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RECALL:
NUMBER REPRESENTATION



Floating Point Numbers

Trades off resolution for wider dynamic range
Standardized by IEEE 754
Example 32-bit (our old good friend ‘float’ in C):

Sign  Exponent (8 bit) Mantissa(23 bits)

31 30 23 22 0
22
*note, when exponent=0,

(_1)sign . gexponent-127 | 1 4 E mantissa,,_; - 2—i=1 | we do special treatment, .

subnormal values

=0

 Dynamic range: [ -3.4028 * 10738, -3.4028 * 10238 ] (approx.)
* Resolution: 6 to 9 significant digits

* Min positive value 1.18*[0/-38; min subnormal value |.4*10/-45



Floating Point Numbers

Sign  Exponent (8 bit) Mantissa(23 bits)

31 30 23 22

Sign Exponent (5 bit) Mantissa(10 bits)

15 14 10 9 0

Half-float numbers:
* Dynamic range: [-65504,+65504]
* Precision: up to 0.00000006 (approx.)



Floating Point Numbers

Sign  Exponent (8 bit) Mantissa(23 bits)

31 30 23 22

Sign Exponent (5 bit) Mantissa(10 bits)

15 14 10 9 0

Sign  Exponent (8 bit) Mantissa(7 bits)

15 14 7 6 0

BFloat| 6 (Brain float) numbers, not a part of IEEE standard:
* Dynamic range: [ -3.4 * 10738, 3.4 * 10738 ] (approx.)
* Precision: between 2 and 3 decimal digits

Easy conversion to/from FP32, reduced memory size



Fixed-Point Numbers

Simple fixed-point numbers:
* Integer scaled by a unit factor (common: binary or decimal)
* If we e.g. use 2 decimal digits as a scaling factor, we can interpret 673 as 6.73

*  When implemented well better control of rounding over floating point
representation

Practical concerns:

* In arithmetic operations fixed-point operations should be with the same
scaling factor

* Beware of overflows (just as with integers)
* Division of fixed points is somewhat trickier

* Integer arithmetic spends less energy than FPU, which may be of relevance for
low-end embeeded hardware.



QUICK RECAP:
DEEP LEARNING INFERENCE

(BASED ON WILLIAM DALLY’S NIPS 2015 TUTORIAL)



Neural Networks

Hidden Hidden ° Neuron
S Q Output * Synapse
O * Layers
Q e * Depth
O * Weights

e Activation
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Convolutional Neural Networks

* Convolutional stages act as trained feature detectors

* Operations require convolution + matrix multiply

Kernels

Multiple 3D
Kuvkj

6D Loop
For each output map j
For each input map k
For each pixel x,y
For each kernel element u,v
Bxyj += A(x—u)(y-v)k X Kuvkj

Input maps Output maps
Axyk Bxyj



Full Classification Workflow

Hidden

N | output Assign
O (Predict)
Image >| Preprocess > O > the label of
Q *° the category
Accuracy of prediction:

* Top-l:How often is the predicted label equal to true label

* Top-5: Check if the true label is one of the predicted labels with
top 5 scores (“probabilities”)

These scores are computed as the #matched inputs / #total inputs

Accuracy loss metric: Accloss = Accuracy, i, —ACCUracy imized
(for approximation)



Supervised Learning

Given:

* Probability distribution D

* Random variable Z ~ D

* Domain of samples X and labels Y

* Hypothesis space H — set of functions f : X - Y

Minimize generalization error:
* Loss function: L(f) = Prp [ f(Z) # truelabel(Z) ]



Supervised Learning

Common:The functions f,, € H expressed using a weight vector w

Can be a hyperplane separating between samples of two classes
In NNs, w is defined in multiple layers

The optimization problem is now: w* = argmin L(f,,) = Ez_p(l(w, Z))

weEH

[ is the loss of an individual sample. Some examples:

Regression: square loss | = (f,(z) — truevalue(z))2

Classification 0-1: [ = 0 if f,,,(z) = truevalue(z) else | (but not continuous or diff.)
exp(z;)

2. exXp(Zg)

