
Felix: Optimizing Tensor Programs with
Gradient Descent

Yifan Zhao
yifanz16@illinois.edu
University of Illinois

Urbana-Champaign, USA

Hashim Sharif
hsharif3@illinois.edu
University of Illinois

Urbana-Champaign, USA

Vikram Adve
vadve@illinois.edu
University of Illinois

Urbana-Champaign, USA

Sasa Misailovic
misailo@illinois.edu
University of Illinois

Urbana-Champaign, USA

Abstract
Obtaining high-performance implementations of tensor pro-
grams such as deep neural networks on a wide range of hard-
ware remains a challenging task. Search-based tensor pro-
gram optimizers can automatically find high-performance
programs on a given hardware platform, but the search pro-
cess in existing tools suffer from low efficiency, requiring
hours or days of time to discover good programs due to the
size of the search space.
We present Felix, a novel gradient-based compiler opti-

mization framework for tensor-based programs. Felix creates
a differentiable space of tensor programs that is amenable
to search by gradient descent. Felix applies continuous re-
laxation on the space of programs and creates differentiable
estimator of program latency, allowing efficient search of pro-
gram candidates using gradient descent, in contrast to con-
ventional approaches that search over a non-differentiable
objective function over a discrete search space.
We perform an extensive evaluation on six deep neural

networks for vision and natural language processing tasks
on three GPU-based platforms. Our experiments show that
Felix surpasses the performance of off-the-shelf inference
frameworks – PyTorch, Tensorflow, and TensorRT – within 7
minutes of search time on average. Felix also finds optimized
programs significantly faster than TVM Ansor, a state-of-
the-art search-based optimizer for tensor programs.
ACM Reference Format:
Yifan Zhao, Hashim Sharif, Vikram Adve, and Sasa Misailovic. 2024.
Felix: Optimizing Tensor Programs with Gradient Descent. In 29th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume 3 (ASPLOS ’24),
April 27-May 1, 2024, La Jolla, CA, USA. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3620666.3651348

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0386-7/24/04. . . $15.00
https://doi.org/10.1145/3620666.3651348

1 Introduction
Computationally intensive deep neural networks (DNNs)
are ubiquitous in a wide range of applications such as au-
tonomous driving, augmented reality, and language transla-
tion. DNNs are increasingly deployed in resource-constrained
edge computing environments, making it challenging to
perform inference with low latency. Existing deep learning
frameworks, such as PyTorch [26] and TensorFlow [1], map
operators in DNNs to kernel libraries to manually-optimized
implementations for specific hardware architectures. This
approach requires significant expertise and manual effort,
and the performance of the optimized code does not carry
across the increasingly diverse edge platforms.
Search-based automatic code generation of tensor pro-

grams [2–4, 7, 28] is a recent and more scalable approach
to finding efficient implementations of tensor operators. A
search-based code generation framework typically defines a
search space of schedules – sequences of program transforma-
tions such as loop tiling, vectorization, parallelization, and
unrolling, that apply to the user-given initial program. The
code generator then searches for a schedule that delivers high
performance for a given program on the target hardware.

To achieve good performance for a wide range of different
hardware architectures, the search space needs to include a
large number of candidate schedules with different schedule
variables (e.g., tiling factors, loop unroll factors). However,
searching in a large space is fundamentally difficult. Existing
Machine Learning (ML) compilers rely on combinatorial dis-
crete search techniques such as beam search and/or genetic
algorithms to explore the search space, and suffer from exces-
sively long tuning time of hours or days per program [28, 38].
Some existing approaches therefore resort to covering only
part of the search space, using manually-written templates
[4, 7] or aggressive pruning [2].
We instead start from the insight that turning a discrete

search problem into a differentiable optimization problem has
a potential to produce a more efficient decision-making algo-
rithm. Compared to even sophisticated discrete search tech-
niques, gradient-based methods are more informed about
the shape of the objective function which can become a
significant advantage in search time and result optimal-
ity. While gradient-based search techniques are routinely
used for tasks such as DNN training [17] or neural architec-
ture search [22, 35], they are rarely applied to selecting the

https://doi.org/10.1145/3620666.3651348
https://doi.org/10.1145/3620666.3651348

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Yifan Zhao, Hashim Sharif, Vikram Adve, and Sasa Misailovic

program schedule, because it is formulated as an inherently
discrete problem.
Formulating the program schedule search as a differen-

tiable optimization problem poses significant challenges:

• The search space of schedules is discrete, with many of the
tunable parameters constrained in a subset of integers. For
example, the tiling sizes of loop tiling optimization must
be integers, but also must be factors of the loop extent to
not introduce conditional branches.

