CS 598sm

“robabilistic &
Approximate

Computing

http://misailo.web.engr.lllinois.edu/courses/cs598

http://misailo.web.engr.illinois.edu/courses/cs598

Nondeterministic Approximation in
Parallel Computations

Removing synchronization and reading stale data

Various techniques over the years:

* Dropping tasks (Rinard 2006 |CS)

* Removing barriers (Rinard 2007 OOPSLA)

* Reading stale data (Thies et al. PLDI 201 |)

* Removing locks

* Parallelizing with data races (Misailovic et al. 2012, 201 3)
* Breaking data dependencies

Best-Effort Parallel Execution Framework for Recognition and Mining Applications (IPDPS 2009)

Some Early Insights

iterate

i
1

mask[1:M] = filter(...);
parallel_iterate (i = 1 to M with mask[1:M] batch P)

i

v until converged...);

Figure 4. Pseudocode of the best-effort
iterative-convergence template.

We observe that the proposed iterative convergence tem-
plate can be used to explore best-effort computing in three
different ways.

e The selection of appropriate filtering criteria that re-
duce the computations performed in each iteration.

e The selection of convergence criteria that decide when
the iterations can be terminated.

e The use of the batch operator to relax data depen-
dencies in the body of the parallel iterate.

Best-Effort Parallel Execution Framework for Recognition and Mining Applications (IPDPS 2009)

Some Early Insights

iterate

mask|[1:M] = filter(...):
parallel_iterate (i =1 to M with mask[1:M] batch P)

v until converged...);

Figure 4. Pseudocode of the best-effort
iterative-convergence template.

Convergence-based pruning: Use converging data
structures to speculatively identify computations that
have minimal impact on results and eliminate them

Staged Computation: consider fewer points in early
stages; gradually use more points in later stages to
improve accuracy

Early Termination: Aggregate statistics to estimate
accuracy and terminate before full convergence.

Sampling: Select a random subset of input data and
use it to compute the results.

Dependency Relaxation: Ignore potentially
redundant dependencies across iterations. Leads to
more degree of parallelism or coarser granularity

Data Dependence

A from statement S| to statement

exists if

|. there is a feasible execution path from S| to S2, and

2. an instance of S| references the same memory
location as an instance of S2 in some execution of the
program, and

3. at least one of the references is a store.

Kinds of Data Dependence

Direct Dependence X =.

Anti-dependence

1
X

Output Dependence X
X

Dependence Graph

A dependence graph is a graph with:
* Each node represents a statement, and

* Each directed edge from S| to S2, if there is a data
dependence between S| and S2 (where the instance of S2
follows the instance of Sl in the relevant execution).

* Sl is known as a source node

e S2is known as a sink node

Kinds of Data Dependence

Graph Edges
Direct Dependence §|: X = .
S2:.. =X+, DI
Anti-dependence Sl: .. =X
S2:X = S11 5
Output Dependence §|:-X =
51— 5

S2: X

Dependence Graph for Loops

(Repeat) A dependence graph is a graph with:
* one node per statement, and

* adirected edge from S| to S2 if there is a data
dependence between S| and S2 (where the
instance of S2 follows the instance of S| in the
relevant execution).

For loops: dependence graph is a summary of
unrolled dependencies for different iterations

* Some (detailed) information may be lost

Dependence in Loops

def X(), Y(), a(), 1i;
do i =1 to N S|

S1: X(1i) = a(i) + 2 <::>
()

S2: Y(i) = X(i) + 1
enddo

S2

Dependence in Loops

def X(), Y(), a(), 1i;

do i =1 to N <EZ>
S1: X(i+1l) = a(i) + 2
S2: Y(i) = X(1i) + 1]
enddo <EZ>

Dependence in Loops

def X(), Y(), a(), i;
do i =2 to N S|

S1: X(1i) = a(i) + 2 <::>
()

S2: Y(i) = X(i-1) + 1
enddo

S2

Dependence in Loops

def X(), Y(), a(), 1i;
do 1 =1 to N S|
S1: X(1) a(i) + 2
S2: Y(i) = X(i+1) + 1
enddo

o
&

S2

Dependence in Loops

def X(), Y(), a(), i, t; /6>
do 1 =1 to N S|
S1: t = a(i) + 2 1

S2: Y(i) =t + 1 Q
S2
enddo

Dependence in Loops

def X(), Y(), a(), i, t();
do 1 =1 to N

S1: t(i) = a(i) + 2

()
S2: V(i) = t(i) + 1 "
(=)