Classification binary — log loss:l = —log(p) if truelabel =1 else —log(1-p)

Classification multiple labels: compute cross entropy

Classification cont. and diff — use softmax: p; =



APPROXIMATING DNNS
— PRUNING
— QUANTIZATION

— TRAINING CONSIDERATIONS



Pruning

Techniques for making weights and activations sparse

Accuracy vs. Space(+Computation) tradeoffs

before pruning after pruning

pruning
synapses

pruning
Neurons

lllustration from Han et al., Learning

both Weights and Connections for
Efficient Neural Networks ((NIPS 2015)



Pruning

Techniques for making weights and activations sparse

* Sparse tensor = has values equal to 0

*Disambiguate from LO norm, which is
the maximum element of the tensor

e LO-"norm” = #zeros in the tensor

Criterion for pruning elements
* Compare the absolute value with threshold, return zero if below
* For sparse tensors, we want to maximize LO-"norm”

* At the same time, keep end-to-end prediction accuracy high



Cost of Operations

Relative Energy Cost

Operation Energy [pJ] Relative Cost
32 bit int ADD 0.1 |

32 bit float ADD 0.9 9

32 bit Register File 1 10

32 bit int MULT 3.1 31

32 bit float MULT 3.7 37

32 bit SRAM Cache 5 50

32 bit DRAM Memory 640 6400

1 10 100 1000 10000

Mark Horowitz. Energy table for 45nm process, Stanford VLSI wiki
via Han et al., Learning both Weights and Connections for Efficient Neural Networks



Data Structures for Sparse Tensors

Sparse matrices representation contains only non-zero values:

* Coordinate list (COQ): list of tuples (row, column, value)

* List of lists: (LIL) each row is a list, containing pair (column, value)

* Dictionary: (DOK) a mapping from (row, column) to value

* Compressed sparse row (CSR): three arrays, each for row, column and value.

Some properties:

* The operations are more expensive on real systems, and harder to rely on
locality; operator implementations are more complex

* Need to ensure that the sparsity is sufficient to justify the costs, essentially
trading communication for less data/communication



Pruning Intuition

The optimization space is very high-dimensional.

“Around” the original solution (dense network),
there are likely solutions that are sparse.

The goal of our procedure is to find those sparse
networks (sets up the stage for local search)



Pruning Schedules

Styles of pruning: almost
* One-shot : no retraining, 2x connections removed, no accuracy loss
* [terative: retraining follows pruning; more sparsity, no accuracy loss

Algorithm for iterative “Deep Compression” (Han et al. NIPS’15):

* Conventional training produces dense network _

* Prune low-weight connections — zeros out weights [el 0
with value below a specified threshold, to prudice a
sparse network Prune

Connectivity

* Then, retrain the network to learn the new weights
for the remaining connections.
(improves the accuracy of the sparse network) Train Weights




Pruning Schedules

Schedule of the iterative process: determining the changes of
the pruning criteria, iteration count, how often specific tensors
are pruned, stopping rule (e.g., a desired level of sparsity).

Pruning granularity:
* Element-wise: individual weights

* Structured pruning: pruning groups of elements (e.g., filters)



Pruning — Early Results

Han et al., Learning both Weights and Connections for Efficient Neural Networks (NIPS’15)

Network Top-1 Error  Top-5 Error | Parameters ggﬂ: pression
LeNet-300-100 Ref 1.64% - 267K

LeNet-300-100 Pruned | 1.59% - 22K 12x
LeNet-5 Ref 0.80% - 431K

LeNet-5 Pruned 0.77% - 36K 12x
AlexNet Ref 42.78% 19.73% 61M

AlexNet Pruned 42.77% 19.67% 6.7M 0 x

VGG-16 Ref 31.50% 11.32% 138M

VGG-16 Pruned 31.34% 10.88% 10.3M 13 x

1

Small error,
even better

accuracy in
some cases

Significant reduction.
But, how does that
affect performance
or energy!