• The objective function – the performance of the program
as a function of the schedule – is highly complex, often dis-
continuous, and non-differentiable. To evaluate a schedule
accurately, the compiler needs to generate a program from
the schedule and empirically measure the performance of
the program on the target hardware.

• Analytical [34] or learned [19, 23, 39] performance models
approximate the performance objective and are generally
faster to evaluate than empirical measurements. However,
to maintain generality, these models typically take as in-
put the generated program or a program feature vector
representative of the program’s performance, instead of
taking the schedule as the input. Even when these models
are differentiable themselves, differentiation of the fea-
ture vector with regard to the variables in the program
schedule remains tremendously challenging as program
generation exercises multiple components of the compiler.

Our Work. To address these challenges, we develop Felix,
a novel gradient-based compiler optimization framework for
tensor programs. Felix deviates from the common practice of
relying on combinatorial search algorithms for schedule tun-
ing, and instead applies gradient descent over a differentiable
performance prediction function to optimize schedules.
Felix first partitions the computation graph of the input

program into subgraphs, each representing one or several
tensor operators, and searches for a schedule for each sub-
graph independently. For each subgraph, Felix creates a per-
formance predictor differentiable against schedule variables
(e.g., tiling factors, loop unroll factors), and optimizes the
value of these variables with gradient descent. This per-
formance predictor is composed of two parts: (1) program
features differentiable against schedule variables, and (2) a
pretrained DNN-based cost model, which takes values of
program features as input and predicts its execution time.
Our novel contribution of auto-generating differentiable pro-
gram features enables Felix to apply to a wide range of tensor
operators and compiler transformations, because the DNN-
based cost model can be trained once on a set of program
features and applied to various tensor programs.
Auto-generating differentiable program features intro-

duces several key technical challenges that we address and
discuss in Section 3. A major challenge is to automatically de-
rive program features as mathematical expressions of sched-
ule variables. Felix creates symbolic schedules that contains

schedule variables as parameters of program transforma-
tions, and applies these schedules to the subgraph to create
symbolic programs. Lastly, Felix’s feature extraction com-
ponent analyses symbolic programs to produce program
feature expressions.
To enable gradient descent, Felix relaxes the space of

schedules to be continuous, and tracks validity constraints
that ensure the potential code transformations are legal. For
an example loop of size 𝑁 , Felix relaxes a loop unrolling size
variable 𝑘 ∈ {1, 2, ..., 𝑁 } into 𝑘 ∈ [1, 𝑁] ⊂ R, and adds the
legality constraint 1 ≤ 𝑘 ≤ 𝑁 . The gradient descent search
then produces relaxed candidate schedules in the continu-
ous space. Felix discretizes schedules (e.g., by rounding the
variables to the nearest integer) and validates their legality
by checking the original constraints. Then, Felix confirms
the legality of candidate schedules empirically on the target
hardware platform to yield the final schedules for each sub-
graph. Finally, Felix combines these optimized subgraphs to
produce an optimized full program.

Results.We evaluate Felix on six diverse neural networks for
vision and natural language processing tasks on three hard-
ware GPU platforms that represent server (NVIDIA A10G),
desktop (NVIDIA RTX A5000), and edge (NVIDIA Xavier
NX) use cases. We compare Felix against (1) recent versions
of off-the-shelf inference frameworks PyTorch, TensorFlow,
and TensorRT, which all have code generation and autotun-
ing capabilities, and (2) state-of-the-art search-based com-
piler framework TVM Ansor [38], extended with TenSet
pretraining [39]. Our experiments show that the speedup
of Felix-optimized networks is 2.2× compared to PyTorch,
1.7× to TensorFlow, and 1.5× to TensorRT within just 7 min-
utes of tuning on average (geometric mean). across the six
networks and three hardware platforms, it reaches a 95% per-
formance of the best discovered code 3.4× faster and reaches
99% performance 2.8× faster on average (geomean). Felix is
particularly effective for time-constrained tuning or tuning
on resource-constrained edge devices, as Felix can quickly
find schedules with high performance.