S|

enddo $2

STOCHASTIC GRADIENT

Slides based on Linyi Li’s Talk in CS 598 Last Year

MACHINE LEARNING AS
OPTIMIZATION PROBLEM

minimizey L(60) = E,pf(x, f(x,0))

-9 € RY : model parameter
= D : data distribution
-x € R" : data sample
: f(a) : the model output given input and parameters
: €(°,) : loss function;
it’s smaller, closer f (z, 6) it gets to the ground truth @)

FINITE DATASET

=Usually, the dataset is finite.
=Suppose there are /N data samples, then it becomes

minimize, L(0) = %Zé(xi, F(2:.0))

EXAMPLE

=Each sample x; is given a true label
Vi (S {O, s . 9}

= Model outputs 10-dimension
confidence vector in [0,1]° summing

up to 1.
= The cross- entropy loss on the sample:
K(ZEZ, SUZ, Zl log xzae))k
MNIST Classification = log(l/f(:ci, by

Smaller loss, higher confidence on the
correct label, and higher accuracy.
€

SGD =

=A common way to solve the problem, is by using SGD:
- Take the gradient of L with respect to 8: V,L(0)(c R")

= To minimize L, we move the 68 along the opposite direction:
0 < 0 — ’)/VQL(@)
= 7Y : step size, a constant, positive small humber

= Take sufficient such small steps, until [(6) does not change

much.
@

= In our MNIST task, f(l’?;, 9)% is model confidence score for correct label
=Loss function: Z(sz, f(x’m 6)) — log(l/f(x?ﬁ H)yz)
_ Vof(xi,0)y,

- Gradient: Vol(zi, f(2:,0)) = fx:,0),,
« Parameter update by SGD: ¢ = erf(xi’ ait

= §: model parameter change

= Direction: move towards larger confidence;
= smaller confidence, sharper change.

®

= A serial algorithm:
while (!converged(6))
for (int 1=0; i<N; ++i)
0 =6 - 1/N * Vob(x;, f(x;,6))

= A serial algorithm:
while (!converged(6))
for (int 1=0; i<N; ++i)
00 = 9D — 1/N * Vot (x;, f (2, 0¢7))

€

PARALLELISM?

= A serial algorithm
for (int i=0; i<N; ++1i)
for (int j=0; j<|6]|; ++3)

9] — QjOld — 1/N * ng'e (xi,f(xi,Q‘)ld))

=One way to Parallelize

#parallel across K threads:
for (int i=k*N/K; 1 < (k+1)* N/K; ++1)
for (int j=0; j<|6]; ++3j)

9] = QjOld - 1/N * ng‘e (xi,f(xi,Q‘)ld))

®

= [nner loop:
for (int j=0; j<|6]|; ++3)
G(Qj()ld) — ...
_ pold ld
0; = Qf — G(Qf)

= With some transformation:

for (int j=0; j<|0]|; ++3)

G(gjold) — ...
if G(67'*)1=0

Hj_new _ ijld _ G(HJ-Old)

For each sample:

*Only small humber of parameters
updated;

*These parameters rarely overlap.

Read: 9{°'¥
g

Overwrite 9}1)
with 9}2)

N
@

PARALLELISM?

= The version “RR” tries to improv

on the locking cost by using a 4

round-robin schedule of updates

=
=
= The version “AlG” does a fine E_

locking of the elements of 6 h

= Most of the time, the change wil 1

be for individual element of 6, b

even fine-grained locking is 0

expensive

—Hogwild
-~ AlG
--"RR

& =

KEY OBSERVATION:
SPARSE SEPARABILITY

= The updates, even with the overwrite may give a good ‘delta’ direction

= Potential threat: it may not give ‘strong enough’ direction indication

= For many real-world problems, the model:
= Usually has large number of parameters.

= Only uses a small fraction of parameters to predict each data sample.
= Parameters used for predicting different samples rarely overlap.
= Each parameter is not often used.

@

=Sparse SVM:
= Data vector x;’s are sparse.

=Matrix Completion:
=Learn large matrix M as the product of AB, from few cells
M;;’s.

