
CS 598sm

Probabilistic &

Approximate

Computing
http://misailo.web.engr.Illinois.edu/courses/cs598

http://misailo.web.engr.illinois.edu/courses/cs598

Nondeterministic Approximation in

Parallel Computations

Removing synchronization and reading stale data

Various techniques over the years:

• Dropping tasks (Rinard 2006 ICS)

• Removing barriers (Rinard 2007 OOPSLA)

• Reading stale data (Thies et al. PLDI 2011)

• Removing locks

• Parallelizing with data races (Misailovic et al. 2012, 2013)

• Breaking data dependencies

• …

Some Early Insights

Best-Effort Parallel Execution Framework for Recognition and Mining Applications (IPDPS 2009)

Best-Effort Parallel Execution Framework for Recognition and Mining Applications (IPDPS 2009)

Convergence-based pruning: Use converging data

structures to speculatively identify computations that

have minimal impact on results and eliminate them

Staged Computation: consider fewer points in early

stages; gradually use more points in later stages to

improve accuracy

Early Termination: Aggregate statistics to estimate

accuracy and terminate before full convergence.

Sampling: Select a random subset of input data and

use it to compute the results.

Dependency Relaxation: Ignore potentially

redundant dependencies across iterations. Leads to

more degree of parallelism or coarser granularity

Some Early Insights

Data Dependence

A data dependence from statement S1 to statement S2

exists if

1. there is a feasible execution path from S1 to S2, and

2. an instance of S1 references the same memory

location as an instance of S2 in some execution of the

program, and

3. at least one of the references is a store.

Kinds of Data Dependence

Direct Dependence

Anti-dependence

Output Dependence

X =…

…= X + …

… = X

X = …

X = …

X = …

Dependence Graph

A dependence graph is a graph with:

• Each node represents a statement, and

• Each directed edge from S1 to S2, if there is a data

dependence between S1 and S2 (where the instance of S2

follows the instance of S1 in the relevant execution).

• S1 is known as a source node

• S2 is known as a sink node

Kinds of Data Dependence

S1: X =…

S2: … = X + …

S1: … = X

S2: X = …

S1: X = …

S2: X = …

Dependence

Graph Edges

Direct Dependence

Anti-dependence

Output Dependence

Dependence Graph for Loops

(Repeat) A dependence graph is a graph with:

• one node per statement, and

• a directed edge from S1 to S2 if there is a data
dependence between S1 and S2 (where the
instance of S2 follows the instance of S1 in the
relevant execution).

For loops: dependence graph is a summary of
unrolled dependencies for different iterations

• Some (detailed) information may be lost

Dependence in Loops

def X(), Y(), a(), i;

do i = 1 to N

S1: X(i) = a(i) + 2

S2: Y(i) = X(i) + 1

enddo

S1

S2

Dependence in Loops

def X(), Y(), a(), i;

do i = 1 to N

S1: X(i+1) = a(i) + 2

S2: Y(i) = X(i) + 1

enddo

S1

S2

Dependence in Loops

def X(), Y(), a(), i;

do i = 2 to N

S1: X(i) = a(i) + 2

S2: Y(i) = X(i-1) + 1

enddo

S1

S2

Dependence in Loops

def X(), Y(), a(), i;

do i = 1 to N

S1: X(i) = a(i) + 2

S2: Y(i) = X(i+1) + 1

enddo

S1

S2

Dependence in Loops

def X(), Y(), a(), i, t;

do i = 1 to N

S1: t = a(i) + 2

S2: Y(i) = t + 1

enddo

S1

S2

Dependence in Loops

def X(), Y(), a(), i, t();

do i = 1 to N

S1: t(i) = a(i) + 2

S2: Y(i) = t(i) + 1

enddo

S1

S2

Slides based on Linyi Li’s Talk in CS 598 Last Year

 : model parameter

 : data distribution

 : data sample

 : the model output given input and parameters

 : loss function;

it’s smaller, closer it gets to the ground truth

Usually, the dataset is finite.

Suppose there are data samples, then it becomes

Each sample 𝑥𝑖 is given a true label
𝑦𝑖 ∈ 0,⋯ , 9 .
Model outputs 10-dimension
confidence vector in 0,1 10 summing
up to 1.
The cross-entropy loss on the sample:

MNIST Classification

Smaller loss, higher confidence on the
correct label, and higher accuracy.

A common way to solve the problem, is by using SGD:

Take the gradient of 𝐿 with respect to 𝜃:

To minimize 𝐿, we move the 𝜃 along the opposite direction:

 : step size, a constant, positive small number

Take sufficient such small steps, until does not change

much.

