
CS 598sm

Probabilistic &

Approximate 

Computing 
http://misailo.web.engr.Illinois.edu/courses/cs598

http://misailo.web.engr.illinois.edu/courses/cs598


SYSTEMS FOR 

ACCURACY-AWARE 

OPTIMIZATION

Zoo: 



Original 

Computation

Accuracy-Aware Optimization

Accuracy

Requirement

• Find an approximate program

• Various automatic or user-guided 

approaches

Optimized Computation  + 



Original 

Computation

Typical

Inputs

Testing-based Optimization

Accuracy

Requirement

• Transform original computation

• Validate transformed computation

Optimized Computation  + 



Original 

Computation

Typical

Inputs

Analysis-driven Compiler

Accuracy

Requirement

• Statically analyze computation’s accuracy

• Transform computation by solving a 

mathematical optimization problem

Optimized Computation  + 

SAS ‘11, POPL ’12, OOPSLA’13, OOPSLA ’14, OOPSLA’19, CGO ‘20 

For all inputs



Background: Compiler Autotuning

Search for program with maximum performance by reordering 

instructions, compiler parameters, and program configurations

• There are so many ways to tile an array (e.g., fit different cache sizes)

• Which optimizations to try –O1, -O2, -O3, remove some, add some?

Empirical process: explores the complexity of the system stack:

• Try new configuration

• If better then previous, save; and 

• Search for more profitable configuration

Interesting educational project: https://github.com/ctuning/ck/wiki/Compiler-autotuning

https://github.com/ctuning/ck/wiki/Compiler-autotuning


Compiler Autotuning

Try new configuration: select one combination out of the space of 
all possible combinations 

• Often too large to try them all

• The results will depend on the inputs you used

If better: (traditionally) compare performance or energy

• Uses fitness function which orders the configurations

Search for more: various heuristic algorithms, these days mainly 
based on machine learning and heuristic search (e.g., genetic 
programming in OpenTuner)

A Survey on Compiler Autotuning using Machine Learning (CSUR 2019)



Compiler Autotuning

Accuracy opens up a new dimension for search

• Increases the number of options to try

• Includes (input-specific) accuracy metric in the fitness fun.

• Finds the configurations with best tradeoffs. 



Multiobjective Optimization (Reminder)

Functions to optimize are called objectives

• Accuracy Loss – lower is better (or accuracy – higher is better) 

• Speedup – higher is better (or normalized time – lower is better)

• Energy saving – higher is better (or consumption – lower is better)

They are the functions of program configuration – setting of knobs

Two candidate program configurations X and Y:

• X Pareto dominates Y if X is as good as Y in all objectives, and is better 

in at least one objective

Pareto frontier: the set of points that are not dominated by other points

We will come back and formalize these notions later in the course! 



Example

Sp
e
e
d
u
p

Accuracy Loss
1

0



Example

Sp
e
e
d
u
p

Accuracy Loss
1

0



Example

Sp
e
e
d
u
p

Accuracy Loss
1

0

Pareto (non-dominated) front



Example

Sp
e
e
d
u
p

Accuracy Loss
1

0

Pareto front

True Pareto front (theoretical optimum)



Pareto Fronts (aka Tradeoff curves)

Sp
e
e
d
u
p

Accuracy Loss

1
0

Convex

Concave

Non-Convex

Discontinuous



A BIT OF FORMALISM

Based on Knowels, Thiele, Zitzler

A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers (2006)



Optimization Problem

Optimization Problem is a Quadruple (𝑋, 𝑍, 𝑓, ≼):

• 𝑋: decision space, and 𝑥 ∈ 𝑋 is a decision vector 

• 𝑍: objective space, and z ∈ 𝑍 is a objective vector 

• 𝑓: 𝑋 → 𝑍 is a function that assigns to each decision vector 𝑥 an objective 
vector 𝑧 = 𝒇(𝑥)

• We can think of it 𝑧 = 𝑓1, … , 𝑓𝑛 = 𝒇 𝑥1, … , 𝑥𝑚 while assuming 𝑍 = 𝑅𝑛

• ≼ is a binary relation over 𝑍 that defines a partial order of the objective 
space (it also induces a preorder on the decision space)



Weak Dominance

When n = 1 (single objective function): 

• Optimization problem: (𝑋, ℝ, 𝑓, ≼)

• ≼ is our good old ≤ on reals; there always exists a unique maximum

When n > 1 (multiple objective functions)

• Typically define ≼ as z(𝑎) ≼ 𝑧 𝑏 ≡ ∀𝑖 ∈ 1…𝑛 𝑧𝑖
𝑎
≤ 𝑧𝑖

𝑏

• Known as weak Pareto dominance: z(𝑏) weakly dominates 𝑧 𝑎



Optimization Problem

Goal: 

Find solution 𝑥∗ that is mapped to a maximal element 𝑧∗ = 𝒇 𝑥∗

in the set 𝒇 𝑋 = 𝑧 ∈ 𝑍 ∃𝑥 ∈ 𝑋 ∶ 𝑧 = 𝑓(𝑥) }

• We can define the problem similar for searching minimal element 

(accuracy loss, run time)

• We can also make three dimensional tradeoff space accuracy, 

performance, energy, or even multidimensional

Think: x is program configuration, 

z is pair (accuracy, speedup), and

𝒇 computes (or records) accuracy and time of the execution.



Our Optimization Problem
Select Program Configuration 𝑋 ∈ 𝐶𝑜𝑛𝑓𝑖𝑔𝑠 to

𝐦𝐚𝐱𝐢𝐦𝐢𝐳𝐞 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝑋, 𝑖 , 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑋, 𝑖

𝐟𝐨𝐫𝐚𝐥𝐥 𝑖 ∈ 𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑡
But these are most often competing objectives.

Consider turning into weighted single optimization problem (𝑤1,2 express preference): 

𝐦𝐚𝐱𝐢𝐦𝐢𝐳𝐞 𝑤1 × 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝑋, 𝑖 + 𝑤2 × 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑋, 𝑖
𝐟𝐨𝐫𝐚𝐥𝐥 𝑖 ∈ 𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑡

To maintain accuracy guarantees rephrase: for every accuracy loss threshold δ

𝐦𝐚𝐱𝐢𝐦𝐢𝐳𝐞 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝑋, 𝑖
𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐿𝑜𝑠𝑠 𝑋, 𝑖 ≤ 𝛿
𝐟𝐨𝐫𝐚𝐥𝐥 𝑖 ∈ 𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑡



Dominance

𝑧(𝑎) ≼ 𝑧(𝑏) for objective vectors of size 𝑛 is defined as

∀𝑖 ∈ {1…𝑛} . 𝑧𝑖
𝑎
≤ℝ 𝑧𝑖

𝑏

It is also called weak Pareto dominance

A strong Pareto dominance 𝑧(𝑎) ≺ 𝑧(𝑏) is defined as above, but 
cannot have any element being equal. 