=Graph Cuts
= Partition graph nodes according to sparse similarity matrix.

@

RESULT ALGORITHM

= Update without lock is totally practical!
= Hogwild algorithm:

Algorithm 1 HoGWILD! update for individual processors

1: loop

2: Sample e uniformly at random from £

3: Read current state r. and evaluate (. (x.)
4 forveedozx, — x, — G, (x,)

5: end loop

= e is data sample x, = 0, G,(x,) is gradient.
=no lock on shared parameters x,, totally asynchronous.

@

PERFORMANCE &
EVALUATION

ASSUMPTIONS

We assume Lipschitz continuous diffﬂl‘ﬂﬂﬂﬂbi]il’}’ of f with Lipsn:hiti' constant L:

IV f(z") — Vflz)|| < L||z" — x|, Vz',o € X. (8)
We also assume [is strongly convex with modulus ¢. By this we mean that
f(@') = fz) + (' — 2)TVf(z) + §||m’ _ 22, forallz’,z € X.)

When [is strongly convex, there exists a unique minimizer x, and we denote [, = f(x,). We
additionally assume that there exists a constant M such that

|Gelxe)||z = M almost surely forall z € X . (10)

We assume throughout that v¢ < 1. (Indeed, when e > 1, even the ordinary gradient descent
algorithms will diverge.) Our main results are summanzed by the following

€

THEORETICAL GUARANTEE

= Condition:
= Convex function;

= Gradient magnitude is bounded;

- Number of workers is less than n'/4, n is number of parameters;
= Fine-tuned step size.

log(1/€)

«After +=0 (;) steps, Elf(zx) —fil <e
=Serial SGD convergence rate: O(1/e).
d Hogwild can be further optimized to get the same rate. €

EXPERIMENTS

Baseline approaches:

=RR: processors are ordered; each
update the decision variable in order

= AlG: only lock particular parameters
when updating (6;’s with gradients)

=Hogwild: no locking

Three applications:

=SVM (Sparse SVM), MC (Matrix
Completion), Cuts (Graph Cuts)

HOGWILD!

ROUND ROBIN

e data size p A time train test time train test
YP set (GB) (%) eITor error (5) eITor error
SVM RCV1 0.9 0.44 1.0 || 95| 0297 0339 ||_6L8] 0297 0.339
Netflix 1.5 2.5e-3 2.3e-3 0.754 0928 0.754 0927
MC KDD 3.9 30e3 1.8Be-3 19.5 22.6 7139.0 19.5 22.6
Jumbo 30 2.6e-7 14e-7 0.031 0.013 N/A N/A
Cuts DBLife 3e-3 8.6e-3 4.3e-3 10.6 N/A 10.5 N/A
Abdomen 18 92e4 92e-4 3.99 N/A | |7467.25 3.99 N/A

=Speed: Much faster than ordered locked update.
=9.5s5 vs 61.8s; 301.0s vs 2569.1s

= Accuracy: Almost the same training & test error.

d Hogwild d Hogwild
-~ AlG - AlG
3t --"RR 6 --"RR

(c)

8 10

B 10 0 B 10 0

2 4 6 2 4 6 2 4 6
Number of Splits Number of Splits Number of Splits

Figure 2: Total CPU time versus number of threads for (a) RCV1, (b) Abdomen, and (c) DBLife.

= Hogwild is much faster.

SPARSE SVM PROBLEM . Even only adding locks to
WITH 3 DATASETS all parameters, may

significantly slow it down.

@

0.34
—1 Thread
0335 . ---3 Threads
E 0.33 --10 Thread
ué 0.325
E 0.32
0.315 | o
@) (b)) L c
Gn lIl.:i‘II:I : = 3 E,D'? 3

2 4 B 8 10 10° 10°
Number of Splits Epoch Gradient Delay (ns)

= Same trends for different = Does not hurt accuracy. - m}%?n%rfgfg\?«t gﬁéngggatmn

datasets. shrinks.

€

GENERALIZATIO N &

HOW ABOUT NEURAL NETWORKS?

=The paper released in 2011, NN was not popular.

=SGD is also popular for NN training
=NN is non-convex, no theoretical guarantee.

=Can Hogwild generalize to NN?

IN TENSORFLOW

=Originally designed to use Hogwild (named asynchronous
parameter updates).