Contributions.We make the following contributions:

• We present Felix, a novel gradient-based compiler opti-
mization framework for tensor programs. Felix carefully
models the program performance as a differentiable func-
tion of the schedule to find good schedules efficiently.

• Wepresent a novel algorithm to define a symbolic schedule
template for a tensor program subgraph and transform it
into a differentiable formula of program’s run time, which
enables using gradient descent to tune program schedules.

• We implement Felix on top of the Apache TVM tensor com-
piler [7] and its Ansor optimizer [38]. Felix’s optimization
approach is general and can be implemented over other
tensor-based compilers.

Felix: Optimizing Tensor Programs with Gradient Descent ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

• We present a thorough evaluation of Felix that shows
Felix delivers significantly higher performance in limited
search time compared to the state-of-the-art systems on
multiple benchmarks running on server, desktop and edge
GPU-based hardware platforms.

Felix code is available at https://github.com/uiuc-arc/felix.

2 Problem Statement

Transformed
program

𝑝𝑝 ≔ 𝒯𝒯 𝑝𝑝0, 𝑠𝑠

Program features
Feat 𝑝𝑝

Predicted
performance

Workload definition Schedule search

Compute definition
𝐴𝐴 𝑖𝑖 = max 𝐵𝐵 𝑖𝑖 , 0
0 ≤ 𝑖𝑖 < 1024

Initial program 𝑝𝑝0
for i in (0,1024)
 A[i]=max(B[i],0)

Sample
schedule 𝑠𝑠

Step①

② ③ ④

⑤

Figure 1. Typical workflow of a search-based tensor com-
piler.

Figure 1 outlines the typical workflow of a search-based
tensor program compiler such as Ansor, the Halide auto-
scheduler, and the Tiramisu auto-scheduler [2, 3, 7]. Users
define the computation using an API or a declarative lan-
guage supported by the compiler, for which the compiler
does a simple 1:1 translation of the language constructs to
its intermediate representation equivalents (Step 1). This ini-
tial program 𝑝0 is a naïve implementation of the user-given
mathematical definition and usually has low performance.
The goal of the search-based compiler optimizer is to find a
sequence of program transformations 𝑠 – often called a sched-
ule – that produces an optimized program T (𝑝0, 𝑠). Here,
T is the program transformation pipeline in the compiler
that applies the sequence of transformations 𝑠 to the initial
program 𝑝0. The optimization problem is formulated as:

max
𝑠∈S(𝑝0)

Performance (T (𝑝0, 𝑠)) (1)

where 𝑝0 is the initial program, S(𝑝0) is the search space of
legal schedules applicable to 𝑝0, T (𝑝0, 𝑠) is the optimized pro-
gram produced by applying the schedule 𝑠 to 𝑝0, and Perfor-
mance is measured as execution time on the target machine.
Search space definitions. To achieve performance better
than hand-tuned implementations, tensor compilers need
to apply multiple different kinds of optimizations including
but not limited to loop tiling, loop unrolling, vectorization,
parallelization, as well as hardware-specific transformations
such as CUDA blocking/threading on GPUs. Each kind of
transformation can also contain tunable (usually boolean
or integer) parameters; for example, tiling a loop level into
𝑛 levels introduces 𝑛 − 1 integer parameters for loop sizes.
The choice and ordering of these transformations and their
tunable parameters create an extremely large number of
possible schedules, but typically the vast majority of them
do not produce valid programs. To combat this, existing

compilers generally adopt schedule templates (user-written
or auto-generated) or sequentially construct and prune the
schedule to disallow arbitrary sequences of transformations.
The search space of schedules depends on the input program
𝑝0 and includes discrete parameters since the compiler pa-
rameters being tuned are integer values (e.g., tile sizes, SIMD
parallelization factors).
Cost prediction models and program features. Since the
search space of schedules is discrete, a number of classic
discrete-space search techniques such as genetic search and
beam search have been applied for this optimization problem.
Due to the large size of the search space, the search usually
requires a large number of tuning iterations each empirically
evaluating one candidate program. To mitigate the overhead
of empirically measuring too many programs, existing com-
pilers typically use some cost model, such as feed-forward
networks, LSTMs, and decision trees, to predict the perfor-
mance of the searched programs, andmay reduce the number
of empirical program evaluations. The cost models do not
directly take schedule 𝑠 as the input, but often a vector of 𝐾
program features extracted from 𝑝 := T (𝑝0, 𝑠):