Read:

• 𝑧(𝑎) ≼ 𝑧(𝑏) we say that 𝑧(𝑏) weakly dominates 𝑧(𝑎)

• 𝑧(𝑎) ≺ 𝑧(𝑏) we say that 𝑧(𝑏) dominates 𝑧(𝑎)

We can similarly define this relation for the cases when we want 
to maximize one but minimize another objective.



Dominance

We just learned about Pareto 

Dominance (and weak dominance)

Incomparable points:

neither z 𝑎 ≼ 𝑧 𝑏 nor z 𝑏 ≼ 𝑧 𝑎

Indifferent: both points have the same 

value in all objectives

Strict domination: z 𝑎 is better than 

z 𝑏 in all objectives

Sp
e
e
d
u
p

Accuracy
1

100 0



Pareto Set Approximations

In optimization we are interested in the entire Pareto-optimal set, not just 
individual solutions

• The set comprises the non-dominated objectives and decisions:*
𝐴 = 𝑧, 𝑥 ∃𝑥 ∈ 𝑋 ∃𝑧 ∈ 𝑍 𝑠. 𝑡. 𝑧 = 𝑓 𝑥 and z in not dominated}

• We want to find mutually incomparable solutions

• Each such solution is a Pareto set approximation

We can extend the optimization problem: we want the best set of Pareto points 
(over other sets)

• Think: we want the best tradeoff curve across all that can be computed

* With a small abuse of notation, 𝑧𝐵 ∈ 𝐵 refers to 𝑧𝐵,𝑥𝐵 ∈ 𝐵 for some 𝑥𝐵 but the decision vector 𝑥𝐵 is not necessary in this context; 

Alternatively, one could write 𝑧𝐵,, _ ∈ 𝐵. We treat the case 𝑥𝐵 ∈ 𝐵 the same way. 



Comparing Pareto Sets Approximations
Let A and B the sets of Pareto-optimal points (e.g., produced by different search 

algorithms or multiple runs of a randomized algorithm)

Is this enough? Typically no, we may need to define quality indicators to compare 

‘incomparable’ sets

• There is no standard quality indicator, but needs to be selected based on context

Hypervolume Indicator: intuitively, a volume (in our case area) of dominated 

solutions covered by the Pareto set. 

• Need to select a reference point (or points). In our case, (speedup,accuracy) pairs 

(1.0, 100%) and (1.0, max-acceptable-accuracy) are intuitive choices

• Can order the Pareto sets 𝐼 𝐴 > 𝐼 𝐵 ⇒ 𝐴 ⊳ 𝐵 (i.e., A is better than B)

• For randomized search algorithms, can compute and compare expected indicators 

i.e.,    𝔼 𝐼 𝐴 > 𝔼 𝐼 𝐵 ⇒ 𝐴 ⊳ 𝐵



Pareto Fronts (aka Tradeoff curves)

Sp
e
e
d
u
p

Accuracy Loss

1
0

A

B



Pareto Fronts (aka Tradeoff curves)

Sp
e
e
d
u
p

Accuracy Loss

1
0

A

B



Pareto Fronts (aka Tradeoff curves)

Sp
e
e
d
u
p

Accuracy Loss

1
0

A

B



Comparing Pareto Sets Approximations
Let A and B the sets of Pareto-optimal points (e.g., produced by different search 

algorithms or multiple runs of a randomized algorithm)

We can define the relations for the sets:

• A dominates B (𝐵 ≺ 𝐴) iff every 𝑧𝐵 ∈ 𝐵 is dominated by some 𝑧𝐴 ∈ 𝐴

• Weak domination (𝐵 ≼ 𝐴) is defined similarly

• A and B are indifferent: A weakly dominates B and B weakly dominates A

• A is better than B (𝐵 ⊲ 𝐴): every 𝑧𝐵 ∈ 𝐵 is weakly dominated by at least 

one 𝑧𝐴 ∈ 𝐴 and A and B are not indifferent

• A and B are incomparable: neither set weakly dominates the other

• Is this enough? Typically no, we may need to define quality indicators to 

compare ‘incomparable’ sets. 



Note on Our Optimization
Since we execute the programs, the input distributions will impact the 

approximation sets

Alternatively, if we combine with static analysis, some of the tradeoffs will 

end up being conservatively set

The search algorithms (e.g., auto-tuners) will impact what solutions we 

find – especially if they are randomized

The distribution between the ‘training’ and ‘test’ inputs may change, 

impacting accuracy and performance



LET’S START WITH PRACTICE THEN



Petabricks

Language for algorithmic choice (expresses options to tune) and an 

autotuner (using genetic search)

Precusor to OpenTuner (popular autotuner: http://opentuner.org)

http://opentuner.org/


Petabricks

Language for algorithmic choice (expresses options to tune) and 

an autotuner (using genetic search)

Precusor to OpenTuner (popular autotuner)

Classes of algorithms that can benefit from approximation:

• Polyalgorihtms

• NP-Complete Algorithms

• Iterative Algorithms

• Signal Processing



Language and Compiler Support 

for Auto-TuningVariable-Accuracy 

Algorithms (CGO 2011)

The rules contained in the body of the transform 

define the various pathways to construct the 

Assignments data from the initial Points data.

Petabricks Autotuner



Petabricks Autotuner
Language and Compiler Support 

for Auto-TuningVariable-Accuracy 

Algorithms (CGO 2011)



Next Step

What if a language does not expose approximation 

choices?

Let a compiler find and expose some by modifying 

the program!