= Also supports synchronous and synchronous with
backups.

=See Tensorflow paper OSDI 2016

=In 2016, “Revisiting Distributed Synchronous SGD” (ICLR 2016
Workshop) experimented with comparing the strategies.

0.785
~ 0.780
® 0.775
5 0.770

Epochs to con
S

(c)

Figure 8: Convergence of Sync-Opt and Async-Opt on Inception model using varying number of machines.

Convergence

20 40
Time / h

60

(a) Convergence

Epochs to converge

—— Sync
Async

Mumber of workers

Epochs to converge

-

0
40 60 80 100 120 140 160 180 200 220

on Inception

Test Precision @ 1

—~ 0.786 SYHC
© 0.784 —— Async
c

53 async .© 0.782
M

106 async 'O 0.780

212 async @)
o n.77 —

omme | G ik

L U 0.776 —
200+12 sync ~ T —
0.774

T I~
o o o

Time to converge / h
[l (%] Ly
= (=] =

40 60 BO 100 120 140 160 180 200 220

80

(d) Time to converge

100 40 60 80 100 120 140 160 180 200 220

Number of workers

(b) Test precision @ 1

Time to converge " Mean Epoch Time

—— Sync ~ 54 EEENSEDG //'
Async E —— Async 7

= 22 -
———— a0

@18
— i L

* D16 //
=

14
40 60 80 100 120 140 180 180 200 220

MWumber of workers Mumber of workers

(e) Mean epoch time

Sync-Opt with backup workers converge faster, with fewer epochs, to higher test accuracies.

= Async: similar to Hogwild

= Sync: lock and update;
optimized

»>In Hogwild, though each
step may be faster, but
more steps to converge.

»>Slightly hurts accuracy,
and takes more time to
converge.

RECENT APPROACH

=Synchronous with backup workers:

=n workers, but each step only requires m <n
workers’ result to update.

=OQvercome stragglers.

=SGD samples training data randomly;
»each worker processes different batch;
»OK if ignhored.

2.5
2.4
2.3
2.2
2.1
2.0

1.9

(a) Asynchronous replication

PS5

Waorker 1

Waorker 2

Worker 3

(b) Synchronous replication (c) Synchronous w/ backup worker

YO A

N ()
L

Figure 5: Three synchronization schemes for parallel SGD. Each color represents a different starting parameter value;
a white square is a parameter update. In (c), a dashed rectangle represents a backup worker whose result is discarded.

(c) Backup worker effectiveness

—}— Step time —— Speedup -

1 2 3 4 5
Number of backup workers

1.04

1.02

1.00

= Backup workers accelerates
synchronous up to roughly 10%.

=For large NN, gradient computing
is the bottleneck

= Hogwild is not fast that much.

Normalized speedup

LET’S THINK NOW ABOUT
GENERAL PROGRAMS

= Removing synchronization and reading stale data

= Various techniques over the years:
Dropping tasks (Rinard 2006 ICS)
Removing barriers (Rinard 2007 OOPSLA)
Reading stale data (Thies et al. PLDI 2011)
Removing locks

Parallelizing with data races (Misailovic et al. 2012, 2013)

Breaking data dependencies

Studying various
iterative and non-
iterative programs,
typical speedup is
around 20% to 30%

@

From Unconventional Parallelization of Nondeterministic Applications (ASPLOS’18)

Kinds of Dependencies

Apparent | Actual

State

* Actual: exist in the program

* State: exist in the program and can be satisfied with extra code to
match the original result, but faster than conventional

* Apparent: do not exist, but the compiler/developer cannot prove that
they are unnecessary

Strict preservation of every actual dependencies may not necessary,
Preservation on any apparent dependency is not necessary

Dependencies in Non-deterministic Codes?

For the same input, nondeterministic programs produce
different results in each run.

Use the error margins of the ordinary execution to find less
important dependencies

Non-determinism masks broken (unsatisfied) dependencies

Use inexpensive checks to make sure the speculative
execution matches those expected from the original program

Opportunity for Accuracy (over 100 runs)

TR — |
E 10 ! _________a- [: |
Ty o _————_________ : |
o 107 | e —_ -
= Ir Output variability due . . - 7 :
- 10t | to randoem generators” — { i
el 1 __——________ f !
= 100 ! / T ."II d
o | / T !
R / ¥ | i | { I
>0 = ___ > o —
e | — ! Output variability due !
2 107* | ' to race conditions j
g | |

: el { P C¥ al det

rion geifie Wste ma a3 nne =

2 C Aand a at

Figure 2. Output variability of nondeterministic PARSEC bench-
marks. Several exhibit very high variability and are particularly
amenable to STATS.