Feat(𝑝) := (Feat1 (𝑝), . . . , Feat𝑘 (𝑝), . . . , Feat𝐾 (𝑝))
These program features, such as the number of floating point
add/multiply operations in the program and the reuse dis-
tance of buffer access in loops, are often hand-selected by
the compiler designer and extracted with static analysis.
Existing objective functions are not differentiable.As
shown in Figure 1, there are 3 major steps (Steps 3-5) to
estimating the performance of a schedule: generating the pro-
gramT (𝑝0, 𝑠), extracting the program features Feat(T (𝑝0, 𝑠)),
and feeding them to the cost model. When using this per-
formance estimator, the optimization problem becomes the
following (compare Eqn. 1):

max
𝑠∈S(𝑝0)

CostModel (Feat(T (𝑝0, 𝑠))) (2)

The objective function is not differentiable, because conven-
tionally applying the schedule and extracting the program
features are non-differentiable procedures. To address these
problems, we will next present how Felix makes this proce-
dure differentiable by generating symbolic schedules, sym-
bolically transformed programs, and formulas of program
features.

3 Felix Design
Figure 2 illustrates the workflow of the Felix compiler. Our
approach is described as follows:
• Felix analyzes the input program as a computation graph
whose nodes are tensor operators and edges indicate data
flow, and partitions it into subgraphs such that optimiza-
tion happens within the subgraph but not inter-subgraph
(§3.1). Each subgraph is optimized independently and gets
its own schedule.

https://github.com/uiuc-arc/felix

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Yifan Zhao, Hashim Sharif, Vikram Adve, and Sasa Misailovic

Symbolic Schedule Generation

Graph Partitioning

Tensor Program

Subgraph 1 Subgraph 2 Subgraph 3

Schedule 1

Program 1

Subgraph Objective Function

Gradient Descent Optimization

High-perf Subgraph Schedule

Program Feature Extraction

Features Features

Sec. 3.1

Sec. 3.2

Sec. 3.3

Sec. 3.4

Schedule 2

Program 2

Optimized Tensor Program

Figure 2. Felix High-level Workflow.

• For each subgraph, a symbolic schedule 𝑠∗ is a schedule
whose transform steps can use variables as parameters
(in contrast to non-asterisk concrete schedule 𝑠). Felix
generates 𝑁 symbolic schedules 𝑠∗1, . . . , 𝑠∗𝑖 , . . . , 𝑠∗𝑁 , each
with 𝑀𝑖 schedule variables x𝑖 := (𝑥𝑖1, · · · , 𝑥𝑖 𝑗 , · · · , 𝑥𝑖𝑀𝑖

)
(§3.2) that can come from multiple code transformations
(e.g., tiling and vectorization). For example,

[Unroll(loop_id=1, max_step= 𝑛)]

is a symbolic schedule with one variable 𝑛 . A symbolic
schedule spans the search space, because it can generate
many concrete schedules when given different values for
the schedule variables. The subgraph’s search space is the
Cartesian product of its symbolic schedules’ search spaces.

• For each symbolic schedule 𝑠∗𝑖 in each subgraph, Felix cre-
ates a differentiable performance estimator EstmPerf𝑖 , and
combines all estimators of the subgraph into one subgraph
objective function O(x𝑖) (§3.3). The estimator composes
two functions:
1. Felix first applies the symbolic schedule 𝑠∗𝑖 as a sequence

of transformations to the subgraph to get a transformed
symbolic program 𝑝∗𝑖 (§3.2), which contains the sched-
ule variables in its loop bounds, array indices, etc. An
analysis pass then extracts a vector of feature formulas
for each program 𝑝∗𝑖 as differentiable functions of x𝑖 :

