CS 598sm

“robabilistic &
Approximate

Computing

http://misailo.web.engr.lllinois.edu/courses/cs598

http://misailo.web.engr.illinois.edu/courses/cs598

NUMBER REPRESENTATIONS

Numb3rs

Integers vs Machine Integers
* Precision
* Signed/unsigned

Reals vs Rationals vs Floats
* Precision

* Special values

Complex numbers etc.

Numb3rs

Dynamic range: the range of representable numbers.

Important to consider: number of values that can be
represented within the dynamic range

Precision / resolution: the distance between two represented
numbers

Warmup: First Approximation
(everyone often neglects)

Dynamic range: [MIN_INT, MAX_INT]
Resolution: one

Trades off the (intuitive) rules of mathematics for finite representation

Case #I:

* Mathematical integers: Closure property says that a+#b and ab are
positive integers whenever a and b are positive integers

* Machine integers: How much is MAX_INT + 2
(cf. modular arithmetic)

Case #2:
* Mathematical integers: Division by zero is undefined

* Machine integers: the compiler may interpret ‘undefined’ as performing
any action (e.g., simply return O; or raise exception).

Floating Point Numbers

Trades off resolution for wider dynamic range
Standardized by IEEE 754
Example 32-bit (our old good friend ‘float’ in C):

Sign Exponent (8 bit) Mantissa(23 bits)

31 30 23 22 0
29 *note, when
exponent=0,

(_1)Slgn . ZeXponent—127 A1+ Z mantissazz_i) Z—i—l we do special

treatment, i.e.

subnormal
=0

values

 Dynamic range: [-3.4028 * 10738, -3.4028 * 10238] (approx.)
* Resolution: 6 to 9 significant digits

* Min positive value 1.18*[0/-38; min subnormal value |.4*10/-45

Floating Point Numbers

Want more precision?

Double precision floating point (C ‘double’)

* 64 bits total: sign + exponent (I | bits) + mantissa (52 bits)
* Dynamic range: [107-308, 107308] (approx.)

* Resolution: between 2%n and 27 (n+1) it is 2*(n-52).

Extended precision (also part of IEEE 754; C ‘long double’):

* 80 bits total: sign + exponent (15 bits) + mantissa (63 bits)
* E.g,needed for exponentiation of doubles.

* Internally,x86 FPU computes on data in this format.

Floating Point Numbers

Sign Exponent (8 bit) Mantissa(23 bits)

31 30 23 22

Sign Exponent (5 bit) Mantissa(10 bits)

15 14 10 9 0

Half-float numbers:
* Dynamic range: [-65504,+65504]
* Precision: up to 0.00000006 (approx.)

Floating Point Numbers

Sign Exponent (8 bit) Mantissa(23 bits)

31 30 23 22

Sign Exponent (5 bit) Mantissa(10 bits)

15 14 10 9 0

Exponent Mantissa
Sign (3 bit) (4 bits)

8bit-float numbers:

* Dynamic range:
[-15.5,-0.25] U {0} U [0.25, 15.5]
* Precision:up to 0.| (approx.)

Floating Point Numbers

Sign Exponent (8 bit) Mantissa(23 bits)

31 30 23 22

Sign Exponent (5 bit) Mantissa(10 bits)

15 14 10 9 0

Sign Exponent (8 bit) Mantissa(7 bits)

15 14 7 6 0

BFloat| 6 (Brain float) numbers, not a part of IEEE standard:
* Dynamic range: [-3.4 * 10738, 3.4 * 10738] (approx.)
* Precision: between 2 and 3 decimal digits

Easy conversion to/from FP32, reduced memory size

What if we need something different?

Simple fixed-point numbers:

Integer scaled by a unit factor (common: binary or decimal)

If we e.g. use 2 decimal digits as a scaling factor, we can interpret 673
as 6.73.We can similarly use scaling by powers of 2.

When implemented well better control of rounding over floating
point representation

Practical concerns:

In arithmetic operations fixed-point operations should be with the
same scaling factor

Beware of overflows (just as with integers)
Division of fixed points is somewhat trickier

Integer arithmetic spends less energy than FPU, which may be of
relevance for low-end embeeded hardware.

