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RECALL:

NUMBER REPRESENTATION



Floating Point Numbers

Trades off resolution for wider dynamic range

Standardized by IEEE 754

Example 32-bit (our old good friend ‘float’ in C):

• Dynamic range: [ -3.4028 * 10^38, -3.4028 * 10^38 ] (approx.)

• Resolution: 6 to 9 significant digits

• Min positive value 1.18*10^-38; min subnormal value 1.4*10^-45

Sign Exponent (8 bit) Mantissa(23 bits)

−1 sign ⋅ 2exponent−127 ⋅ 1 +෍

𝑖=0

22

mantissa22−𝑖 ⋅ 2
−𝑖−1

022233031

*note, when exponent=0, 

we do special treatment, i.e.

subnormal values



Floating Point Numbers

Half-float numbers:

• Dynamic range: [-65504,+65504]

• Precision: up to 0.00000006 (approx.)

Sign Exponent (8 bit) Mantissa(23 bits)

022233031

09101415

Sign Exponent (5 bit) Mantissa(10 bits)



Floating Point Numbers

BFloat16 (Brain float) numbers, not a part of IEEE standard:

• Dynamic range: [ -3.4 * 10^38, 3.4 * 10^38 ] (approx.)

• Precision: between 2 and 3 decimal digits

Easy conversion to/from FP32, reduced memory size

Sign Exponent (8 bit) Mantissa(23 bits)

022233031

09101415

Sign Exponent (5 bit) Mantissa(10 bits)

Sign Exponent (8 bit) Mantissa(7 bits)

0671415



Fixed-Point Numbers

Simple fixed-point numbers:

• Integer scaled by a unit factor (common: binary or decimal)

• If we e.g. use 2 decimal digits as a scaling factor, we can interpret 673 as 6.73

• When implemented well better control of rounding over floating point 

representation

Practical concerns: 

• In arithmetic operations fixed-point operations should be with the same 

scaling factor

• Beware of overflows (just as with integers)

• Division of fixed points is somewhat trickier

• Integer arithmetic spends less energy than FPU, which may be of relevance for 

low-end embeeded hardware. 



QUICK RECAP:

DEEP LEARNING INFERENCE
(BASED ON WILLIAM DALLY’S NIPS 2015 TUTORIAL)



Neural Networks

• Neuron

• Synapse

• Layers

• Depth

• Weights

• Activation

…



Matrix 

Multiplication
…

a bWT X =

Weight Matrix 

Transpose

Input 

Activations

Output 

Activations

M x N N x 1 M x 1

𝑾𝑻 ⋅ 𝒂 = 𝒃



…

Forward Pass:

Does matrix multiply 

for each layer

…
Back-propagation:

Does matrix multiply 

for each layer, just in 

the opposite direction



Convolutional Neural Networks

• Convolutional stages act as trained feature detectors

• Operations require convolution + matrix multiply



Full Classification Workflow

Accuracy of prediction:

• Top-1: How often is the predicted label equal to true label

• Top-5: Check if the true label is one of the predicted labels with 

top 5 scores (“probabilities”)

These scores are computed as the #matched inputs / #total inputs

Accuracy loss metric:  AccLoss = Accuracyoriginal – Accuracyoptimized

(for approximation)

…
Image Preprocess

Assign 

(Predict) 

the label of

the category



Supervised Learning

Given: 

• Probability distribution 𝐷

• Random variable Z ~ 𝐷

• Domain of samples 𝑋 and labels 𝑌

• Hypothesis space 𝐻 – set of functions 𝑓 ∶ 𝑋 → 𝑌

Minimize generalization error:

• Loss function: 𝐿 𝒇 = Pr𝐷 [ 𝒇(𝑍) ≠ truelabel(𝑍) ]



Supervised Learning
Common: The functions f𝑤 ∈ 𝐻 expressed using a weight vector 𝑤

• Can be a hyperplane separating between samples of two classes

• In NNs, w is defined in multiple layers

The optimization problem is now: 𝒘∗ = arg𝐦𝐢𝐧
𝒘∈𝑯

𝑳(𝒇𝒘) = 𝔼𝒁~𝑫(𝒍 𝒘, 𝒁 )

𝑙 is the loss of an individual sample. Some examples:

• Regression: square loss 𝑙 = fw z − truevalue z
2

• Classification 0-1:  𝑙 = 0 if fw z = truevalue z else 1 (but not continuous or diff.)