Feat𝑝∗
𝑖
(x𝑖) := (Feat1;𝑝∗

𝑖
(𝑥𝑖1, 𝑥𝑖2, · · · , 𝑥𝑖𝑀𝑖

), ...,
Feat𝑘 ;𝑝∗

𝑖
(𝑥𝑖1, 𝑥𝑖2, · · · , 𝑥𝑖𝑀𝑖

), ...,
Feat𝐾 ;𝑝∗

𝑖
(𝑥𝑖1, 𝑥𝑖2, · · · , 𝑥𝑖𝑀𝑖

))
that capture characteristics of the program, such as the
number of float operations and the reuse distance of
buffer accesses.

2. Felix pretrains a feed-forward neural network-based
cost model C that maps values of the program features
to the predicted performance (a scalar). The cost model
is trained offline on a dataset of artificially generated
schedules and only needs to be trained once per target
hardware architecture.

• Felix minimizes O(x𝑖) with regard to x𝑖 using gradient
descent to discover high-performance schedules for each
subgraph (§3.4), and finally combines the optimized sub-
graphs to generate an optimized tensor program (§3.5).

• Lastly, we demonstrate in §3.6 how developers can use Fe-
lix’s programming interface to optimize tensor programs
with little effort.

3.1 Computation Graph Partitioning
Felix partitions the computation graph of the input tensor
program into subgraphs of fused tensor operators. These sub-
graphs are to be optimized in rounds of search, where each
round chooses one subgraph and optimizes it independently
(detailed in §3.5). The idea of subgraph partitioning [38] is to
reduce the search space of optimization, as opposed to jointly
optimizing the entire program, which can be intractable. The
graph partitioning fuses operators in fixed patterns, e.g., a
Conv followed by a ReLU can be fused into a Conv-ReLU
subgraph which is optimized as a fused construct.

3.2 Symbolic Schedule and Symbolic Program
Generation

As a concrete example, Figure 3 shows a Dense-Add sub-
graph with its mathematical definitions and the correspond-
ing naïve program, and the two symbolic schedules 𝑠∗1 , 𝑠∗2
generated for the graph when compiling to GPU. Dense-Add
performs a matrix multiplication with bias add, a common
operator in many DNNs. The simpler schedule 𝑠∗1 has 2 sched-
ule variables TILE0, UNROLL0 and the more complex 𝑠∗2 has
12: TI0..3, TJ0..3, TK0,1, SV0, and UNROLL0.

Felix extends Ansor’s [38] notion of (concrete) sketch and
annotation to generate these symbolic schedules. A sketch
is a list of program transformations with unfilled tunable
parameters; Ansor generates multiple sketches for each sub-
graph. A sketch can be annotated by filling in these parame-
ters to produce a valid schedule. Instead of annotating the
sketches with concrete integer and boolean values (the only
ones Ansor can do), Felix defines symbolic schedule vari-
ables x𝑖 and annotates the sketch with schedule variables to
produce symbolic schedules 𝑠∗𝑖 . Felix also keeps track of con-
straints 𝑐𝑖𝑞 (1 ≤ 𝑞 ≤ 𝐶𝑖) over the value of schedule variables.
For example, in the schedule 𝑠∗1 in Figure 3, TILE0 satisfies
𝑐11 (TILE0) = (1 ≤ TILE0 < K). The number of constraints
𝐶𝑖 varies for different symbolic programs. Felix can convert
any sketch that Ansor generates into a symbolic schedule,
and for a given subgraph, Felix’s search space has the same
dimension as Ansor’s. In terms of schedule variables, this in-
cludes variables in a number of positions, such as loop sizes

Felix: Optimizing Tensor Programs with Gradient Descent ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Input Graph (Dense-Add)

Mathematical definition:

𝐸 𝑖, 𝑗 = ∑ 𝐴 𝑖, 𝑘 ∗ 𝐵 𝑘, 𝑗 + 𝐶 𝑗

where 0 ≤ 𝑖 < 𝑁, 0 ≤ 𝑗 < 𝑀, 0 ≤ 𝑘 < 𝐾

Initial program 𝒑𝟎:

for i in (0, N)
for j in (0, M)