 In our MNIST task, is model confidence score for correct label

 𝛿: model parameter change

Direction: move towards larger confidence;
 smaller confidence, sharper change.

Loss function:

Gradient:

Parameter update by SGD:

A serial algorithm:

while (!converged(𝜃))
for (int i=0; i<N; ++i)

𝜃 = 𝜃 – 1/N * ∇𝜃ℓ 𝑥𝑖 , 𝑓 𝑥𝑖 , 𝜃

A serial algorithm:

while (!converged(𝜃))
for (int i=0; i<N; ++i)

𝜃(𝑡) = 𝜃(𝑡−1) – 1/N * ∇𝜃ℓ 𝑥𝑖 , 𝑓 𝑥𝑖 , 𝜃
𝑡−1

A serial algorithm

for (int i=0; i<N; ++i)
for (int j=0; j<|𝜃|; ++j)

𝜃𝑗 = 𝜃𝑗
𝑜𝑙𝑑 – 1/N * 𝛻𝜃𝑗ℓ 𝑥𝑖 , 𝑓 𝑥𝑖 , 𝜃

𝑜𝑙𝑑

One way to Parallelize

#parallel across K threads:
for (int i=k*N/K; i < (k+1)* N/K; ++i)
for (int j=0; j<|𝜃|; ++j)

𝜃𝑗 = 𝜃𝑗
𝑜𝑙𝑑 – 1/N * 𝛻𝜃𝑗ℓ 𝑥𝑖 , 𝑓 𝑥𝑖 , 𝜃

𝑜𝑙𝑑

 Inner loop:

for (int j=0; j<|𝜃|; ++j)

𝐺 𝜃𝑗
𝑜𝑙𝑑 = ⋯

𝜃𝑗 = 𝜃𝑗
𝑜𝑙𝑑 – 𝐺(𝜃𝑗

𝑜𝑙𝑑)

Thread 1 Thread 2

Read: 𝜽𝒋
(𝒐𝒍𝒅)

Write 𝜃𝑗
(1)

Read: 𝜽𝒋
(𝒐𝒍𝒅)

Overwrite 𝜽𝒋
(𝟏)

with 𝜽𝒋
(𝟐)

𝜽𝒋

With some transformation:

for (int j=0; j<|𝜃|; ++j)

𝐺 𝜃𝑗
𝑜𝑙𝑑 = ⋯

if 𝐺 𝜃𝑗
𝑜𝑙𝑑 ! = 0

𝜃𝑗
𝑛𝑒𝑤 = 𝜃𝑗

𝑜𝑙𝑑 – 𝐺(𝜃𝑗
𝑜𝑙𝑑)

For each sample:
•Only small number of parameters

updated;

•These parameters rarely overlap.

The version “RR” tries to improve
on the locking cost by using a
round-robin schedule of updates

The version “AIG” does a fine
locking of the elements of 𝜃

Most of the time, the change will
be for individual element of 𝜃, but
even fine-grained locking is
expensive

The updates, even with the overwrite may give a good ‘delta’ direction

Potential threat: it may not give ‘strong enough’ direction indication

For many real-world problems, the model:

Usually has large number of parameters.

Only uses a small fraction of parameters to predict each data sample.

Parameters used for predicting different samples rarely overlap.

Each parameter is not often used.

Sparse SVM:
Data vector 𝑥𝑖’s are sparse.

Matrix Completion:
Learn large matrix 𝑴 as the product of 𝑨𝑩, from few cells
𝑴𝑖𝑗’s.

Graph Cuts
Partition graph nodes according to sparse similarity matrix.

Update without lock is totally practical!

Hogwild algorithm:

𝑒 is data sample 𝑥𝑣 = 𝜃, 𝐺𝑒(𝑥𝑒) is gradient.

no lock on shared parameters 𝑥𝑒, totally asynchronous.

Condition:
Convex function;

Gradient magnitude is bounded;

Number of workers is less than 𝑛1/4, 𝑛 is number of parameters;

Fine-tuned step size.

After steps,

Serial SGD convergence rate: .

 Hogwild can be further optimized to get the same rate.

Baseline approaches:

RR: processors are ordered; each
update the decision variable in order

AIG: only lock particular parameters
when updating (𝜃𝑖’s with gradients)

Hogwild: no locking

Three applications:

SVM (Sparse SVM), MC (Matrix
Completion), Cuts (Graph Cuts)

Speed: Much faster than ordered locked update.
9.5s vs 61.8s; 301.0s vs 2569.1s

Accuracy: Almost the same training & test error.

Hogwild is much faster.