Opportunity State Dependency

static State S: //Local data

O = computeQutput(l, S); \
Input — Output
[]_, S = update(s, I, O): Ab[J

©~—"State dependence

* Thread level parallelism is constrained by a sequential chain of dependences

* Opportunity: break this dependence to increase parallelism

* Fix: do ‘speculation’, if the result is too different, drop those updates and reexecute

H

]] (1] ™

State dependence

5.= update(ﬂl R

Approach

54= update{53, .

Slﬂiateiiu NE 5 Sgiﬂjfateﬁz,) J-I*"
— =T
. x State dependen —1 _ State dependence
Break the dependency occasionally o e I o 0, N
* Run inexpensive transfer function (a) Execution serialization due to a state dependence

Ensure that the impact is not large
* If small, continue,
* If large, reexecute (infrequently)

.'H

| | | Validate
11 §'5 against 5;

- -

Raniime

5 = updatEI[S)] 5= update(s

""“--..,_ 1’

e| | Performance obtained
by STATS

j - -
| |
I L State dependence 3

—l—'_'_.___-_|_‘—|—

SL=aux(s,,, ...); S.= update(s’, , ...); S,= update(s,, ...);
zhﬂ} 3upiﬂ'2) ,= update(s,, ...)
—_— [l

State dependence

L0, | 0s)
(b) Additional TLP generated by auxiliary code

Code Modification

Bodytrack: Pose estimation program

void estimatelLocations () {
vector<int> framelds(numFrames);
vector<Particle> model (numParticles);
vector =BodyPart= positions;
for (auto frameld frameIds) {
Frame f = getFrame(frameld):
model = updateModel (numAnnealinglLayers,
model, f);
positions = getPositions(model):
}
}

B0 =1 2 L A W B e

e
=

Figure 7. Original code of bodytrack.

class Input { int frameld; };
class Output { vector<=BodyPart= positions; };
class State {
vector<Particle> model;
State& operator=(State&);
bool doesSpecStateMatchAny(set<States=);
}s
Qutput+ computeQutput(Input «i, State +s){
Frame f = getFrame(i—=frameld);
s—=model = updateModel (TO_numAnnealinglLayers,
s—=model , f);
Output =0 = new Output();
o—=positions = getPositions(s—=model);
return o;
i
void estimatelocations() |{
vector<Inputs> i(numFrames);
vector<Particle> model (numParticles);
State s; s.model = model;
StateDependence<Input, State, Output=
stateDep(&i.&s, computeQutput);
stateDep.start(); stateDep.join();

(=TI R ST Y-S PR -

P Do B2 Bl e et e ek ek e e e e e
i - = I I (R~ T S TC R TR = —

Figure 8. Use of SDI in bodytrack.

Extracting Parallelism: Speedup

hardware threads
2 4 E E lD121415182022242628

hardware threads
2 4 6 8 10 12 14 16 18 20 22 24 26 28

hardware threads
2 fl- g 8 1(1121416182022242528

: . . = 198 e ———— e 198
Ty Drlgmal F i Ty Dngmal i P 24 v¥y Original i P 24
coo Seq. STATS| ! e ,." coo Seq.STATS|, W coe Seq.STATS|, .-'F".],
mmg Par. STATS | | .-t '!Ciﬂ" mmm Par. STATS | puamui vt ’ ' 2% 0 ||mmm Par. STATS | | s ad 20 o