System Impact of Numerical Operations

Cost of Operations

Relative Energy Cost Relative Area Cost

Operation: Energy (pJ) Area (um?2)

8b Add 0.03 36

16b Add 005 M 67 |l

32b Add o1 |IH 137 |

16b FP Add 04 [1360 |

32b FP Add oo | F TV e —

8b Muit o2 | 282 [

32b Mult 3.1 —— a405 [

16b FP Mult 1.1 — T ————

32b FP Mult 37 — 7700 [

32b SRAM Read (8KB) 5 ——— N/A

32b DRAM Read 640 —— N/A

1 10 100 1000 10000 1 10 100 1000

Energy numbers are from Mark Horowitz “Computing’s Energy Problem (and what we can do about it)”, ISSCC 2014
Area numbers are from synthesized result using Design Compiler under TSMC 45nm tech node. FP units used DesignWare Library.

Slide from William Dally’s 2015 NIPS Tutorial

Numb3rs: it’s not so easy

Various tricky points when using floating point:
* Overflows

* Underflows

* Infinities

* NaN (not a number)

* No associativity (a+b)+c !=a + (b+c)

* Catastrophic cancellation

Rounding Error

Difference between results obtained between the exact
solution (using the mathematical representation) and the
finite-space representation of numbers

>>> 0.1
0.1000000000000000055511151231257827021181583404541015625

Machine epsilon: measure of roundoff error level

Other Tricky Points

NaN

Catastrophic cancellation

Infinities

What if we need something different?

https://docs.python.org/3/tutorial/floatingpoint.html

>>> from decimal import Decimal

>>> from fractions import Fraction
>>> Fraction.from_float(0.1) Fraction(3602879701896397, 36028797018963968)
>>> (0.1).as_Integer_ratio() (3602879701896397, 36028797018963968)

>>> Decimal.from_float(0.1)
Decimal ('0.1000000000000000055511151231257827021181583404541015625")

>>> (Decimal.from float(o.1), '.17"') '0.10000000000000001"

See also https://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html

https://docs.python.org/3/tutorial/floatingpoint.html
https://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html

NUMERICAL APPROXIMATIONS

Common Error Metric

For idealized computation P (running on idealized
input x) and approximate computation P’ (running
on the same input):

Err = max | P(x) — P'(x)|
X

Algorithmic Approximation

How to compute sin(x) ?

Taylor Series (1715)

f@ + 22 (x - a)
11(a) 1nr(a)
+f2! (x — a)? +f3! (x —a)?

Algorithmic Approximation

_ x> x> X
Sin(x) ~ x =7+ 57— 7,

What is the approximation error?

Algorithmic Approximation

7!

Algorithmic Approximation

X

_ RE S
Sin(x) ~ x — oy + o7~

|x°]
err < 7

Where’s the catch?

def sineWithError(x: Real): Real = {
require(x > -1.57079632679 && x < 1.57079632679 && x +/- le-11)

X - (X*xxkX)/6.0 + (CkxxxkX*xX)/120.0 - (X*xX*xX*X*kX*xX*X)/5040.0
} ensuring(res => res +/- 1.00le-11)

102 - : 10

=1
o
w
w
Accuracy

Running time for 1000 evaluations (ms)

o\e qup'e

10 '

et 0% poat ol
Do
Towards a Compiler for Reals (TOPLAS 2017)

Other options

Orthogonal-basis polynomials: e.g., Chebyshev
polynomials can approximate the function to the
desired precision on the entire interval

Rational functions: functions that can be written
as the ratio of two polynomials

Splines: piecewise functions, where each piece is a
polynomial

Try out: https://www.chebfun.org/

https://www.chebfun.org/

What hides behind?

double x, y;

y = sin(X);

Real Implementation

/**/

/* An ultimate sin routine. Given an IEEE double machine number x */
/* it computes the correctly rounded (to nearest) value of sin(x) */
/**/
#ifndef IN_SINCOS
double SECTION __sin (double x)
{
double t, a, da; mynumber u; int4 k, m, n; ouble retval = 0;
SET_RESTORE_ROUND_53BIT (FE_TONEAREST);

u.x = X;
m = u.i[HIGH_HALF];
k = ex7fffffff & m; /* no sign */

if (k < 6x3e500000) { /* if x->0 =>sin(x)=x */
math_check_force_underflow (x);
retval = x;

A LT 27-26<|x|< ©.855469------------- */
else if (k < 0x3feb6000) {
/* Max ULP is ©.548. */
retval = do_sin (x, 9);
} /* else if (k < 0x3feb6000) */

A LT 0.855469 <|x|<2.426265 ----------- */
else if (k < 0x400368fd) {
t = hpe - fabs (x);
/* Max ULP is @0.51. */
retval = copysign (do_cos (t, hpl), x);
} /* else if (k < 0x400368fd) */

https://sourceware.org/git/?p=glibc.git;a=blob;f=

sysdeps/ieee/54/dbl-64/s_sin.cchb=HEAD#I28 |

[Homm e 2.426265<|x|< 105414350
else if (k < Ox419921FB) {
n = reduce_sincos (x, &a, &da);
retval = do_sincos (a, da, n);
} /* else if (k < ©x419921FB) */