Even only adding locks to
all parameters, may
significantly slow it down.

 Same trends for different
datasets.

 Does not hurt accuracy.  When gradient computation
becomes slow, the gap
shrinks.

The paper released in 2011, NN was not popular.

SGD is also popular for NN training

NN is non-convex, no theoretical guarantee.

Can Hogwild generalize to NN?

Originally designed to use Hogwild (named asynchronous
parameter updates).

Also supports synchronous and synchronous with
backups.

See Tensorflow paper OSDI 2016

 In 2016, “Revisiting Distributed Synchronous SGD” (ICLR 2016
Workshop) experimented with comparing the strategies.

 Async: similar to Hogwild

 Sync: lock and update;
optimized

In Hogwild, though each
step may be faster, but
more steps to converge.

Slightly hurts accuracy,
and takes more time to
converge.

Synchronous with backup workers:

𝑛 workers, but each step only requires 𝑚 < 𝑛
workers’ result to update.

Overcome stragglers.

SGD samples training data randomly;
each worker processes different batch;

OK if ignored.

Backup workers accelerates
synchronous up to roughly 10%.

For large NN, gradient computing
is the bottleneck

Hogwild is not fast that much.

 Removing synchronization and reading stale data

 Various techniques over the years:

• Dropping tasks (Rinard 2006 ICS)

• Removing barriers (Rinard 2007 OOPSLA)

• Reading stale data (Thies et al. PLDI 2011)

• Removing locks

• Parallelizing with data races (Misailovic et al. 2012, 2013)

• Breaking data dependencies

• …

Studying various

iterative and non-

iterative programs,

typical speedup is

around 20% to 30%

Kinds of Dependencies

• Actual: exist in the program

• State: exist in the program and can be satisfied with extra code to
match the original result, but faster than conventional

• Apparent: do not exist, but the compiler/developer cannot prove that
they are unnecessary

Strict preservation of every actual dependencies may not necessary,

Preservation on any apparent dependency is not necessary

Apparent Actual

State

From Unconventional Parallelization of Nondeterministic Applications (ASPLOS’18)

Dependencies in Non-deterministic Codes?

• For the same input, nondeterministic programs produce

different results in each run.

• Use the error margins of the ordinary execution to find less

important dependencies

• Non-determinism masks broken (unsatisfied) dependencies

• Use inexpensive checks to make sure the speculative

execution matches those expected from the original program

Opportunity for Accuracy (over 100 runs)

Opportunity State Dependency

• Thread level parallelism is constrained by a sequential chain of dependences

• Opportunity: break this dependence to increase parallelism

• Fix: do ‘speculation’, if the result is too different, drop those updates and reexecute

Approach

Break the dependency occasionally

• Run inexpensive transfer function

Ensure that the impact is not large

• If small, continue,

• If large, reexecute (infrequently)

Code Modification

Bodytrack: Pose estimation program

Extracting Parallelism: Speedup

Energy Consumption

Accuracy Impact: Can run more

Where is it good to use: Applications that analyze a long stream of data (e.g., bodytrack,
facedet, streamcluster) where the information about inputs that is automatically computed
(e.g., 3Dlocation of bodies, 2D location of faces, centroids of multi-dimensional points) has
the “short memory” dependence property.

Transient hardware errors are a rising concern

Traditional hardware redundancy too expensive

Software-driven solutions are promising…

… but some errors escape as Silent Data Corruptions (SDCs)

As technology scales, hardware reliability
is more important

Hardware more susceptible to transient
(soft) errors

Many applications require very high
reliability guarantees

“Volkswagen reported ~20% disengagements due

to software hang/crashes”, WAYMO, CA DMV

2016 Dataset, DSN 2018

Soft Error

Soft Errors: Nondeterminism from Hardware

Slide by Abdulrahman Mahmoud

Unreliable Hardware

56
Image from “Inter-Agency Workshop on HPC Resilience at Extreme Scale”, DoD, ‘12

Architects make great efforts

to minimize errors

Some errors slip through the

cracks – silently corrupt

computation results

Process size vs. error

rate

Output

Error-free

execution

Output

Erroneous executions (has soft errors)

Output

Failure

Silent Data CorruptionDetectedMasked (SDC)

Output

Graphic by Abdulrahman Mahmoud

No output

How do We See at Software Level?

Sign Exponent (8 bit) Mantissa(23 bits)

022233031 16

Often small impactOften large impact

float x:

How do We See at Software Level?

Corrupted Bits

031

031

031

int x:

But also int* x… what happens then?

