Original 6.21 1.00 0.000 +0.000
BarrierInterl 6.34 1.02 0.027 +0.082
BarrierPoteng 6.48 1.04 0.035 +0.032
LockForces 6.34 1.02 0.004 +0.001

Table 1. Empirical Results for Individual Transformations

Transformation Speedup (max 8) | Relative Speedup | Accuracy Loss
Original 6.21 1.00 0.000 +0.000
BarnierInterf + LockForces 6.44 1.03 0.027 +0.044
BarnerPoteng + LockForces 6.79 1.09 0.042 +0.033
BarierInterf + BarrierPoteng 7.10 1.14 0.053 +0.063
All Three 7.44 1.20 0.051 +0.070

Table 2. Empirical Results for Combinations of Transformations

Misailovic et al. Dancing with Uncertainty, RACES ‘12




Transformations

Dimensions of impact:

* Reducing computation
(perforation, memoization, tiling, function substitution)

* Reducing data
(floating point optimizations)

* Reducing communication/synchronization
(skipping tasks and lock elision)



Some Key Characteristics:

* Approximate Kernel Computations
(have specific structure + functionality)

* Accuracy vs Performance Knob
(tune how aggressively to approximate kernel)

* Magnitude and Frequency of Errors
(kernels rarely exhibit large output deviations)



Applying Transformations

Selecting to approximate

Programmer-guided: programmer writes annotations

Automatic: system identifies the code and tunes the
approximation

Combined: programmer writes some annotations, system
infers the rest

Interactive: system identifies the code and presents the
results to the developer who accepts/rejects



Applying Transformations

Choosing the approximation:
* Off-line: before execution starts
* On-line: during execution

* Combined: improve off-line models with on-line data

We will discuss the algorithms and systems that
help with approximating programs in detail!



