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Nondeterministic Approximation in 

Parallel Computations

Removing synchronization and reading stale data

Various techniques over the years:

• Dropping tasks (Rinard 2006 ICS)

• Removing barriers (Rinard 2007 OOPSLA)

• Reading stale data (Thies et al. PLDI 2011)

• Removing locks 

• Parallelizing with data races (Misailovic et al. 2012, 2013)

• Breaking data dependencies

• …



Some Early Insights

Best-Effort Parallel Execution Framework for Recognition and Mining Applications (IPDPS 2009)



Best-Effort Parallel Execution Framework for Recognition and Mining Applications (IPDPS 2009)

Convergence-based pruning: Use converging data 

structures to speculatively identify computations that 

have minimal impact on results and eliminate them

Staged Computation: consider fewer points in early 

stages; gradually use more points in later stages to 

improve accuracy

Early Termination: Aggregate statistics to estimate 

accuracy and terminate before full convergence.

Sampling: Select a random subset of input data and 

use it to compute the results. 

Dependency Relaxation: Ignore potentially 

redundant dependencies across iterations. Leads to 

more degree of parallelism or coarser granularity 

Some Early Insights



Data Dependence

A data dependence from statement S1 to statement S2

exists if

1. there is a feasible execution path from S1 to S2, and

2. an instance of S1 references the same memory 

location as an instance of S2 in some execution of the 

program, and

3. at least one of the references is a store.



Kinds of Data Dependence

Direct Dependence

Anti-dependence

Output Dependence

X =…

…= X + …

… = X

X  = …

X  = …

X  = …



Dependence Graph

A dependence graph is a graph with:

• Each node represents a statement, and

• Each directed edge from S1 to S2, if there is a data 

dependence between S1 and S2 (where the instance of S2 

follows the instance of S1 in the relevant execution).

• S1 is known as a source node

• S2 is known as a sink node



Kinds of Data Dependence

S1:  X =…

S2: … = X + …

S1: … = X

S2: X  = …

S1: X  = …

S2: X  = …

Dependence 

Graph Edges

Direct Dependence

Anti-dependence

Output Dependence



Dependence Graph for Loops

(Repeat) A dependence graph is a graph with:

• one node per statement, and

• a directed edge from S1 to S2 if there is a data 
dependence between S1 and S2 (where the 
instance of S2 follows the instance of S1 in the 
relevant execution).

For loops: dependence graph is a summary of 
unrolled dependencies for different iterations

• Some (detailed) information may be lost 



Dependence in Loops

def X(), Y(), a(), i;

do i = 1 to N

S1:      X(i) = a(i) + 2

S2:      Y(i) = X(i) + 1

enddo

S1

S2



Dependence in Loops

def X(), Y(), a(), i;

do i = 1 to N

S1:      X(i+1) = a(i) + 2

S2:      Y(i) = X(i) + 1

enddo

S1

S2



Dependence in Loops

def X(), Y(), a(), i;

do i = 2 to N

S1:      X(i) = a(i) + 2

S2:      Y(i) = X(i-1) + 1

enddo

S1

S2



Dependence in Loops

def X(), Y(), a(), i;

do i = 1 to N

S1:      X(i) = a(i) + 2

S2:      Y(i) = X(i+1) + 1

enddo

S1

S2



Dependence in Loops

def X(), Y(), a(), i, t;

do i = 1 to N

S1:      t = a(i) + 2

S2:      Y(i) = t + 1

enddo

S1

S2



Dependence in Loops

def X(), Y(), a(), i, t();

do i = 1 to N

S1:      t(i) = a(i) + 2

S2:      Y(i) = t(i) + 1

enddo

S1

S2



Slides based on Linyi Li’s Talk in CS 598 Last Year



 : model parameter

 : data distribution

 : data sample

 : the model output given input and parameters

 : loss function;

it’s smaller, closer             it gets to the ground truth



Usually, the dataset is finite.

Suppose there are      data samples, then it becomes



Each sample 𝑥𝑖 is given a true label 
𝑦𝑖 ∈ 0,⋯ , 9 .
Model outputs 10-dimension 
confidence vector in 0,1 10 summing 
up to 1.
The cross-entropy loss on the sample:

MNIST Classification

Smaller loss, higher confidence on the 
correct label, and higher accuracy.



A common way to solve the problem, is by using SGD:

Take the gradient of 𝐿 with respect to 𝜃: 

To minimize 𝐿, we move the 𝜃 along the opposite direction:

 : step size, a constant, positive small number

Take sufficient such small steps, until          does not change 

much.



 In our MNIST task, is model confidence score for correct label

 𝛿: model parameter change

Direction: move towards larger confidence;
 smaller confidence, sharper change.