D[i,j] = 0
for k in (0, K)
D[i,j] += A[i,k] * B[k,j]

for i in (0, N)
for j in (0, M)

E[i,j] = D[i,j] + C[0,j]

Tile(loop=1, from=M, into=[TILE0])
Annotation(loop=2, annotation="threadIdx.x")
Tile(loop=2, from=K, into=[TILE0])
Annotation(loop=3, annotation="threadIdx.x")
Annotation(loop=0, annotation="blockIdx.x")
Unroll(stage=4, loop=0, max_step=UNROLL0)

Symbolic Schedule 𝑠∗

Tile(loop=0, from=N, into=[TI0,TI1,TI2,TI3])
Tile(loop=5, from=M, into=[TJ0,TJ1,TI2,TI3])
Tile(loop=10, from=K, into=[TK0,TK1])
Reorder(loop_order=[0,5,1,6,2,7,10,11,3,8,12,4,9])
ComputeAt(target_stage_id=4, loop=5)
CacheRead(reader_stage_ids=[2])
......
Annotation(loop=0, annotation="blockIdx.x")
Tile(loop=1, from=..., into=[SV0])
Annotation(loop=1, annotation="threadIdx.x")
Annotation(loop=2, annotation="vthread")
Unroll(loop=3, max_step=UNROLL0)

Symbolic Schedule 𝑠∗

for ij.0 in (0, N*M/TILE0) // blockIdx.x
// auto_unroll(UNROLL0)
for j.1 in (0, TILE0)
for k.0 in (0, K/TILE0)
for k.1 in (0, TILE0) // threadIdx.x
D[...] += A[...] * B[...]

for j.1 in (0, TILE0) // threadIdx.x
E[...] = D[...] + C[...]

Program 𝑝∗

for i.0 in (0, N/TI1/TI2/TI3) // blockIdx.x
for j.0 in (0, M/TJ1/TJ2/TJ3/SV0) // threadIdx.x
for v in (0, SV0) // vthread
// auto_unroll(UNROLL0)
for i.1 in (0, TI1)
for j.1 in (0, TJ1)
for k.0 in (0, K/TK1)
for i.2 in (0, TI2)

for j.2 in (0, TJ2)
for k.1 in (0, TK1)
for i.3 in (0, TI3)
for j.3 in (0, TJ3)
D[...] += A[...] * B[...]

for i.4 in (0, TI2*TI3)
for j.4 in (0, TJ2*TJ3)

E[...] = D[...] + C[...]

Program 𝑝∗

Figure 3. Example of symbolic schedule generation on a Dense-Add graph, showing 2 generated symbolic schedules and their
corresponding programs. Some transformation steps in the schedules and long expressions in the programs are omitted for
brevity. Variables that Felix introduces into the schedules are shown in bold font.

in loop tiling (TI𝑖 , TJ𝑖 , TK𝑖 , TILE0 in Figure 3), the number
of virtual threads (SV0), sizes of loop unrolling (UNROLL0) /
vectorization / parallelization, and location of computation
inlining (known as ComputeAt transformation in TVM [7]).
Symbolic program generation. Felix generates a symbolic
program 𝑝∗𝑖 from each symbolic schedule 𝑠∗𝑖 by applying the
transformation steps in 𝑠∗𝑖 on the initial program of the sub-
graph 𝑝0; i.e., 𝑝∗𝑖 := T (𝑝0, 𝑠∗𝑖). These symbolic programs con-
tain the schedule variables x𝑖 – the loop bounds, annotations,
and buffer access indices are expressions of 𝑥𝑖 𝑗 . The right
column in Figure 3 shows the two programs 𝑝∗1, 𝑝∗2 derived
from two symbolic schedules 𝑠∗1, 𝑠∗2 .