Original 

Program

Typical

Inputs

SpeedPress

Accuracy

Specification

• Transforms programs with perforation

• Validates new programs using testing

Optimized Program  + 

Quality of Service Profiling (ICSE 2010)

Managing Performance vs.  Accuracy Trade-offs With Loop Perforation (FSE 2011)



Typical

Inputs

Accuracy

Specification

• Quality Metric:

e.g. PSNR and bit rate

• Quality Loss:

e.g. relative difference <10%

x264 Video Encoder Example



Phases of Approximate Compiler:
Find perforatable loops

• Identify Opportunity: Run performance profiler
Identify time consuming loops

• Sensitivity Testing: Perforate one loop at a time
Filter out loops that do not satisfy accuracy requirement

• Search for Optimal Knobs: Perforate multiple loops
Find combinations of loops that maximize performance
Return a tradeoff curve of best solutions found 



Criticality (Sensitivity) Testing: Ensure that the 

program with perforated loop does not:

• Crash or return error

• Runs slower than original (or not terminates)

• Causes other errors identified by dynamic analysis 

(e.g., latent memory errors)

• Produces unacceptable result (e.g., NaN, inf…)

• Produces inaccurate result (according to accuracy 

metric)

Validate Perforated Loops
Filter out loops that do not satisfy requirement



α(     )

Criticality (Sensitivity) Testing:
Filter out loops that do not satisfy requirement

c

Input

Original 

Program Output
Quality

Metric

Perforated

Program

bitrate

PSNR

bitrate

PSNR

Check for

crashes, slowdowns,

latent memory errors

α(     )

𝑞 , ≤ 𝑞𝑚

=

=



Perforating Individual Loops in x264

0

5

10

15

20

25

30

Low Accuracy

( Quality Loss < 0.1)

#
 l
o
o
p
s



Perforating Individual Loops in x264

0

5

10

15

20

25

30

Perforatable

Low Accuracy

No Speedup

Latent Errors

Crash

( Quality Loss < 0.1)

#
 l
o
o
p
s



Perforating Individual Loops in x264

0

5

10

15

20

25

30

Perforatable

Low Accuracy

No Speedup

Latent Errors

Crash

( Quality Loss < 0.1)

#
 l
o
o
p
s



Perforating Individual Loops in x264

0

5

10

15

20

25

30

Perforatable

Low Accuracy

No Speedup

Latent Errors

Crash

( Quality Loss < 0.1)

#
 l
o
o
p
s



Perforating Individual Loops in x264

0

5

10

15

20

25

30

Perforatable

Low Accuracy

No Speedup

Latent Errors

Crash

( Quality Loss < 0.1)

#
 l
o
o
p
s



Perforating Individual Loops in x264

0

5

10

15

20

25

30

Perforatable

Low Accuracy

No Speedup

Latent Errors

Crash

( Quality Loss < 0.1)

#
 l
o
o
p
s

6 perforatable loops



Status

We found approximate computations and exposed individual knobs

Next, let us combine the knob values to utilize the approximation 

“budget”



Search Strategies and Algorithms

• Greedy

• Exhaustive

• Combined

• Hill-climbing

• Simulated annealing

• Genetic algorithm

• Reinforcement learning

• …

• We had the comfort to do a 

bounded-exhaustive evaluation 

to explore the tradeoff space



S
p
e
e
d
u
p

1

2

3

4

0 2.5 5 7.5 10 12.5 15

Navigate Tradeoff Space

Quality loss   

0.025 0.05 0.075 0.1 0.125 0.150



x264 video encoder

bodytrack human motion tracking 

swaptions financial analysis 

ferret image search 

canneal electronic circuit placement 

streamcluster point clustering

blackscholes financial analysis

Applications
From PARSEC Suite



x264 from Internet

bodytrack augmented

swaptions randomly generated

ferret provided inputs

canneal augmented (autogenerated)

streamcluster from Internet

blackscholes provided inputs

Inputs ,,
Augmented or Replaced Existing Sets



x264 PSNR + Size

bodytrack weighted relative difference

swaptions relative difference

ferret recall

canneal relative difference

streamcluster clustering metric

blackscholes relative difference

Metrics .

Application Specific



x264 3.2x motion estimation

bodytrack 6.9x particle filtering

swaptions 5.0x MC simulation

ferret 1.1x image similarity

canneal 1.2x simulated annealing

streamcluster 1.2x cluster center search

redundant computation

Loop Perforation 
(Quality Loss < 10%)



x264 3.2x motion estimation

bodytrack 6.9x particle filtering

swaptions 5.0x MC simulation

ferret 1.1x image similarity

canneal 1.2x simulated annealing

streamcluster 1.2x cluster center search

Loop Perforation 
(Quality Loss < 10%)



x264 3.2x

bodytrack 6.9x

swaptions 5.0x

ferret 1.1x

canneal 1.2x

streamcluster 1.2x

Loop Perforation 
(Quality Loss < 10%)

Tasks of most perforated loops:

• Distance metrics

• Search-space enumeration

• Iterative improvement

• Redundant executions



Main Observations

• Approximate Kernel Computations
(have specific structure + functionality)

• Accuracy vs Performance Knob
(tune how aggressively to approximate kernel)

• Magnitude and Frequency of Errors
(kernels rarely exhibit large output deviations)



Approximate 

Program Analysis = 

Accuracy + Safety



Accuracy and Guarantees

Logic-Based (worst-case)
“for all inputs… ”

Probabilistic (worst-case or average-case)
“for all inputs, with probability at least p…”
“for inputs distributed as…”

Statistical (average-case)

“for inputs distributed as… with confidence c”

“for tested inputs… with confidence c”

Empirical (typical-case)

“for typical inputs…”



Goals of Runtime Adaptation

Accuracy (Green)

Time or Energy

(Loop perforation)

Power Cap:

Clock drops 

2.4-1.6GHz

Power Cap lifted:

Clock rises 1.6-

2.4 GHz

Approximate Exact

Compare



Green : Framework for Controlled 

Approximations (PLDI’10) * 

End-to-end framework for controlled application on 
approximations

• Loop and function approximations

Relatively easy for programmers to use

Hooks for expert programmers and custom policies

Online mechanism to reactively adapt approximation 

policy to meet QoS

Adopted from slides by RadhaVenkategiri



Green Framework 



Recalibration

Concern: 

Overhead for 

running non-

approximate

Address: Run 

infrequently, 

restructure the 

code



Recalibration



Runtime Adaptation for Accuracy

Key concerns:

• Reexecuting infrequently to reduce the overhead

checking every result is expensive, rely on spatial and temporal 

locality

• The computation needs to be amenable for re-execution: 

think no side effects or crashes due to approximation



Runtime Approximation for Time/Energy

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

0

0.5

1

1.5

2

2.5

3

A
c
c
u

ra
c
y
 r

e
l. 

B
a
se

li
n

e

N
o

rm
a
li
z
e
d

 T
im

e

Frequency (MHz)

Alexnet_imagenet

Baseline - Time Approx Tuning - Time

Baseline - Accuracy Approx Tuning - Accuracy

At regular time intervals we gradually reduce the frequency of the SoC

When you notice a disruption, read the value from the tradeoff curve 

that would negate the disruption 



Runtime tuning helps maintain responsiveness in face of frequency changes

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

0

0.5

1

1.5

2

2.5

3

A
c
c
u

ra
c
y
 r

e
l. 