/¥ ===---- 105414350 <|x| <2”1024 ---------
else if (k < Ox7ffoee00) {
n = _ _branred (x, &a, &da);
retval = do_sincos (a, da, n);
}
4 LT ——— [x| > 271024 ----ccmmmmaen
else {
if (k == 0x7ff00000 && u.i[LOW_HALF]
__set_errno (EDOM);
retval = x / x;
}

return retval;

== 0)

https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/ieee754/dbl-64/s_sin.c;hb=HEAD#l281

Real Implementation (More!)

/* Given a number partitioned into X and DX, this function computes the sine of
the number by combining the sin and cos of X (as computed by a variation of
the Taylor series) with the values looked up from the sin/cos table to get
the result. */

static _ always_inline double do_sin (double x, double dx) {

double xold = x;
/* Max ULP is @.501 if |x| < ©.126, otherwise ULP is ©.518. */
if (fabs (x) < 0.126) return TAYLOR SIN (x * x, X, dx);

mynumber u;

if (x <= 9) dx = -dx;

u.x = big + fabs (x);

x = fabs (x) - (u.x - big);

double xx, s, sn, ssn, ¢, cs, ccs, cor;

XX = X * x;

S =X+ (dx + X * xx * (sn3 + xx * sn5));

c =x *dx + xx ¥ (cs2 + xx * (cs4 + xx * cs6));
SINCOS TABLE LOOKUP (u, sn, ssn, cS, cCS);

cor = (ssn + s * ccs - sn * c) + ¢cs * s;

return copysign (sn + cor, xold);

} ...and this is not all!

Often, what we consider ‘exact’ is approximate to start with.

What matter is accuracy: the level of approximation and the
‘gsuarantees’ on the output quality

Fun Facts: End Results Can Differ

HATTOM AND ROBERTS: HOW ACCLURATE IS SCIENTIFIC SOFTWARE? 793

CDP TRACE MUMBER COP TRACE NUMBER CDP TRACE MUMBER
100 400 500 00 400 500

standards at work. The scientific arguments used to prepare a
theorem or a physical simulation are closely scrutinized by the
generally excellent peer review system under which scientific
journals and the scientific community operate. In contrast, the
software that scientists use to realize tangible results of such
simulations is, in the authors’ experience, rarely reviewed and
frequently highly guestionable. It 1s often implicitly assumed,
for example, that resofurion (say, around 0.001% in typical
floating point formarts) and accwracy are synonymous—the
widespread uvse of double precision in some sciences is in-
dicative of the accuracy expectations. The software lesting
procedures used are left entirely to the authors of the scientific

T.W.T. (masc)

T 2m80 ..

E work. Regrettably, as we shall see, scientists are mo more
£ seoe successful at writing reliable software than anyone else,

[2

E

- 2TO0

1800

COP TRACE NUMBER
400 B0

. - & -m » .- - #

r0a - Z . . . - _
g im0 | = A 3 ...
E = -
= 100 -
L
|
% 2100

1800

PACKAGE T PACKAGE 8 PACKAGE 9 AWERAGE

Fig. 10. A collage of the nine different identically processed end-products (calibration point 14) as would be analyzed by a geoscientist. It would be nice
to find that they agree to within the single-precision Aoating-point arithmetic used, i.e., around 0.001%., In practice. differences amount to aroend 100 000 1o
| D000 times worse than this. Note that the bottom right cross-section represents the average of all the nine individual cross-sections, Horizontal stripes are
timing lincs and are the same on each and the vertical stripes correspond o areas of gross departure and have been statistically trimmed.

Sensitivity

So far we talked about the error that
emerges inside the computation.

How does that error propagate through
the subsequent computation?

Sensitivity

If the input x changes by 0,
by how much does the output of f(x) change!?

Fi(x) = x+1 Fi(x+0)=
F,(x) = x%2 + 1 Fo(x +9) =
F;(x) = e* F;(x +0) =

Lipschitz Continuity

Sets a linear bound on error propagation:
Vxy, X2 - 1f () — FQ) S K - |xg — x5
Locally Lipschitz continuous in neighborhood U of x:

Vx1,Vxy € U(x1) . |f(x1) — f(x)| S K - [xg — x5

Another Thought Experiment

Consider the function f(x) and its approximation f’(x).

Let x be the original input and x’ be the input with
some noise, bounded by a constant .