Loss function:

Gradient:

Parameter update by SGD:





A serial algorithm:

while (!converged(𝜃))
for (int i=0; i<N; ++i)

𝜃 = 𝜃 – 1/N * ∇𝜃ℓ 𝑥𝑖 , 𝑓 𝑥𝑖 , 𝜃



A serial algorithm:

while (!converged(𝜃))
for (int i=0; i<N; ++i)

𝜃(𝑡) = 𝜃(𝑡−1) – 1/N * ∇𝜃ℓ 𝑥𝑖 , 𝑓 𝑥𝑖 , 𝜃
𝑡−1



A serial algorithm

for (int i=0; i<N; ++i)   
for (int j=0; j<|𝜃|; ++j)

𝜃𝑗 = 𝜃𝑗
𝑜𝑙𝑑 – 1/N * 𝛻𝜃𝑗ℓ 𝑥𝑖 , 𝑓 𝑥𝑖 , 𝜃

𝑜𝑙𝑑

One way to Parallelize

#parallel across K threads:
for (int i=k*N/K; i < (k+1)* N/K; ++i)   
for (int j=0; j<|𝜃|; ++j)

𝜃𝑗 = 𝜃𝑗
𝑜𝑙𝑑 – 1/N * 𝛻𝜃𝑗ℓ 𝑥𝑖 , 𝑓 𝑥𝑖 , 𝜃

𝑜𝑙𝑑



 Inner loop: 

for (int j=0; j<|𝜃|; ++j)

𝐺 𝜃𝑗
𝑜𝑙𝑑 = ⋯

𝜃𝑗 = 𝜃𝑗
𝑜𝑙𝑑 – 𝐺(𝜃𝑗

𝑜𝑙𝑑)

Thread 1 Thread 2

Read: 𝜽𝒋
(𝒐𝒍𝒅)

Write 𝜃𝑗
(1)

Read: 𝜽𝒋
(𝒐𝒍𝒅)

Overwrite 𝜽𝒋
(𝟏)

with 𝜽𝒋
(𝟐)

𝜽𝒋

With some transformation:

for (int j=0; j<|𝜃|; ++j)

𝐺 𝜃𝑗
𝑜𝑙𝑑 = ⋯

if 𝐺 𝜃𝑗
𝑜𝑙𝑑 ! = 0

𝜃𝑗
𝑛𝑒𝑤 = 𝜃𝑗

𝑜𝑙𝑑 – 𝐺(𝜃𝑗
𝑜𝑙𝑑)

For each sample:
•Only small number of parameters 

updated;

•These parameters rarely overlap.



The version “RR” tries to improve 
on the locking cost by using a 
round-robin schedule of updates

The version “AIG” does a fine 
locking of the elements of 𝜃

Most of the time, the change will 
be for individual element of 𝜃, but 
even fine-grained locking is 
expensive 



The updates, even with the overwrite may give a good ‘delta’ direction 

Potential threat: it may not give ‘strong enough’ direction indication

For many real-world problems, the model:

Usually has large number of parameters.

Only uses a small fraction of parameters to predict each data sample.

Parameters used for predicting different samples rarely overlap.

Each parameter is not often used.



Sparse SVM:
Data vector 𝑥𝑖’s are sparse.

Matrix Completion:
Learn large matrix 𝑴 as the product of 𝑨𝑩, from few cells 
𝑴𝑖𝑗’s.

Graph Cuts
Partition graph nodes according to sparse similarity matrix.



Update without lock is totally practical!

Hogwild algorithm:

𝑒 is data sample 𝑥𝑣 = 𝜃, 𝐺𝑒(𝑥𝑒) is gradient.

no lock on shared parameters 𝑥𝑒, totally asynchronous.







Condition:
Convex function;

Gradient magnitude is bounded;

Number of workers is less than 𝑛1/4, 𝑛 is number of parameters;

Fine-tuned step size.

After steps,

Serial SGD convergence rate: .

 Hogwild can be further optimized to get the same rate.



Baseline approaches:

RR: processors are ordered; each
update the decision variable in order

AIG: only lock particular parameters
when updating (𝜃𝑖’s with gradients)

Hogwild: no locking

Three applications:

SVM (Sparse SVM), MC (Matrix 
Completion), Cuts (Graph Cuts)



Speed: Much faster than ordered locked update.
9.5s vs 61.8s; 301.0s vs 2569.1s

Accuracy: Almost the same training & test error.



Hogwild is much faster.

Even only adding locks to 
all parameters, may 
significantly slow it down.



 Same trends for different 
datasets.