B
a
se

li
n

e

N
o

rm
a
li
z
e
d

 T
im

e

Frequency (MHz)

Alexnet_imagenet

Baseline - Time Approx Tuning - Time

Baseline - Accuracy Approx Tuning - Accuracy

Runtime Approximation for Time/Energy



Runtime tuning helps maintain responsiveness in face of frequency changes

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

0

0.5

1

1.5

2

2.5

3

A
c
c
u

ra
c
y
 r

e
l. 

B
a
se

li
n

e

N
o

rm
a
li
z
e
d

 T
im

e

Frequency (MHz)

Alexnet_imagenet

Baseline - Time Approx Tuning - Time

Baseline - Accuracy Approx Tuning - Accuracy

Runtime Approximation for Time/Energy



Runtime tuning helps maintain responsiveness in face of frequency changes

Runtime Approximation for Time/Energy



Runtime tuning helps maintain responsiveness in face of frequency changes

Runtime Approximation for Time/Energy



Runtime tuning helps maintain responsiveness in face of frequency changes

Runtime Approximation for Time/Energy



Runtime tuning helps maintain responsiveness in face of frequency changes

Runtime Approximation for Time/Energy



Runtime tuning helps maintain responsiveness in face of frequency changes

Runtime Approximation for Time/Energy



Runtime tuning helps maintain responsiveness in face of frequency changes

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

0

0.5

1

1.5

2

2.5

3

A
c
c
u

ra
c
y
 r

e
l. 

B
a
se

li
n

e

N
o

rm
a
li
z
e
d

 T
im

e

Frequency (MHz)

Alexnet_imagenet

Baseline - Time Approx Tuning - Time

Baseline - Accuracy Approx Tuning - Accuracy

Runtime Approximation for Time/Energy



What if you don’t have the exact point?

Solution 1: Select more conservative, suffer 

some performance drop (point A)

Solution 2: Select more aggressive, lose some 

more accuracy and make program even faster 

(point B)

Solution 3: We can use randomization

• Choose point A with probability p and

• Choose point B with probability 1-p

Why would this work over a long sequence of 

runs?

A

B



Original 

Computation

Typical

Inputs

Analysis-driven Compiler

Accuracy

Requirement

• Statically analyze computation’s accuracy

• Transform computation by solving a 

mathematical optimization problem

Optimized Computation  + 

SAS ‘11, POPL ’12, OOPSLA’13, OOPSLA ’14, OOPSLA’19, CGO ‘20 

For all inputs



Approximate Program Safety:

Information-flow Type Systems

Relational Logic Reasoning



EnerJType System

Idea: 

Isolate code and data that must be precise 

from those that can be approximated

Sampson, Dietl, Fortuna, Gnanapragasam, Ceze, Grossman

EnerJ: Approximate Data Types for Safe and General Low-Power Computation 

(PLDI 2011)



Approximate Hardware Model from EnerJ

Recall – hardware approximations:

• Soft errors

• Timing errors

• Voltage variations

• Aging, Refresh rates, …

All can be modeled as wrong bits 

(permanent or transient)



EnerJType System

Idea: 

Isolate code and data that must be precise 

from those that can be approximated

@Approx int a = approximate_code();

int p; 

p = a; <-------- not ok

Variable annotations (extends Java annotation system)



EnerJType System

Idea: 

Isolate code and data that must be precise 

from those that can be approximated

@Approx int a = approximate_code();

int p; 

if (a > 3) { p = 1; } else { p = 2; }  

Control flow dependency (implicit flow)



EnerJType System

Idea: 

Isolate code and data that must be precise 

from those that can be approximated

@Approx int a = approximate_code();

int p; 

p = endorse(a); <-------- ok

Like “(cast_type) a” in Java



EnerJType System

Consequence: 

Then the approximate parts may be optimized 

automatically, but the developer needs to 

ensure the endorsed values are valid. 

@Approx int a = approximate_code();

int p; 

p = endorse(a); <-------- ok

if ( isValid(p) ) { … } else { errorHandle(a) }



EnerJType System

Motivation:

Security information flow type systems –

prevent the program from leaking information 

about private variables into public variables. 

Noninterference [Goguen and Meseguer 1982]:

“one group of users, using a certain set of 
commands is noninterfering with another group of 
users if the first group does with those commands can 
no effect on what the second group of users can see.”



Carbin, Kim, Misailovic, Rinard, Proving acceptability properties of relaxed nondeterministic approximate programs (PLDI’12) 

Carbin, Kim, Misailovic, Rinard, Verified integrity properties for safe approximate program transformations (PEPM’13)

Boston, Gong, Carbin, Leto: Verifying Application-Specific Fault Tolerance through Parameterized Execution Models (OOPSLA’18)

He, Lahiri, Rakamaric, Verifying Relative Safety, Accuracy, and Termination for Program Approximations (JAR), 2018

for (i=0; i < m; i++) {

sum = sum + x[i]

}

avg = sum / m

Relational Safety Verification

i < 2*m/3
i < m/2



relax (m) st (0 < m <= old(m))

for (i=0; i < m; i++) {

sum = sum + x[i]

}

avg = sum / m

Relational Safety Verification



relax (m) st (0 < m <= old(m))

for (i=0; i < m; i++) {

sum = sum + x[i]

}

avg = sum / m

Relational Safety Verification

Transformed execution accesses only (a subset of) memory 

locations that the original execution would have accessed



relax (m) st (0 < m <= old(m))

for (i=0; i < m; i++) {

sum = sum + x[i]

}

avg = sum / m

Relational Safety Verification

The difference between the variable in the original and 

approximate runs is at most 
𝒔𝒖𝒎 𝒐 − 𝒔𝒖𝒎 𝒓 ≤ 𝜹



If the original program satisfies all assertions, 

then the relaxed program satisfies all assertions

Relative Safety



If the original program satisfies all assertions, 

then the relaxed program satisfies all assertions

Relative Safety vs. Just Safety

Any inconsistent behavior must be

in the original program!