3.3 Feature Formula Extraction and Rewriting

Felix contains a program analysis pass that runs on a sym-
bolic program 𝑝∗𝑖 to extract a number of program features,
such as the total number of add / mul / div operations in
the program and the reuse distance of memory buffers. Felix
uses a total of 82 distinct features to capture computation
and memory access characteristics of the program. Because
these features are dependent on the loop bounds and buffer
access indices in 𝑝∗𝑖 which contains the schedule variables x𝑖 ,
the feature formulas are functions of the schedule variables.
The following table shows a few of the features extracted
from the first program 𝑝∗1 of the Dense-Add graph:

Operator Feature
float_add N · M · K
blockIdx_len N · M/TILE0
int_add NMK(select(TILE0 > 1, 5, 2))

Here, select(𝑏, 𝑥,𝑦) is a piecewise function that equals
𝑥 when the boolean expression 𝑏 evaluates to true and 𝑦
otherwise. In general, each feature expression extracted by

Felix can only contain schedule variables, constants, and a
fixed set of operators that the analysis pass uses, such as
+,−, ∗, /, pow,min,max, select, etc.
Extracted features are non-differentiable. The extract-
ed formulas contain discontinuous and non-differentiable
operators such as select, min, and max, due to the discrete
nature of some program features. A frequent scenario where
discontinuity arises is when the value of the feature depends
on if a loop level is trivial with a bound of 1. The formula
of int_add feature exhibits this behavior and contains the
select() function.
Felix makes expressions differentiable. To obtain differ-
entiable formulas of program features, Felix uses smoothing
kernels to create smooth differentiable approximation for
each non-differentiable operator it encounters.

To automatically rewrite whole formula that contains non-
differentiable operators, an expression rewriter in Felix ap-
plies a built-in library of rewrite rules each mapping one
non-differentiable operator into its differentiable version. We
derived each approximated function 𝑓smooth (𝑥) by convolv-
ing the non-differentiable function 𝑓 (·) with a smoothing
kernel 𝜙 (·):

𝑓smooth (𝑥) :=
∫ 𝑥

−∞
𝑓 (𝑥 − 𝑡)𝜙 (𝑡)d𝑡

In this work we used 𝜙 (𝑡) := 1/
√
1 + 𝑡2, which makes the

gradient of the smoothed functions more numerically stable
compared to other common alternatives such as Gaussian or
bump kernels.
As the result of this process, all generated functions will

be smooth (infinitely differentiable). Figure 4 compares two
examples of non-differentiable functions (select(𝑥 > 0, 5, 2)

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Yifan Zhao, Hashim Sharif, Vikram Adve, and Sasa Misailovic

−4 −2 0 2 4

x

2

3

4

5

−4 −2 0 2 4

x

0

1

2

3

4

5

select(x > 0, 5, 2) max(x, 0) Smooth

Figure 4. Comparison between two non-differentiable func-
tions and their smooth differentiable version respectively.
The nondifferentiable functions are select(𝑥 > 0, 5, 2) (left),
andmax(𝑥, 0) (right).

and max(𝑥, 0)) and their smooth approximations used by
Felix. The rewrite rules can automatically rewrite any feature
expressions emitted from the analysis pass with smooth
functions’ versions. We derived smooth versions manually
as the number of non-differentiable operators is small (less
than 10), and it is a one-time effort in the entire development
of the compiler and does not depend on the transformations.
Conceptually, this step can be readily automated, e.g. by
smooth interpretation [5].

Gradient stability. Some program features have exponen-
tially growing expressions and large value ranges. For exam-
ple, float_add is often the product of a few variables and
can grow up to 108 ∼ 109 for ordinary input programs. Gra-
dient vanishes when program features take on large values
because a delta change is insignificant. To avoid vanishing
gradients, Felix takes logarithm of the smooth program fea-
tures, and performs exponential variable substitution 𝑥 = 𝑒𝑦

for each schedule variable 𝑥 so that 𝑦 is the new variable to
be optimized. These two rewrite steps convert multiplicative
terms to additive ones, and produce feature expressions that
exhibit linear growth and have more stable gradients.

Constraint penalty functions. Felix’s expression rewriter
also rewrites the variable constraints 𝑐𝑖𝑞 (1 ≤ 𝑞 ≤ 𝐶𝑖 ; see
§3.2) into differentiable constraint penalty functions 𝑔𝑖𝑟 (x𝑖)
(1 ≤ 𝑟 ≤ 𝐺𝑖). One constraint can produce one or multiple
penalty functions, meaning that 𝐺𝑖 ≥ 𝐶𝑖 . For example, 𝑐11 =
(1 ≤ TILE0 ≤ K) becomes 𝑔11 (TILE0) := 1 − TILE0 and
𝑔12 (TILE0) := TILE0− K. The schedule variables are in valid
range if and only if all 𝑔𝑖𝑟 (x𝑖) ≤ 0.