We also know that the Lipschitz constant of f and f’
is equal to K, and the error of f’ is bounded by o.

What is the upper bound on the total error between
f(x) and f(x’) ?

Let x be the original input and x’ be the input with
some noise, bounded by a constant &.

We also know that the Lipschitz constant of f and

We I(n OoOVWw. is equal to K, and the error of f’ is bounded by 5.

What is the upper bound on the total error between

° vx’ x’ A — x’l S c f(x) and f'(x’) ?

e V,x . |f(x)—f(x)| <K -|x—x'|
* Vx.|f(x)—f'()]| <46
Question: Vx,x . |[f(x) — f'(x)| < 7

Let x be the original input and x’ be the input with
some noise, bounded by a constant &.

We also know that the Lipschitz constant of f and

We I(n OoOVWw. is equal to K, and the error of f’ is bounded by 5.

What is the upper bound on the total error between

° vx’ x’ A — x’l S c f(x) and f'(x’) ?

e V,x . |f(x)—f(x)| <K -|x—x'|

* Vx.|f(x)—f'()]| <46
Question: Vx,x . |[f(x) — f'(x)| < 7

» Vx,x' . |f () — f'(xX)]
c =GO+ fED) = O]
- < |fC) = fOD+ () = frD]
° S K . £ _|_ 5 |<norwlr;d|;e

X +e, We can propagate
error now

f1

1ilX + &) +& — LX) S Kpqp- &0 + &

Kfl’ &1

f2

Kle &Er

1fo(iX + &) + &) + &5 — [L,([1(X))]
< KfZ . Kfl €o ~+ KfZ &1 ~+ Eo

What do we learn from f'(x') ?

Total Error = Error of Local Approximation

+ Error of Propagation

Analysis Tradeoff: A precise analysis would need to (1) deal with non-linear
interactions between propagated error and the error of approximation or (2) use
inequalities that conservatively bound the total error.As downsides, the analysis |
may not be computationally feasible; the analysis 2 may become too imprecise.

X*Y =1

XY =?

Tuning Floating Point
Programs: Precimonious

Key idea:

* Identify operations for which, when approximated the
output is sensitive to change

* Do not reduce their precision, try other instructions

Delta debugging: make multiple changes, then reduce and
split the sets if some variables cause low accuracy

Precimonius: Tuning Assistant for Floating-Point Precision; Rubio-Gonzalez et al. SC 2013

Precimonious Example

long double fun(long double x) { double fun(double x) {
int k, n = 5;

int k, n = b;
long double ti; double t1;
long double di = 1.0L; float d1 = 1.0f;

tl = x; t1 = x;
for(k = 1; k <= n; k++) { for(k = 1; k <= n; k++) {
dl = 2.0 * di; di = 2.0 * di;
tl = t1 + sin (d1 * x) / di; tl = t1 + sin (d1 * x) / di;
} }
return ti; return t1;
} }
int main(int argc, char **argv) { int main(int argc, char **argv) {
int i, n = 1000000; int i, n = 1000000;
long double h, t1, t2, dppi; double h, t1, t2, dppi;
long double si; long double s1;
tl1 = -1.0; tl = -1.0;
dppi = acos(tl); dppi = acos(tl);
sl = 0.0; sl = 0.0;
tli = 0.0; t1 = 0.0;
h = dppi / n; h = dppi / n;
for(i =1; i <=n; i++) { for(i =1; i <= n; i++) {
t2 = fun (i * h); t2 = fun (i * h);
sl = sl + sqrt (h*h + (£2 - tD*(t2 - t1)); s1 = s1 + sqrt (h*h + (2 - t1)*(t2 - t1));
t1 = t2; t1 = t2;
¥ }
// final answer is stored in variable si // final answer is stored in variable si
return O; return 0;

Precimonious

Isolate locations most Reduce search space; filter out
sensitive to error candidates with wrong type

Use accuracy

metric

Comparison
Result

Higher precision

v

Program
| I Transformations

Transformed 5| Run/Compare
Results

LLVM Bitcode

Double = Float

Precimonius: Tuning Assistant for Floating-Point Precision; Rubio-Gonzalez et al. SC 2013

Stoke

* Superoptimizer: tries various
ordering of instructions

* Stochastic: searches for the
regions of programs and
instructions that may have
better chance of giving high
performance using MCMC

(b) Valid lower precision (36.6%) (c) Error pixels (shown white)

http://stoke.stanford.edu

(d) Invalid lower precision (e) Eils sow whit)
Stochastic Optimization of Floating-Point Programs with Tunable Precision
(Schkufza et al. PLDI 2014)

http://stoke.stanford.edu/