Established through any means: 

verification, testing, code review



If the original program satisfies all assertions, 

then the relaxed program satisfies all assertions

Relative Safety vs. Just Safety

Established through any means: 

verification, testing, code review

General Proofs: Mechanized in Coq [PLDI ‘12]

Pointer Safety:  Automatic for loop perforation [PEPM ‘13]



Analysis-Based Optimizations
Accuracy Specification

Reliability Function computes result correctly 

with probability > 0.99

Absolute Error Absolute error of function’s result < 2.0

Reliability and 

Absolute Error

Absolute error of function’s result < 2.0

with probability > 0.99

int {𝚫𝒇 ≤ 𝟐 ; 𝟎. 𝟗𝟗 ∗ 𝐑 𝚫𝒙 = 𝟎, 𝚫𝒚 = 𝟎 } f(int x, int y);



int < 𝟎. 𝟗𝟗 ∗ 𝐑 𝚫𝒙 = 𝟎,𝚫𝒚 = 𝟎, 𝚫𝐬𝐫𝐜 = 𝟎 >

interpolation(int x, int y, int src[][]);

Reliability

degradation

Reliability Specification 

The function computes result correctly 

with probability at least 𝟎. 𝟗𝟗



int < 𝟎. 𝟗𝟗 ∗ 𝐑 𝚫𝒙 = 𝟎,𝚫𝒚 = 𝟎, 𝚫𝐬𝐫𝐜 = 𝟎 >

interpolation(int x, int y, int src[][]);

Reliability Specification 

Parameter

Reliability
Reliability

degradation

Probability that the parameters have 

correct values before function starts executing

(facilitates function composition)



int < 𝟎. 𝟗𝟗 ∗ 𝐑 𝚫𝒙 = 𝟎,𝚫𝒚 = 𝟎, 𝚫𝐬𝐫𝐜 = 𝟎 >

interpolation(int x, int y, int src[][]);

Reliability Specification 

Parameter

Reliability
Reliability

degradation

• Reliability factor: 𝐑(𝚫𝒗𝟏 ≤ 𝒅𝟏, … , 𝚫𝒗𝒏 ≤ 𝒅𝒏)

𝜟𝒗 ≡ 𝒗𝒆𝒙𝒂𝒄𝒕 − 𝒗𝒂𝒑𝒑𝒓𝒐𝒙 Numerical bound



Function Optimization Problem

Find Function Configuration 𝒒:

𝐦𝐚𝐱 EnergySavings (𝒒)

Reliability 𝒒 ≥ ReliabilityBound

AbsoluteError 𝒒 ≤ ErrorBound

Analysis of the Function Specifications

𝐬. 𝐭.

Misailovic, Carbin, Achour, Qi, Rinard, OOPSLA 2014: 

Chisel: Reliability- and Accuracy-Aware Optimization of Approximate Computational Kernels



Image Scaling



f ( )

Image Scaling: Interpolation Function

=



Interpolation Function

int interpolation(int dst_x, int dst_y, int src[][])
{

int x = src_location_x(dst_x, src), 
y = src_location_y(dst_y, src);

int up    = src[y - 1][x],
down  = src[y + 1][x],
left  = src[y][x - 1], 
right = src[y][x + 1]; 

int val = up + down + left + right;

return 0.25 * val;
}



Approximate Hardware Model from EnerJ

OOPSLA 2014

Recall – hardware approximations:

• Soft errors

• Timing errors

• Voltage variations

• Aging, Refresh rates, …

All can be modeled as wrong bits 

(permanent or transient)



Run Function on Approximate Hardware

int interpolation(int dst_x, int dst_y, int src[][])
{

int x = src_location_x(dst_x, src), 
y = src_location_y(dst_y, src);

int up    = src[y -. 1][x],
down  = src[y +. 1][x],
left  = src[y][x -. 1], 
right = src[y][x +. 1]; 

int val = up +. down +. left +. right;

return 0.25 *. val;
}



Run Function on Approximate Hardware

int interpolation(int@ dst_x, int@ dst_y, int@ src[][])
{

int@ x = src_location_x(dst_x, src), 
y = src_location_y(dst_y, src);

int@ up    = src[y -. 1][x],
down  = src[y +. 1][x],
left  = src[y][x -. 1], 
right = src[y][x +. 1]; 

int@ val = up +. down +. left +. right;

return 0.25 *. val;
}



Binary vector 𝒒 = (𝑞1, 𝑞2, … , 𝑞𝑛)

Variable Declarations:

• 𝒒𝒊 - if 1, variable is stored in approximate memory

if 0, variable is stored in exact memory

Arithmetic Operations:

• 𝒒𝒊 - if 1, the operation is approximate, 

if 0, the operation is exact

Function Configuration



Function Configuration

int interpolation(int dst_x, int dst_y, int src[][])
{

int x = src_location_x(dst_x, src); 

int y = src_location_y(dst_y, src);

int up    = src[y - 1][x];

int down  = src[y + 1][x];

int left  = src[y][x - 1]; 

int right = src[y][x + 1];

int val = up + down + left + right;

return 0.25 * val;

}



Function Configuration

int interpolation(int𝒒𝒅𝒔𝒕𝒙 dst_x, int𝒒𝒅𝒔𝒕𝒚 dst_y, int𝒒𝒔𝒓𝒄 src[][])

{

int𝒒𝒙 x = src_location_x(dst_x, src); 

int𝒒𝒚 y = src_location_y(dst_y, src);

int𝒒𝒖𝒑 up   = src[y - 1][x];

int𝒒𝒅𝒐𝒘𝒏 down  = src[y + 1][x];

int𝒒𝒍𝒆𝒇𝒕 left  = src[y][x - 1]; 

int𝒒𝒓𝒊𝒈𝒉𝒕 right = src[y][x + 1];

int𝒒𝒗𝒂𝒍 val = up + down + left + right;

return 0.25 * val;

}



Function Configuration

int interpolation(int𝒒𝒅𝒔𝒕𝒙 dst_x, int𝒒𝒅𝒔𝒕𝒚 dst_y, int𝒒𝒔𝒓𝒄 src[][])

{

int𝒒𝒙 x = src_location_x(dst_x, src); 

int𝒒𝒚 y = src_location_y(dst_y, src);

int𝒒𝒖𝒑 up   = src[y -𝒒𝟕 1][x];

int𝒒𝒅𝒐𝒘𝒏 down  = src[y +𝒒𝟔 1][x];

int𝒒𝒍𝒆𝒇𝒕 left  = src[y][x -𝒒𝟓 1]; 

int𝒒𝒓𝒊𝒈𝒉𝒕 right = src[y][x +𝒒𝟒 1];

int𝒒𝒗𝒂𝒍 val = up +𝒒𝟏 down +𝒒𝟐 left +𝒒𝟑 right;

return 0.25 *𝒒𝟎 val;
}

Each assignment of vector 𝒒 denotes 

a different approximate function 



• Efficiently represent reliability of 

all approximate function versions

• Construct constraints to separate those

function versions that satisfy specification

Reliability Analysis 
Motivation



Approximate hardware specification:

• Reliability of arithmetic operations: 𝒓𝒐𝒑 ∈ 𝟎, 𝟏

• Reliability of memory reads and writes: 𝒓𝒓𝒅, 𝒓𝒘𝒓 ∈ 𝟎, 𝟏

operator (*) = 0.9999; 

memory approx {rd = 0.99998, wr = 0.99999};   

Analysis:

• Sound static analysis, operates backward

• Constructs symbolic expressions that characterize 

reliability of kernel’s traces

Reliability Analysis



Reliability Analysis

Statement return val * 0.25;

Exact Statement

1.0

1.0

Read val

Return result

Multiply

Approximate Statement

𝑟𝑟𝑑

𝑟𝑡𝑖𝑚𝑒𝑠

1 − 𝑟𝑟𝑑

1 − 𝑟𝑡𝑖𝑚𝑒𝑠

val and * approximateval and * exact



Reliability Analysis

Statement return val * 0.25;

Exact Statement Approximate Statements

val and * 

approximate

val

approximate

* 

approximate

Statement

reliability 𝟏. 𝟎 𝒓𝒓𝒅 ⋅ 𝒓𝒕𝒊𝒎𝒆𝒔 𝒓𝒓𝒅 𝒓𝒕𝒊𝒎𝒆𝒔

val and * 

exact



Reliability Analysis

Statement return val * 0.25;

qval

q*

Encode approximation choice:

• Variable declaration:  int val;

• Multiplication:    val *   0.25;



Encode approximation choice:

• Variable declaration:  int val;

• Multiplication:    val *   0.25;

Reliability Analysis

Statement return val * 0.25;

Reliability

Expression 𝑟𝑟𝑑
𝑞𝑣𝑎𝑙

⋅ 𝑟𝑡𝑖𝑚𝑒𝑠

𝑞∗
⋅ R Δval = 0

qval

q*



Reliability Analysis

Statement return val * 0.25;

Reliability

Expression

Reliability of reading val from 

either exact or approximate memory: 

𝒓𝒓𝒅
𝟎 = 𝟏. 𝟎 𝒓𝒓𝒅

𝟏 = 𝒓𝒓𝒅

𝒓𝒓𝒅
𝒒𝒗𝒂𝒍

⋅ 𝑟𝑡𝑖𝑚𝑒𝑠

𝑞∗
⋅ R Δval = 0



Reliability Analysis

Statement return val * 0.25;

Reliability

Expression

Reliability of either exact or 

approximate multiplication

𝑟𝑟𝑑
𝑞𝑣𝑎𝑙

⋅ 𝒓𝒕𝒊𝒎𝒆𝒔

𝒒∗
⋅ R Δval = 0



Reliability Analysis

Statement return val * 0.25;

Reliability

Expression

Probability that previous statements 

computed val correctly 

𝑟𝑟𝑑
𝑞𝑣𝑎𝑙

⋅ 𝑟𝑡𝑖𝑚𝑒𝑠

𝑞∗
⋅ 𝐑 𝚫𝐯𝐚𝐥 = 𝟎



int interpolation(int𝒒𝒅𝒔𝒕𝒙 dst_x, int𝒒𝒅𝒔𝒕𝒚 dst_y, int𝒒𝒔𝒓𝒄 src[][]) 

{

return val *𝒒
∗
0.25;

}

Interpolation Function

𝑟𝑟𝑑
𝑞𝑣𝑎𝑙

⋅ 𝑟𝑡𝑖𝑚𝑒𝑠

𝑞∗
⋅ 𝐑 𝚫𝐯𝐚𝐥 = 𝟎



int interpolation(int𝒒𝒅𝒔𝒕𝒙 dst_x, int𝒒𝒅𝒔𝒕𝒚 dst_y, int𝒒𝒔𝒓𝒄 src[][]) 

{

int𝒒𝒗𝒂𝒍 val = up +𝒒𝟏 down +𝒒𝟐 left +𝒒𝟑 right;

return val *𝒒
∗
0.25;

}

Interpolation Function

𝑟𝑟𝑑
𝑞𝑣𝑎𝑙

⋅ 𝑟𝑡𝑖𝑚𝑒𝑠

𝑞∗
⋅ 𝐑 𝚫𝐯𝐚𝐥 = 𝟎

⋅ 𝒓𝒑𝒍𝒖𝒔
𝒒𝟏+𝒒𝟐+𝒒𝟑

⋅ 𝒓𝒓𝒅
𝒒𝒖𝒑+𝒒𝒅𝒐𝒘𝒏+𝒒𝒍𝒆𝒇𝒕+𝒒𝒓𝒊𝒈𝒉𝒕

⋅ 𝐑 𝚫𝐮𝐩 = 𝟎, 𝚫𝐝𝐨𝐰𝐧 = 𝟎, 𝚫𝐥𝐞𝐟𝐭 = 𝟎, 𝚫𝐫𝐢𝐠𝐡𝐭 = 𝟎

𝑟𝑟𝑑
𝑞𝑣𝑎𝑙

⋅ 𝑟𝑡𝑖𝑚𝑒𝑠

𝑞∗



Reliability Expression

𝑟1
𝒒𝟏 ⋅ 𝑟2

𝒒𝟐 ⋅ … ⋅ 𝑟𝑛
𝒒𝒏 ⋅ R ሥ

𝑗∈𝑃𝑎𝑟𝑎𝑚

Δ𝑣𝑗

Function’s Reliability Expression:

𝑃𝑝𝑎𝑟𝑎𝑚

Probability operations 

executed reliably

(for all approximate versions

of the function)

Probability parameters 

have correct values

at function start

Δdst_x = 0,
Δdst_y = 0,
Δsrc = 0



Reliability Constraint

𝑟𝑠𝑝𝑒𝑐 ⋅ R 𝑃𝑠𝑝𝑒𝑐 ≤ 𝑟1
𝒒𝟏 ⋅ 𝑟2

𝒒𝟐 ⋅ … ⋅ 𝑟𝑛
𝒒𝒏 ⋅ R 𝑃𝑝𝑎𝑟𝑎𝑚

Relates developer’s specification and analysis result:



Reliability Constraint

Can Immediately Solve

𝑟𝑠𝑝𝑒𝑐 ≤ 𝑟1
𝒒𝟏 ⋅ 𝑟2

𝒒𝟐 ⋅ … ⋅ 𝑟𝑛
𝒒𝒏

R 𝑃𝑠𝑝𝑒𝑐 ≤ R 𝑃𝑝𝑎𝑟𝑎𝑚

and 



Reliability Constraint

𝑟𝑠𝑝𝑒𝑐 ≤ 𝑟1
𝒒𝟏 ⋅ 𝑟2

𝒒𝟐 ⋅ … ⋅ 𝑟𝑛
𝒒𝒏

R 𝑃𝑠𝑝𝑒𝑐 ≤ R 𝑃𝑝𝑎𝑟𝑎𝑚

and 

𝑃𝑠𝑝𝑒𝑐 ⇒ 𝑃𝑝𝑎𝑟𝑎𝑚
Δdst_x = 0,
Δdst_y = 0,
Δsrc = 0

Δdst_x = 0,
Δdst_y = 0,
Δsrc = 0



Reliability Constraint

𝑟𝑠𝑝𝑒𝑐 ≤ 𝑟1
𝒒𝟏 ⋅ 𝑟2

𝒒𝟐 ⋅ … ⋅ 𝑟𝑛
𝒒𝒏

Denotes approximate function versions that 

satisfy the developer’s specification



Reliability Constraint
for the optimization problem

log 𝑟𝑠𝑝𝑒𝑐 ≤ 𝒒𝟏 ⋅ log 𝑟1 + 𝒒𝟐 ⋅ log 𝑟2 +⋯+ 𝒒𝒏 ⋅ log(𝑟𝑛)