031

Challenges and Traditional Solutions

Detection:

• Run twice, compare the results

• Instruction Replication

• Algorithm-based fault
tolerance

Recovery:

• Checkpoint-restart

• Run three times, do majority
voting

Challenges and Approximate Solutions

Detection:

• Run twice, compare the results

• Instruction Replication

• Algorithm-based fault
tolerance

Recovery:

• Checkpoint-restart

• Run three times, do majority
voting

Run exact and

approximate versions,

ensure they don’t differ

by too much

Challenges and Approximate Solutions

Detection:

• Run twice, compare the results

• Instruction Replication

• Algorithm-based fault
tolerance

Recovery:

• Checkpoint-restart

• Run three times, do majority
voting

Replicate only some

instructions

For the others, either

rely on the property of

the computation or

develop inexpensive

checkers

Challenges and Approximate Solutions

Detection:

• Run twice, compare the results

• Instruction Replication

• Algorithm-based fault
tolerance

Recovery:

• Checkpoint-restart

• Run three times, do majority
voting

Make the algorithmic

techniques aware of the

approximation

Challenges and Approximate Solutions

Detection:

• Run twice, compare the results

• Instruction Replication

• Algorithm-based fault
tolerance

Recovery:

• Checkpoint-restart

• Run three times, do majority
voting

Checkpoint only a small

part of the state

Restart only when

necessary

Challenges and Approximate Solutions

Detection:

• Run twice, compare the results

• Instruction Replication

• Algorithm-based fault
tolerance

Recovery:

• Checkpoint-restart

• Run three times, do majority
voting

If we need to re-execute,

run only approximate

algorithm

Try to do ‘local repair’

on the output

Lightweight Check and Recover

z = x*y
z’ = x*y
z==z’ ?

Code

Re-Execution

(SWIFT, DRIFT,

Shoestring)

s = SAT(p)
verify(s,p) ?

Verification

(for NP-Complete)

y = foo(x)
DNN(x,y) ?

Anomaly

Detection

(Topaz, Rumba)

Slide by Keyur Joshi

Reliability

Unreliable

Hardware

Reliable

Hardware

𝑝 1 − 𝑝

Reliability

67

Program Program

Exact

Answer

Exact

Answer

Inexact

Answer

Reliability is the probability of obtaining the exact answer

The Try-Check-Recover Mechanism

Some research languages1,2 expose Try-Check-Recover
mechanisms:

try { solution = SATSolve(problem) }

check { satisfies(problem, solution) }

recover { solution = SATSolve(problem) }

Unreliable code

Checks for errors

Recovery code

1“Relax”, M. de Kruijf, S. Nomura, and K. Sankaralingam, ISCA ’10 2“Topaz”, S. Achour and M. Rinard, OOPSLA ‘15

Slide by Keyur Joshi

Code Re-Execution – SWIFT1

// Instruction 1

try { z = x*y [p_try] rnd(); }

check { z == (x*y [p_try] rnd()) }

recover { z = x*y [p_rec] rnd(); }

// Instruction 2

try { w = x+y [p_try] rnd(); }

check { w == (x+y [p_try] rnd()) }

recover { w = x+y [p_rec] rnd(); }

69

1G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. August, CGO ‘05

Code Re-Execution – DRIFT1

// Instruction 1 and 2
try {

z = x*y [p_try] rnd();
w = x+y [p_try] rnd();

}
check {

z == (x*y [p_try] rnd()) && w == (x+y [p_try] rnd())
}
recover {

z = x*y [p_rec] rnd();
w = x+y [p_rec] rnd();

}

70

1K. Mitropoulou, V. Porpodas, and M. Cintra, LCPC ‘13

Code Re-Execution – Shoestring1

// Instruction 1

try { z = x*y [p_try] rnd(); }

check { z == (x*y [p_try] rnd()) }

recover { z = x*y [p_rec] rnd(); }

// Instruction 2 not considered critical

w = x+y [p_try] rnd();

71

1S. Feng, S. Gupta, A. Ansari, and S. Mahlke, ASPLOS ‘10

Anomaly Detection – Topaz1

try {
z = f(x,y) [p_try] rnd();

}
check {
isUnusual(x,y,z)

}
recover {
z = f(x,y) [p_rec] rnd();

}

72

1S. Achour and M. Rinard, OOPSLA ‘15

Hardware Error Flag1,2

try {
z = x*y [p_try] rnd();

}
check {
!(read_hw_err_flag())

}
recover {
z = x*y [p_rec] rnd();

}

73

1“Relax”, M. de Kruijf et al., ISCA ’10 2“Replica”, V. Fernando et al., ASPLOS ‘19