Han et al., Learning both Weights and Connections for Efficient Neural Networks (NIPS’15)

Pruning — Early Results

Conv = convolution layer
Fc = fully connected layer

Flop

= Floating point operations

Act = Activations

Table 4: For AlexNet, pruning reduces the number of weights by 9x and computation by 3x.

ERemaining Parameters  ®Pruned Parameters

Layer | Weights FLOP Act%  Weights% FLOP%
convl | 35K 211M  88% 849 84% 60M
conv2 | 307K 448M  52% 38% 33% s
conv3 | 885K 200M  37% 35% 18%

convd | 663K 224M  40% 37% 14% 30M
convd | 442K 150M  34% 37% 14%

fcl 38M 5M  36% 9% 3% 15M
fc2 17M 34M  40% 9% 3%

fc3 | 4M 8M  100%  25% 10% M
Total | 61M 1.5B 54% 11% 30%

Fully connected layers are much more amenable than convolutional

Does the reduction in operations correspond to the speedup

on real-world hardware?



Pruning State-of-the-Art

Based on Survey “What is the State of Neural Network Pruning?” (SysML 2020)

* Many methods effectively compress networks > [0x with
minimal impact on accuracy. Sometimes they have better
accuracy than the dense models.

* For aggressive pruning, intelligent pruning methods (selecting
parameters, or globally tuning) outperform random pruning.

* lterative pruning often outperform retraining with the same

Spal‘sit)' Pa.tte n (i.e., mOdel IS Ignoring Pre-2010s Methods There was already a rich
e . body of work on neural network pruning by the mid 1990s
randomly initialized with all the | e c. Reeds survey (Reed, 1993)), which has been al-
. . . . . most completely ignored except for Lecun’s Optimal Brain
WelghtS |dent|f|ed by Iterative Damage (LeCun et al., 1990) and Hassibi’s Optimal Brain
Surgeon (Hassibi el al., 1993). Indeed, multiple authors

p run | ng C I am Ped to ze rO) . have rediscovered existing methods or aspects thereol, with

Han et al. (2015) reintroducing the magnitude-based prun-

. Comparisons are hard to make | ing of Janowsky (1989), Lee et al. (2019b) reintroducing

the saliency heuristic of Mozer & Smolensky (1989a), and

S)’Stematical |)l He et al. (2018a) reintroducing the practice of “reviving”
previously pruned weights described in Tresp et al. (1997).




Pruning State-of-the-Art

From What is the State of Neural Network "
Pruning?” (SysML 2020) =
“Size and speed vs g
accuracy tradeoffs for 2 .
different pruning g™
methods and families of "

architectures.

Pruned models
sometimes outperform
the original architecture,
but rarely outperform a

Top 5 Accuracy (%)

Ag
. ”»
better architecture. "
10’ 10’ T ' "
Mumber of Paramatars Mumber aof FLOPs
—a— MabileNet-v2 (2018] —8— RasNat {Z01E) —8— VGG [2014)  —8— EfficieniMel (2018

EtabilaPMdat-w2 Frisna RaaMal Prinad WEE Prirsad



Pruning State-of-the-Art

5.2 Metrics Ambiguity

It can also be difficult to know what the reported metrics
mean. For example, many papers include a metric along
the lines of “Pruned%”. In some cases, this means frac-
tion of the parameters or FLOPs remaining (Suau et al.,
2018). In other cases, it means the fraction of parameters or
FLOPs removed (Han et al., 2015; Lebedev & Lempitsky,
2016; Yao et al., 2018). There is also widespread misuse of
the term “compression ratio,” which the compression liter-
ature has long used to mean u;:;"grm'ﬂf:m (Siedelmann et al.,
2015; Zukowski et al., 2006; 7[‘1.10 el al., 2015; Lindstrom,
2014; Ratanaworabhan el al., 2006; Blalock et al., 2018),
but many pruning authors define (usually without making