 Does not hurt accuracy.  When gradient computation 
becomes slow, the gap 
shrinks.





The paper released in 2011, NN was not popular.

SGD is also popular for NN training

NN is non-convex, no theoretical guarantee.

Can Hogwild generalize to NN?



Originally designed to use Hogwild (named asynchronous 
parameter updates).

Also supports synchronous and synchronous with 
backups.

See Tensorflow paper OSDI 2016 

 In 2016, “Revisiting Distributed Synchronous SGD” (ICLR 2016 
Workshop) experimented with comparing the strategies.



 Async: similar to Hogwild

 Sync: lock and update; 
optimized

In Hogwild, though each 
step may be faster, but 
more steps to converge.

Slightly hurts accuracy, 
and takes more time to 
converge.



Synchronous with backup workers:

𝑛 workers, but each step only requires 𝑚 < 𝑛
workers’ result to update.

Overcome stragglers.

SGD samples training data randomly;
each worker processes different batch;

OK if ignored.



Backup workers accelerates 
synchronous up to roughly 10%.

For large NN, gradient computing 
is the bottleneck

Hogwild is not fast that much.



 Removing synchronization and reading stale data

 Various techniques over the years:

• Dropping tasks (Rinard 2006 ICS)

• Removing barriers (Rinard 2007 OOPSLA)

• Reading stale data (Thies et al. PLDI 2011)

• Removing locks 

• Parallelizing with data races (Misailovic et al. 2012, 2013)

• Breaking data dependencies

• …

Studying various 

iterative and non-

iterative programs, 

typical speedup is 

around 20% to 30%



Kinds of Dependencies

• Actual: exist in the program

• State: exist in the program and can be satisfied with extra code to 
match the original result, but faster than conventional

• Apparent: do not exist, but the compiler/developer cannot prove that 
they are unnecessary 

Strict preservation of every actual dependencies may not necessary, 

Preservation on any apparent dependency is not necessary

Apparent Actual

State

From Unconventional Parallelization of Nondeterministic Applications (ASPLOS’18)



Dependencies in Non-deterministic Codes?

• For the same input, nondeterministic programs produce 

different results in each run. 

• Use the error margins of the ordinary execution to find less 

important dependencies

• Non-determinism masks broken (unsatisfied) dependencies

• Use inexpensive checks to make sure the speculative 

execution matches those expected from the original program



Opportunity for Accuracy (over 100 runs) 



Opportunity State Dependency

• Thread level parallelism is constrained by a sequential chain of dependences

• Opportunity: break this dependence to increase parallelism

• Fix: do ‘speculation’, if the result is too different, drop those updates and reexecute



Approach

Break the dependency occasionally

• Run inexpensive transfer function

Ensure that the impact is not large

• If small, continue,

• If large, reexecute (infrequently)



Code Modification

Bodytrack: Pose estimation program



Extracting Parallelism: Speedup



Energy Consumption



Accuracy Impact: Can run more

Where is it good to use:  Applications that analyze a long stream of data (e.g., bodytrack, 
facedet, streamcluster) where the information about inputs that is automatically computed 
(e.g., 3Dlocation of bodies, 2D location of faces, centroids of multi-dimensional points) has 
the “short memory” dependence property.



Transient hardware errors are a rising concern

Traditional hardware redundancy too expensive

Software-driven solutions are promising…

… but some errors escape as Silent Data Corruptions (SDCs)

As technology scales, hardware reliability
is more important

Hardware more susceptible to transient 
(soft) errors

Many applications require very high 
reliability guarantees

“Volkswagen reported ~20% disengagements due 

to software hang/crashes”, WAYMO, CA DMV 

2016 Dataset, DSN 2018

Soft Error

Soft Errors: Nondeterminism from Hardware

Slide by Abdulrahman Mahmoud



Unreliable Hardware

56
Image from “Inter-Agency Workshop on HPC Resilience at Extreme Scale”, DoD, ‘12

Architects make great efforts 

to minimize errors

Some errors slip through the 

cracks – silently corrupt 

computation results

Process size vs. error 

rate



Output

Error-free

execution

Output

Erroneous executions (has soft errors)

Output

Failure

Silent Data CorruptionDetectedMasked (SDC)

Output

Graphic by Abdulrahman Mahmoud

No output



How do We See at Software Level?

Sign Exponent (8 bit) Mantissa(23 bits)

022233031 16

Often small impactOften large impact

float x:



How do We See at Software Level?

Corrupted Bits

031

031

031

int x:

But also int* x… what happens then?