• Classification cont. and diff – use softmax: pi =
exp 𝑧𝑖

∑ exp(𝑧𝑘)

• Classification binary – log loss:𝑙 = − log 𝑝 if truelabel = 1 else − log(1-p)

• Classification multiple labels: compute cross entropy



APPROXIMATING DNNS

– PRUNING

– QUANTIZATION

– TRAINING CONSIDERATIONS



Pruning
Techniques for making weights and activations sparse

Accuracy vs. Space(+Computation) tradeoffs

Illustration from Han et al., Learning 

both Weights and Connections for 

Efficient Neural Networks ((NIPS 2015) 



Pruning

Techniques for making weights and activations sparse

• Sparse tensor = has many values equal to 0

• L0-”norm” = #zeros in the tensor

Criterion for pruning elements

• Compare the absolute value with threshold, return zero if below

• For sparse tensors, we want to maximize L0-”norm”

• At the same time, keep end-to-end prediction accuracy high

*Disambiguate from L0 norm, which is 

the maximum element of the tensor



Cost of Operations

Mark Horowitz. Energy table for 45nm process, Stanford VLSI wiki

via Han et al., Learning both Weights and Connections for Efficient Neural Networks 



Data Structures for Sparse Tensors

Sparse matrices representation contains only non-zero values:

• Coordinate list (COO): list of tuples (row, column, value)

• List of lists: (LIL) each row is a list, containing pair (column, value)

• Dictionary: (DOK) a mapping from (row, column) to value

• Compressed sparse row (CSR): three arrays, each for row, column and value. 

Some properties:

• The operations are more expensive on real systems, and harder to rely on 

locality; operator implementations are more complex

• Need to ensure that the sparsity is sufficient to justify the costs, essentially 

trading communication for less data/communication



Pruning Intuition

The optimization space is very high-dimensional. 

“Around” the original solution (dense network), 

there are likely solutions that are sparse. 

The goal of our procedure is to find those sparse 

networks (sets up the stage for local search)



Pruning Schedules

Styles of pruning:

• One-shot : no retraining, 2x connections removed, no accuracy loss

• Iterative: retraining follows pruning; more sparsity, no accuracy loss

Algorithm for iterative “Deep Compression” (Han et al. NIPS’15): 

Train 

Connectivity

Prune 

Connectivity

Train Weights

• Conventional training produces dense network

• Prune low-weight connections – zeros out weights 

with value below a specified threshold, to prudice a 

sparse network

• Then, retrain the network to learn the new weights 

for the remaining connections. 

(improves the accuracy of the sparse network)

almost



Pruning Schedules

Schedule of the iterative process: determining the changes of 

the pruning criteria, iteration count, how often specific tensors 

are pruned, stopping rule (e.g., a desired level of sparsity).

Pruning granularity:

• Element-wise: individual weights

• Structured pruning: pruning groups of elements (e.g., filters)



Pruning – Early Results

Small error, 

even better 

accuracy in 

some cases

Significant reduction.

But, how does that 

affect performance 

or energy?

Han et al., Learning both Weights and Connections for Efficient Neural Networks (NIPS’15) 



Pruning – Early Results
Flop = Floating point operations

Act = Activations

Conv = convolution layer

Fc = fully connected layer

Fully connected layers are much more amenable than convolutional

Does the reduction in operations correspond to the speedup 

on real-world hardware?

Han et al., Learning both Weights and Connections for Efficient Neural Networks (NIPS’15) 



Pruning State-of-the-Art
Based on Survey “What is the State of Neural Network Pruning?” (SysML 2020)

• Many methods effectively compress networks > 10x with 

minimal impact on accuracy. Sometimes they have better 

accuracy than the dense models. 

• For aggressive pruning, intelligent pruning methods (selecting 

parameters, or globally tuning) outperform random pruning.

• Iterative pruning often outperform retraining with the same 

sparsity pattern (i.e., model is 

randomly initialized with all the 

weights identified by iterative 

pruning clamped to zero).

• Comparisons are hard to make

systematically 



Pruning State-of-the-Art

From What is the State of Neural Network 
Pruning?” (SysML 2020)

“Size and speed vs 
accuracy tradeoffs for 
different pruning 
methods and families of 
architectures. 

Pruned models 
sometimes outperform 
the original architecture, 
but rarely outperform a 
better architecture.”