' ' FElorboononnoooald {16 © | pa ool 16 B
1 1 BEETE L T i " ceo 1 i
] L0] 12 2 coo 12 2
] .’E- - ' [} _g] _g
[] [] .._g l—‘."' [] 8 i i s
1] - 1 *—!—‘—'—v—v_‘_{ 1]
' ' o : : s : : 4
] L]
] [] i [i i
| | L L L D 1L | | ﬂ
(a) swaptions (b) streamclassifier (c) streamcluster
hardware threads hardware threads hardware threads
24 ﬁElD121415182022242628 2 4 6 81(}121415182022242528 2 4 B 81{]121415182[}'22242628
T T T : T -“: _23 T T ': T T '.: _28 T T T T T : T '.I 28
vvy Original i Il 24 YTy Dngmal i et 24 v¥vy Original F A 4
ooe Seq. STATS|, e : oo Seq.STATS| , =" H oo Seq. STATS| , ="
mmg Par. STATS |} _.-° : |?°9 ||mmm Par.sTATS |} .-° H 1290 | |mmm Par. STATS : ot ' 20 4
[& ' 16 ® et gau® T 16 @ et ' 16 @
'I" [] m Ii ._'.-.' [] [§E] I n (1]
[]) o "1] =1 "1] (=1
12 2 i 12 2 : i 12 2
[] = i [= i -
n [-S‘] g 1 | 3
n n 1 n
[i 14 I 4 ' [4
0000000000000 0O00O0aag — 0 . H 0 YYY¥YYYYY 0

(d) fluidanimate

(e) bodytrack

(f) facedet

Figure 12. For most benchmarks, STATS generates a significant amount of extra parallelism that saturates the hardware resources of our
platform. “Original” is the out-of-the-box benchmark that has been parallelized by traditional means. “Seq. STATS” ("Par. STATS”) is the
binary generated by STATS starting from the sequential (multi-threaded) version of a benchmark. The bar graphs show maximum speedup.

Energy Consumption

C 100 e e s e} (o FTTTTTTTTTTTTT T TTTTTT =
%_ - Drlglnal energ}fcc-naumptmn I perf.]rman.;e
E | [Energy |
@ 60
o 40|
=
E 201
@ 0 " = It

poh= gt WS imaﬂ?’ yral a0 meah

WP L eam®T ream T gida™ T pod e geo
S

Figure 15. The binaries generated by STATS use considerably

less energy compared to the original benchmarks.

Accuracy Impact: Can run more

T 35— —
£ 30
L 25
o 9p Original
oL
£ 15
= 10
a s
I 0 ¥
= =) el rel A e det
i .
Ewap"i'.'.ﬂ Ueamﬂ_agi'l theamc'l,uﬁ ﬂu;l.'janllm 'ﬂ_ﬁd"ﬂ e {a{_E
5

Figure 16. STATS can increase the original output quality by
spending the saved time to iterate more over the same dataset.

Where is it good to use: Applications that analyze a long stream of data (e.g., bodytrack,
facedet, streamcluster) where the information about inputs that is automatically computed
(e.g., 3Dlocation of bodjes, 2D location of faces, centroids of multi-dimensional points) has
the “short memory” dependence property.

Soft Errors: Nondeterminism from Hardware

As technology scales, hardware reliability
is more important

Hardware more susceptible to transient
(soft) errors

Many applications require very high
reliability guarantees

Slide by Abdulrahman Mahmoud

Soft Error

Uber self-driving car saw pedestrian but didn't
brake before fatal crash, feds say

The report is more interesting for what it doesn’t say than what it does

“Volkswagen reported ~20% disengagements due
to software hang/crashes”, WAYMO, CA DMV
2016 Dataset, DSN 2018

Unreliable Hardware

50
45 Aging (Estimate) .
40 e Architects make great efforts
. Variability Freq o
2. SR to minimize errors
Q
© 25 M SER MEM
E 20

Some errors slip through the
cracks — silently corrupt
= b= == == == == Computation results

= =
o Ul O Un»n

32nm 22nm 14nm 10nm 7nm 5nm
Process size vs. error
rate

Image from “Inter-Agency Workshop on HPC Resilience at Extreme Scale”, DoD, ‘12

Erroneous executions (has soft errors)

Error-free N
. - A
execution Masked Detected Silent Data Corruption (SDC)
<
v
Output » Output
V\

Graphic by Abdulrahman Mahmoud

How do We See at Software Level?

Sign Exponent (8 bit) Mantissa(23 bits)

float x:

31 30 23 22 16 0

~— —

Often large impact Often small impact

How do We See at Software Level?
Corrupted Bits

int x: B

31

31

31

31

But also int* x... what happens then?