031



Challenges and Traditional Solutions

Detection:

• Run twice, compare the results

• Instruction Replication

• Algorithm-based fault 
tolerance

Recovery:

• Checkpoint-restart

• Run three times, do majority 
voting



Challenges and Approximate Solutions

Detection:

• Run twice, compare the results

• Instruction Replication

• Algorithm-based fault 
tolerance

Recovery:

• Checkpoint-restart

• Run three times, do majority 
voting

Run exact and 

approximate versions, 

ensure they don’t differ 

by too much



Challenges and Approximate Solutions

Detection:

• Run twice, compare the results

• Instruction Replication

• Algorithm-based fault 
tolerance

Recovery:

• Checkpoint-restart

• Run three times, do majority 
voting

Replicate only some 

instructions

For the others, either 

rely on the property of 

the computation or 

develop inexpensive 

checkers



Challenges and Approximate Solutions

Detection:

• Run twice, compare the results

• Instruction Replication

• Algorithm-based fault 
tolerance

Recovery:

• Checkpoint-restart

• Run three times, do majority 
voting

Make the algorithmic 

techniques aware of the 

approximation



Challenges and Approximate Solutions

Detection:

• Run twice, compare the results

• Instruction Replication

• Algorithm-based fault 
tolerance

Recovery:

• Checkpoint-restart

• Run three times, do majority 
voting

Checkpoint only a small 

part of the state

Restart only when 

necessary



Challenges and Approximate Solutions

Detection:

• Run twice, compare the results

• Instruction Replication

• Algorithm-based fault 
tolerance

Recovery:

• Checkpoint-restart

• Run three times, do majority 
voting

If we need to re-execute, 

run only approximate 

algorithm

Try to do ‘local repair’ 

on the output



Lightweight Check and Recover

z = x*y
z’ = x*y
z==z’ ?

Code

Re-Execution

(SWIFT, DRIFT, 

Shoestring)

s = SAT(p)
verify(s,p) ?

Verification

(for NP-Complete)

y = foo(x)
DNN(x,y) ?

Anomaly 

Detection

(Topaz, Rumba)

Slide by Keyur Joshi



Reliability

Unreliable 

Hardware

Reliable 

Hardware

𝑝 1 − 𝑝

Reliability

67

Program Program

Exact 

Answer

Exact 

Answer

Inexact 

Answer

Reliability is the probability of obtaining the exact answer



The Try-Check-Recover Mechanism

Some research languages1,2 expose Try-Check-Recover 
mechanisms:

try { solution = SATSolve(problem) }

check { satisfies(problem, solution) }

recover { solution = SATSolve(problem) }

Unreliable code

Checks for errors

Recovery code

1“Relax”, M. de Kruijf, S. Nomura, and K. Sankaralingam, ISCA ’10 2“Topaz”, S. Achour and M. Rinard, OOPSLA ‘15

Slide by Keyur Joshi



Code Re-Execution – SWIFT1

// Instruction 1

try { z = x*y [p_try] rnd(); }

check { z == (x*y [p_try] rnd()) }

recover { z = x*y [p_rec] rnd(); }

// Instruction 2

try { w = x+y [p_try] rnd(); }

check { w == (x+y [p_try] rnd()) }

recover { w = x+y [p_rec] rnd(); }

69

1G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. August, CGO ‘05



Code Re-Execution – DRIFT1

// Instruction 1 and 2
try {

z = x*y [p_try] rnd();
w = x+y [p_try] rnd();

}
check {

z == (x*y [p_try] rnd()) && w == (x+y [p_try] rnd())
}
recover {

z = x*y [p_rec] rnd();
w = x+y [p_rec] rnd();

}

70

1K. Mitropoulou, V. Porpodas, and M. Cintra, LCPC ‘13



Code Re-Execution – Shoestring1

// Instruction 1

try { z = x*y [p_try] rnd(); }

check { z == (x*y [p_try] rnd()) }

recover { z = x*y [p_rec] rnd(); }

// Instruction 2 not considered critical

w = x+y [p_try] rnd();

71

1S. Feng, S. Gupta, A. Ansari, and S. Mahlke, ASPLOS ‘10



Anomaly Detection – Topaz1

try {
z = f(x,y) [p_try] rnd();

}
check {
isUnusual(x,y,z)

}
recover {
z = f(x,y) [p_rec] rnd();

}

72

1S. Achour and M. Rinard, OOPSLA ‘15



Hardware Error Flag1,2

try {
z = x*y [p_try] rnd();

}
check {
!(read_hw_err_flag())

}
recover {
z = x*y [p_rec] rnd();

}

73

1“Relax”, M. de Kruijf et al., ISCA ’10 2“Replica”, V. Fernando et al., ASPLOS ‘19