Pruning State-of-the-Art

Pruning (even with FLOPs reported) don’t 

always result in better speedup:

Run time for the dense and the sparse 

DNN models with Deep Compression 

on the CPU; GPU results are similar

From Yu et al. Scalpel: Customizing DNN Pruning to the 

Underlying Hardware Parallelism (ISCA 2017)
From What is the State of Neural 

Network Pruning?” (SysML 2020)



Quantization in Inference

Make the model representation compact:

FP32  FP16

• Float to half-float, reduces the range

FP32  INT8

• From 10^38 values to 256

FP32  binary (+1, -1)

• Extreme, but works for e.g., MNIST, CIFAR-10
. 



Cost of Operations

William Dally. High-Performance Hardware for Machine Learning. Tutorial, NIPS, 2015

INT8 Energy Saving Area Saving 

Operation vs FP32 vs FP32

Add 30x 116x

Multiply 18x 27x

But also consider the cost of transferring data!



Quantization with Int8
Some examples:

• Dynamic Fixed Point: Adapts the range of fixed point to each network segment 

(offline). The challenge is the wide range of weights e.g., in AlexNet 97% weights are 

in [2-11,2-3], 99% layer outputs are in [2-2, 28]. Activations are 29x larger than weights.

• MiniFloat: float with less than 32bit. Using 8 bit float (1-3-4 bits).

• Multiplier-free Arithmetic: bit-shifts instead of multiplications

𝑧𝑖 = ∑ 𝑥𝑗 ⋅ 𝑤𝑗 + 𝑏𝑖 ≈ ∑ 𝑥𝑗 ≪ round log2𝑤𝑗 + 𝑏𝑖

It first approximates weights by their closest power of 2 number, then does a 

sequence of shifts and accumulates

Ristetto* evaluates these three quantization schemes. We can apply these optimizations 

with or without fine tuning *Ristretto: A Framework for Empirical Study of Resource-Efficient 

Inference in Convolutional Neural Networks (IEEE Transactions on Neural 

networks and Learning Systems Nov 2018)



Quantization with Int8

Ristretto: A Framework for Empirical Study of Resource-Efficient Inference in Convolutional Neural 

Networks (IEEE Transactions on Neural networks and Learning Systems Nov 2018)

fine-tuned



Combining Quantization and Pruning

Han et al. Deep Compression: Compressing Deep Neural Networks with Pruning, 

Trained Quantization and Huffman Coding (NIPS 2016)



Combining Quantization and Pruning



Quantization During Training

Caveat with offline quantization: potential overflows in the computation may 
hinder the accuracy

Quantization may significantly impact some layers (e.g., first and last)

For smaller models (e.g., MobileNet), quantization after training may not 
preserve accuracy.

Quantization aware training: 

• Maintain a full-precision weights to accumulate small changes in the 
gradients

• Quantize weights in each step to estimate the accuracy loss in every step 

• Effect of quantization is backpropagated using straingth-through 
estimators (passes the gradient through the functions unchanged)

• At the end keep only the quantized weights



Binarized Neural Networks
All weights and activations are binary -1 or +1

Transform real valued variables to binary:

• Deterministic 𝑥𝑏 = 𝑆𝑖𝑔𝑛 𝑥

• Probabilistic 𝑥𝑏 = ൝
+1 with probability 𝑝 = 𝑐𝑙𝑖𝑝 0,1 (

1

2
𝑥+1 )

−1 with probability 1 − 𝑝

Probabilistic may give better results, but harder to implement

Training still operates on floating point, the gradients need to be floats. 

SGD explores the parameter space in small noisy steps

The main challenge is propagating the gradients through discretized 

network – straight through estimator (lets the gradient unmodified)

Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1 

(NIPS 2016) Bengio et al



Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1 

(NIPS 2016) Bengio et al



Neural Network Training

Common wisdom: Training high accuracy and inference low precision

• Stochastic gradient descent more sensitive to quantization

• Postprocess highly accurate (FP32) network

• But some interesting new devlopments:
E.g., Training Deep Neural Networks with 8-bit Floating Point Numbers (NeurIPS 2018)

Stochastic gradient descent has a nice property for approximation:

• We can parallelize it without locks. 

• While updating, it can read/write stale data, so some updates are lost

• The algorithm is iterative, a few more iterations (epochs) are much 
more efficient than a full-locking scheme

Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent(NIPS’11)