L compressed size
the formula explicit) as 1 original size*

Reported *speedup” wvalues present similar challenges.
These values are sometimes wall time, sometimes original
number of FLOPs divided by pruned number of FLOPs,
sometimes a more complex formula relating these two
quantities (Dong et al., 2017; He et al., 2018a), and some-
times never made clear. Even when reporting FLOPs,
which is nominally a consistenl metric, dilferent authors
measure it differently (e.g., (Molchanov et al., 2016) vs
(Wang & Cheng, 2016)), though most often papers entirely
omit their formula for computing FLOPs. We found up
to a factor of four variation in the reported FLOPs of dif-
ferent papers for the same architecture and dataset, with
(Yang et al., 2017) reporting 371 MFLOPs for AlexNet on
ImageNet, (Choi et al., 2019) reporting 724 MFLOPs, and
(Han et al., 2015) reporting 1500 MFLOPs.

From What is the State of Neural
Network Pruning?”’ (SysML 2020)

Pruning (even with FLOPs reported) don’t
always result in better speedup:
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Run time for the dense and the sparse
DNN models with Deep Compression
on the CPU; GPU results are similar

From Yu et al. Scalpel: Customizing DNN Pruning to the
Underlying Hardware Parallelism (ISCA 2017)



Quantization in Inference

Make the model representation compact:

FP32 = FP16
* Float to half-float, reduces the range

FP32 - INTS8
* From 0738 values to 256

FP32 = binary (+1, -1)
* Extreme, but works for e.g., MNIST, CIFAR-10



Cost of Operations

INTS Energy Saving Area Saving
Operation vs FP32 vs FP32

Add 30x | | 6x

Multiply | 8x 27x

William Dally. High-Performance Hardware for Machine Learning. Tutorial, NIPS, 2015

But also consider the cost of transferring data!



Quantization with Int8

Some examples:

* Dynamic Fixed Point: Adapts the range of fixed point to each network segment
(offline). The challenge is the wide range of weights e.g., in AlexNet 97% weights are
in [2711,2-3],99% layer outputs are in [2-2, 28]. Activations are 2°x larger than weights.

* MiniFloat: float with less than 32bit. Using 8 bit float (1-3-4 bits).
* Multiplier-free Arithmetic: bit-shifts instead of multiplications
Z; = Z(xj - Wj) + b; = ), (xj K round(log2 Wj)) + b;
It first approximates weights by their closest power of 2 number, then does a
sequence of shifts and accumulates

Ristetto™ evaluates these three quantization schemes.VWe can apply these optimizations

with or without fine tunmg *Ristretto: A Framework for Empirical Study of Resource-Efficient
Inference in Convolutional Neural Networks (IEEE Transactions on Neural
networks and Learning Systems Nov 2018)



Quantization with Int8

AlexMet GoogleMet SqueezeMet
0.00% — — —
3 L B N
- -2.00%
o
rm -10.00%
3
o -15.00%
g
Y -20.00%
=
Q
= -25.00%
Dynamic fixed point B Dynamic fixed point (FT)
B Minifloat B Minifloat (FT) fine-tuned
Multiplier-free arithmetic B Multiplier-free arithmetic (FT)

Fig. 4. Top-1 accuracy drop of 8-bit networks. We show the accuracy
differcnce beltween the approximaled and the 32-bit FP network. Fine-luned
nelworks are denoled with FT. Our dynamic ixed poinl nelworks achieve the
best performance and are within 1% of the onginal network.
Ristretto: A Framework for Empirical Study of Resource-Efficient Inference in Convolutional Neural
Networks (IEEE Transactions on Neural networks and Learning Systems Nov 2018)



Han et al. Deep Compression: Compressing Deep Neural Networks with Pruning,
Trained Quantization and Huffman Coding (NIPS 2016)

Combining Quantization and Pruning

Bl CPU Dense (Basenline) M CPU Pruned = GPU Dense W GPU Pruned B TK1 Dense B TK1 Pruned

100x B

g-g 10x ) N ; N .
P Wl alla 0. ML
§=§ 2 1_xl§ 0m“l x'§ JI uu& i N L N | B = B B8 (ml
1.0x x )
; o
R 0.1x

AlexNet Fc6 AlexNet Fc7 AlexNet Fc8 VGGNet Fcs VGGNet Fe7 VGGNet Fc8 Geo Mean

Figure 9: Compared with the original network, pruned network layer achieved 3 x speedup on CPU,
3.5x on GPU and 4.2 x on mobile GPU on average. Batch size = | targeting real time processing.