Denotes approximate function versions that 

satisfy the developer’s specification



Reliability and Control Flow

Conditionals

Bounded

Loops

Constraints for each program path

Analysis removes redundant constraints
(most constraints can be removed - OOPSLA ’13)

Statically known loop bound

Analysis unrolls loop

Optimization

Granularity

Optimize blocks of code instead of 

individual instructions



Function Optimization Problem

Find Function Configuration 𝒒:

𝐦𝐚𝐱 EnergySavings (𝒒)

Reliability 𝒒 ≥ ReliabilityBound

AbsoluteError 𝒒 ≤ ErrorBound







`𝑟1
𝒒𝟏 ⋅ … ⋅ 𝑟𝑛

𝒒𝒏 ⋅ R Δ𝑥 = 0, Δ𝑦 = 0

Reduced-precision floating-point instructions:

• Almost always incorrect, but error is bounded

• Hardware specification: number of significant mantissa bits

Analysis:

• Bounds worst-case numerical deviation

• Embeds accuracy predicate in reliability factor:

Absolute Error Analysis



𝑟1
𝒒𝟏 ⋅ … ⋅ 𝑟𝑛

𝒒𝒏 ⋅ R Δ𝑥 + 2 ⋅ Δ𝑦 + 𝒒𝟏 ⋅ 𝜉𝑥,𝑦 < 𝑑

Reduced-precision floating-point instructions:

• Almost always incorrect, but error is bounded

• Hardware specification: number of significant mantissa bits

Analysis:

• Bounds worst-case numerical deviation

• Embeds accuracy predicate in reliability factor:

Absolute Error Analysis

Linear function of 𝒒𝟏, … , 𝒒𝒏



Recall Error Propagation𝑋 + 𝜀0

|𝑓1 𝑋 + 𝜀0 + 𝜀1 − 𝑓1(𝑋)| ≤ 𝐾𝑓1⋅ 𝜀0 + 𝜀1

|𝑓2(𝑓1 𝑋 + 𝜀0 + 𝜀1) + 𝜀2 − 𝑓2(𝑓1 𝑋 )|

≤ 𝐾𝑓2 ⋅ 𝐾𝑓1⋅ 𝜀0 + 𝐾𝑓2⋅ 𝜀1 + 𝜀2

𝒇𝟐

𝒇𝟏
𝐾𝑓1, 𝜀1

𝐾𝑓2, 𝜀2
𝐾𝑓 = max

𝑥∈𝐼𝑛𝑝𝑢𝑡𝑠

𝑑𝑓

𝑑𝑥



Error Propagation for Some Common Functions

𝑓(𝑥1, 𝑥2) Err

𝑥 ⋅ 𝑐𝑜𝑛𝑠𝑡 Δ𝑥 ⋅ 𝑐𝑜𝑛𝑠𝑡

𝑥 + 𝑦 Δ𝑥 + Δ𝑦

𝑥 ⋅ 𝑦 Δ𝑥 ⋅ max y + Δ𝑦 + Δ𝑦 ⋅ max( 𝑥 + Δ𝑥 )

𝐾𝑓 = max
𝑥∈𝐼𝑛𝑝𝑢𝑡𝑠

𝑑𝑓

𝑑𝑥
𝐾𝑓𝑖 = max

𝑥∈𝐼𝑛𝑝𝑢𝑡𝑠

𝜕𝑓(𝑥1…𝑥𝑛)

𝜕𝑥𝑖



int interpolation(int𝒒𝒅𝒔𝒕𝒙 dst_x, int𝒒𝒅𝒔𝒕𝒚 dst_y, int𝒒𝒔𝒓𝒄 src[][]) 

{

return val *𝒒
∗
0.25;

}

Interpolation Function

𝑟𝑟𝑑
𝑞𝑣𝑎𝑙

⋅ 𝑟𝑡𝑖𝑚𝑒𝑠

𝑞∗
⋅ 𝐑 𝟎. 𝟐𝟓 ⋅ 𝚫𝐯𝐚𝐥 + 𝒒∗ ⋅ 𝒆∗ ≤ 𝑬



int interpolation(int𝒒𝒅𝒔𝒕𝒙 dst_x, int𝒒𝒅𝒔𝒕𝒚 dst_y, int𝒒𝒔𝒓𝒄 src[][]) 

{

int𝒒𝒗𝒂𝒍 val = up +𝒒𝟏 down +𝒒𝟐 left +𝒒𝟑 right;

return val *𝒒
∗
0.25;

}

Interpolation Function

⋅ 𝒓𝒑𝒍𝒖𝒔
𝒒𝟏+𝒒𝟐+𝒒𝟑

⋅ 𝒓𝒓𝒅
𝒒𝒖𝒑+𝒒𝒅𝒐𝒘𝒏+𝒒𝒍𝒆𝒇𝒕+𝒒𝒓𝒊𝒈𝒉𝒕

⋅ 𝐑
𝟎. 𝟐𝟓 ⋅ 𝚫𝐮𝐩 + 𝚫𝐝𝐨𝐰𝐧 + 𝚫𝐥𝐞𝐟𝐭 + 𝚫𝐫𝐢𝐠𝐡𝐭 +

𝟎. 𝟐𝟓 ⋅ 𝒒𝟏 ⋅ 𝒆+𝟏 + 𝒒𝟐 ⋅ 𝒆+𝟐 + 𝒒𝟑 ⋅ 𝒆+𝟑 + 𝒒∗ ⋅ 𝒆∗ ≤ 𝑬

𝑟𝑟𝑑
𝑞𝑣𝑎𝑙

⋅ 𝑟𝑡𝑖𝑚𝑒𝑠

𝑞∗

𝑟𝑟𝑑
𝑞𝑣𝑎𝑙

⋅ 𝑟𝑡𝑖𝑚𝑒𝑠

𝑞∗
⋅ 𝐑 𝟎. 𝟐𝟓 ⋅ 𝚫𝐯𝐚𝐥 + 𝒒∗ ⋅ 𝒆∗ ≤ 𝑬



Function Optimization Problem

Find Function Configuration 𝒒:

𝐦𝐚𝐱 EnergySavings (𝒒)

Reliability 𝒒 ≥ ReliabilityBound

AbsoluteError 𝒒 ≤ ErrorBound









Energy Savings Analysis

Profile information: 

• Collects traces from running representative inputs

Analysis:

• Estimates savings for instructions and variables from traces

𝒒ℓ ⋅ 𝐶𝑜𝑢𝑛𝑡ℓ ⋅ 𝑆𝑎𝑣𝑖𝑛𝑔𝐴𝐿𝑈

instruction

𝒒𝒎 ⋅ 𝑆𝑖𝑧𝑒𝑚 ⋅ 𝑆𝑎𝑣𝑖𝑛𝑔𝑀𝐸𝑀

variable



Energy Savings Analysis

Profile information: 

• Collects traces from running representative inputs

Analysis:

• Estimates savings for instructions and variables from traces

Approximate hardware specification:

• Relative savings for operations and memories

• Percentage of system energy that ALU and memory consume

instruction

𝑐𝐴𝐿𝑈 ෍

ℓ∈𝐼𝑛𝑠𝑡𝑟

𝒒ℓ ⋅ 𝐶𝑜𝑢𝑛𝑡ℓ ⋅ 𝑆𝑎𝑣𝑖𝑛𝑔𝐴𝐿𝑈 𝑐𝑀𝐸𝑀 ෍

𝒎∈𝑉𝑎𝑟

𝒒𝒎 ⋅ 𝑆𝑖𝑧𝑒𝒎 ⋅ 𝑆𝑎𝑣𝑖𝑛𝑔𝑀𝐸𝑀+

variable



Function Optimization Problem

Find Function Configuration 𝒒:

𝐦𝐚𝐱 EnergySavings (𝒒)

Reliability 𝒒 ≥ ReliabilityBound

AbsoluteError 𝒒 ≤ ErrorBound











Find Function Configuration 𝒒:

𝐦𝐚𝐱 EnergySavings (𝒒)

Reliability 𝒒 ≥ ReliabilityBound

AbsoluteError 𝒒 ≤ ErrorBound









Kernel Optimization ProblemReduces to Integer Programming

Solve using off-the-shelf solvers (we use Gurobi)



Evaluation

Benchmarks With Approximated Functions: 

Approximate Hardware Specifications:

• 5 specifications of ALU, caches, and memories

from the literature [EnerJ – PLDI ‘11]

Scale image scaling

DCT discrete cosine transform

IDCT inverse discrete cosine transform

Blackscholes financial option price calculation

SOR successive over-relaxation kernel



Complexity of Optimization Problem

Benchmark
Function

LOC

Search 

Space Size

Reliability

Constraints

Scale 88 274 4

DCT 62 235 1

IDCT 93 253 1

Blackscholes 143 280 2

SOR 23 210 1

Solver finds optimal solutions in less than a second



Energy/Accuracy Tradeoffs

Optimizer computes estimated system savings

Maximum estimated savings for hardware specifications:

Benchmark
Reliability 

Degradation

System-Level 

Energy Savings

Scale 0.995 19.4%

DCT 0.99992 8.7%

IDCT 0.992 13.4%

Blackscholes 0.999 9.8%

SOR 0.995 19.8%



Pros: 

• Can explore the space induced by much finer grained 
transformations (e.g., numerical precision)

• The results are valid for all inputs within range

• New analyses were developed in the meantime

Cons:

• Static analysis is much more conservative than testing

• The set of supported programs is limited



Analysis: Middle Road

What if we know the distribution of the inputs?



CASE 1: Sum Computation

• Original sum computation

s = 0; 

for (i = 0; i < n; i++)    s = s + f(i);

• Perforated, extrapolated sum computation

s = 0; 

for (i = 0; i < n; i += 2)    s = s + f(i);

s = s * 2;



Step 1: Represent Result Difference

• Original sum computation

s = 0; 

for (i = 0; i < n; i++)    s = s + f(i);

• Perforated, extrapolated sum computation

s = 0; 

for (i = 0; i < n; i += 2)    s = s + f(i);

s = s * 2;

• Perforation noise: D = soriginal – sperforated



Step 2: Probabilistic Modeling

• Original sum computation

s = 0; 

for (i = 0; i < n; i++)    s = s + f(i);

• Perforated, extrapolated sum computation

s = 0; 

for (i = 0; i < n; i += 2)    s = s + f(i);

s = s * 2;

• Perforation noise: D = soriginal – sperforated



• Original sum computation

s = 0; 

for (i = 0; i < n; i++)    s = s + Xi;

• Perforated, extrapolated sum computation

s = 0; 

for (i = 0; i < n; i += 2)    s = s + Xi;

s = s * 2;

• Perforation noise: D = soriginal – sperforated

Step 2: Probabilistic Modeling

Specify 

assumptions



Analysis: Input/Output Relation

Perforation noise:

perforatedoriginal ssD 



Analysis: Input/Output Relation

Perforation noise:

X0 + X1 + X2 + X3 + X4 + X5 + X6 + X7 + …

– 2 ∙ (X0 + X2 + X4 + X6 + …)  

perforatedoriginal ssD 

 



Analysis: Input/Output Relation

Perforation noise*:

X0 + X1 + X2 + X3 + X4 + X5 + X6 + X7 + …

– X0 – X0 – X2 – X2 – X4 – X4 – X6 – X6 – …

perforatedoriginal ssD 

 

* Assuming for simplicity that the number of elements is even



Analysis: Input/Output Relation

Perforation noise*:




 

2
ni0

2i12i )X(X

  X0 + X1 + X2 + X3 + X4 + X5 + X6 + X7 + …

– X0 – X0 – X2 – X2 – X4 – X4 – X6 – X6 – …

perforatedoriginal ssD 

* Assuming for simplicity that the number of elements is even



Analysis Results

Perforation noise:

)X...,,X,X(φD 1n20 



Analysis Results

Location: Mean

μE(D) 

Perforation noise:

)X...,,X,X(φD 1n20 



Analysis Results

Location: Mean

Spread: Variance 
2σVar(D) 

μE(D) 

Perforation noise:

)X...,,X,X(φD 1n20 



Analysis Results

Location: Mean

Spread: Variance 

Bound: Distribution tail

  εδ|D|Pr 

2σVar(D) 

μE(D) 

Perforation noise:

+δ-δ

)X...,,X,X(φD 1n20 



Next Time

Probabilistic programming: 

Democratizing probabilistic inference