Challenges and Traditional Solutions

Detection:
* Run twice, compare the results
* Instruction Replication

* Algorithm-based fault
tolerance

Recovery:
* Checkpoint-restart

* Run three times, do majority
voting

Challenges and Approximate Solutions

Detection:
* Run twice, compare the results
* Instruction Replication

* Algorithm-based fault Run exact and
tolerance approximate versions,
ensure they don’t differ
Recovery: by too much

* Checkpoint-restart

* Run three times, do majority
voting

Challenges and Approximate Solutions

Detection:

* Run twice, compare the results

* Instruction Replication

* Algorithm-based fault
tolerance

Recovery:
* Checkpoint-restart

* Run three times, do majority
voting

Replicate only some
instructions

For the others, either
rely on the property of
the computation or
develop inexpensive
checkers

Challenges and Approximate Solutions

Detection:
* Run twice, compare the results
* Instruction Replication

* Algorithm-based fault
tolerance

Recovery:
* Checkpoint-restart

* Run three times, do majority
voting

Make the algorithmic
techniques aware of the
approximation

Challenges and Approximate Solutions

Detection:
* Run twice, compare the results
* Instruction Replication

* Algorithm-based fault
tolerance

Recovery:
* Checkpoint-restart

* Run three times, do majority
voting

Checkpoint only a small
part of the state

Restart only when
necessary

Challenges and Approximate Solutions

Detection:
* Run twice, compare the results
* Instruction Replication

* Algorithm-based fault
tolerance

Recovery:
* Checkpoint-restart

* Run three times, do majority
voting

If we need to re-execute,
run only approximate
algorithm

Try to do ‘local repair’
on the output

Lightweight Check and Recover

z = X*y y = foo(x) s = SAT(p)
Anomaly Verification
Code Detection (for NP-Complete)
Re-Execution (Topaz, Rumba)
(SWIFT, DRIFT,

Shoestring)

Slide by Keyur Joshi

Reliability

Program Program
Reliability
Reliable 14, Unreliable 1—p
Hardware Hardware
Exact Exact Inexact
Answer Answer Answer

Reliability is the probability of obtaining the exact answer

The Try-Check-Recover Mechanism

Some research languages'? expose 7ry-Check-Recover
mechanisms.

Unreliable code

try { solution = SATSolve(problem) }

<= Checks for errors

<4 Recovery code
recover { solution = SATSolve(problem) }

'“Relax”, M. de Kruijf, S. Nomura, and K. Sankaralingam, ISCA ’10 2“Topaz”, S.Achour and M. Rinard, OOPSLA ‘I 5
Slide by Keyur Joshi

Code Re-Execution — SWIFT!

// Instruction 1

try { z = x*y [p_try] rnd(); }
check { z == (x*y [p_try] rnd()) }
recover { z = x*y [p_rec] rnd(); }
// Instruction 2

try { w = x+y [p_try] rnd(); }
check { w == (x+y [p_try] rnd()) }

recover { w = x+y [p_rec] rnd(); }

'G.A. Reis,]. Chang, N.Vachharajani, R. Rangan, and D.August, CGO ‘05 ;

Code Re-Execution — DRIFT!

// Instruction 1 and 2
try {
z = x*y [p_try] rnd();
w = x+y [p_try] rnd();

}
recover {
z = x*y [p_rec] rnd();
w = X+y [p_rec] rnd();
}

'K. Mitropoulou,V. Porpodas, and M. Cintra, LCPC ‘I3

70

Code Re-Execution — Shoestring!

// Instruction 1
try { z = x*y [p_try] rnd(); }

recover { z = x*y [p _rec] rnd(); }
// Instruction 2 not considered critical

w = x+y [p_try] rnd();

'S. Feng, S. Gupta, A. Ansari, and S. Mahlke, ASPLOS ‘10

71

Anomaly Detection — Topaz!
try
Z

¥

check {
isUnusual(x,y,z)

}

recover {

z = £(x,y) [p_rec] rnd();
¥

I~

f(x,y) [p_try] rnd();

IS. Achour and M. Rinard, OOPSLA ‘15

72

Hardware Error Flag'-

try {

z = x*y [p_try] rnd();
}
check {

| (read hw err flag())
}
recover {

z = X*y [p_rec] rnd();
}

1“Relax”, M. de Kruijf et al, ISCA’10 ?“Replica”,V. Fernando et al., ASPLOS ‘19

73