Performance number normalized to CPU.

W CPU Dense (Baseline) ™ CPU Pruned ™ GPU Dense W GPU Pruned B TK1 Dense M TK1 Pruned
100x

10%

Energy Efficiency
(normzlized to CPU)

AlexNet_Fcb AlexNet_Fc7 AlexNet_Fc8 VGGNet_Fc6 VGGNet_Fc?7 VGGNet_Fc8 Geo Mean

Figure 10: Compared with the original network, pruned network layer takes 7% less energy on CPU,
3.3x less on GPU and 4.2x less on mobile GPU on average. Batch size = 1 targeting real time
processing. Energy number normalized to CPU.



Combining Quantization and Pruning

< Pruning + Quantization 4 Pruning Only © Quantization Only SVD

0.5%

0.0%
-0.5%
-1.0%
-1.5%
-2.0%
-2.5%
-3.0%
-3.5%
-4.0%
-4.5%

Accuracy Loss

/
2% 5% 8% 1% 14% 17% 20%

Model Size Ratio after Compression

Figure 6: Accuracy v.s. compression rate under different compression methods. Pruning and
quantization works best when combined.



Quantization During Training

Caveat with offline quantization: potential overflows in the computation may
hinder the accuracy

Quantization may significantly impact some layers (e.g., first and last)

For smaller models (e.g., MobileNet), quantization after training may not
preserve accuracy.

Quantization aware training:

* Maintain a full-precision weights to accumulate small changes in the
gradients

* Quantize weights in each step to estimate the accuracy loss in every step

* Effect of quantization is backpropagated using straingth-through
estimators (passes the gradient through the functions unchanged)

* At the end keep only the quantized weights



Binarized Neural Networks:Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1
(NIPS 2016) Bengio et al

Binarized Neural Networks

All weights and activations are binary -| or +|

Transform real valued variables to binary:

 Deterministic x? = Sign(x)

+  Probabilistic x> = |1 With probability p = clipfo 1) Gor+D)
—1 with probability 1 — p

Probabilistic may give better results, but harder to implement

Training still operates on floating point, the gradients need to be floats.
SGD explores the parameter space in small noisy steps

The main challenge is propagating the gradients through discretized
network — straight through estimator (lets the gradient unmodified)



Binarized Neural Networks:Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1

(NIPS 2016) Bengio et al
Figure 3. The first three columns represent the time it takes to
perform a 8192 x 8192 x 8192 (binary) matrix multiplication on
a GTXT30 Nvidia GPU, depending on which kernel is used. We

- . CIE can scc that our XNOR kernel is 23 times faster than our baseline
Fi'g I. Tl'ﬂ.ll]]l]g curves of a ConvNet on AR-10 dEpEIld— kernel and 3.4 times faster than cuBLAS. The next three columns

ing on the method. The dotted lines represent the training costs represent the time it takes to run the MLP from Section [Z]on the
(square hinge losses) and the continuous lines the corresponding full MNIST test set. As MNIST’s images are not binary, the first

validation error rates. Although BNNs are slower to train, they 1ayer's computations are always performed by the bascline ker-
1 32-bit float DNN nel. The last three columns show that the MLP accuracy does not
are nearly as accuraie as J.a- 0 5. depend on which kernel is used.
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Neural Network Training

Common wisdom:Training high accuracy and inference low precision
* Stochastic gradient descent more sensitive to quantization
* Postprocess highly accurate (FP32) network

* But some interesting new devlopments:
E.g., Training Deep Neural Networks with 8-bit Floating Point Numbers (NeurlPS 2018)

Stochastic gradient descent has a nice property for approximation:
* We can parallelize it without locks.
* While updating, it can read/write stale data, so some updates are lost

* The algorithm is iterative, a few more iterations (epochs) are much
more efficient than a full-locking scheme

Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent(NIPS’I |)