Some size variables, such as loop sizes in loop tiling, may
have divisibility constraints of the form 𝑁 mod 𝑥 = 0. 𝑁
is the size of the loop to be tiled (a constant), and 𝑥 equals
𝑒𝑦 due to Felix’s logarithm substitution. Felix replaces each
such constraint with a size constraint𝑦 ≤ ln𝑁 and addresses
divisibility by value rounding post-optimization. Instead of
rounding 𝑥 to the closest integer, Felix rounds𝑦 to the closest
ln𝑁𝑖 where 𝑁𝑖 is an integer factor of 𝑁 . A list of 𝑁𝑖 is easily

computable as 𝑁 is the size of a dimension of some tensor
and typically smaller than 106.

3.4 Optimizing Schedules with Gradient Descent

Objective function. In this stage, Felix creates performance
estimators per symbolic program 𝑝∗𝑖 by composing two func-
tions together: the program features Feat𝑝∗

𝑖
(x𝑖) and a pre-

trained, neural network-based cost model C, which takes the
program feature values as input and outputs a scalar for the
predicted performance of the schedule, i.e., EstmPerf𝑝∗

𝑖
(x𝑖) :=

C(Feat𝑝∗
𝑖
(x𝑖)) ∈ R. Felix then tunes the values of the sym-

bolic variables across all the symbolic programs of a sub-
graph using the following optimization problem formula-
tion:

max
𝑝∗
𝑖

max
x𝑖

C(Feat𝑝∗
𝑖
(x𝑖)) s.t. ∀𝑖, 𝑟 . 𝑔𝑖𝑟 (x𝑖) ≤ 0 (3)

We relax the variables x𝑖 , which are mostly booleans and
integers, into real-valued variables, and rewrite Equation 3
into the following objective function to be minimized:

O(x) :=
∑︁
𝑖

(
−C(Feat𝑝∗

𝑖
(x𝑖)) + _

∑︁
𝑞

max (𝑔𝑖𝑟 (x𝑖), 0)2
)
(4)

Here we sum over 𝑖 to simultaneously optimize all x𝑖 of a
subgraph, and negate the higher-better performance estima-
tor to make a lower-better objective function. The penalty
term max(𝑔𝑖𝑟 (x𝑖), 0)2 is 0 when 𝑔𝑖𝑟 is not violated, and is
𝑔𝑖𝑟 (x𝑖)2 > 0 otherwise, so minimizing this term pushes x𝑖
towards satisfying the constraints. Adding penalty terms to
the function to be minimized converts a constrained opti-
mization problem into an unconstrained one, and is com-
monly used on many constrained optimization problem such
as DNN weight regularization [11] and structured prun-
ing [35, 40]. Here, _ is a hyperparameter that controls the
strength of penalty functions.

The objective O(x) is differentiable because (1) Feat𝑝∗
𝑖
(x𝑖)

is differentiable by our construction; (2) the max(𝑥, 0)2 func-
tion is differentiable with derivative 2max(𝑥, 0); (3) each
𝑔𝑖𝑟 (x𝑖) is differentiable by our construction, and thus the
composition max(𝑔𝑖𝑟 (x𝑖), 0)2 is also differentiable; finally,
(4) the sum of differentiable functions is differentiable.
Schedule optimization for subgraph.Algorithm 1 outlines
how Felix optimizes one subgraph with gradient descent.
To explore more parts of the search space and avoid being
trapped in local minima, Felix optimizes multiple (nSeeds)
schedules simultaneously. First, Felix extracts the symbolic
variables, symbolic schedules and objective functions on
lines 10 and 11. On line 12, Felix randomly samples nSeeds
sets of initial values (𝜎x) for the schedule variables that sat-
isfies all constraints using rejection sampling. Lines 14 to 19
initializes an Adam [17] optimizer and runs it for nSteps op-
timization steps to minimize the objective function given as
Eqn. 4. Each step evaluates the gradient of the objective func-
tion O(x) at the current values 𝜎x of the schedule variables,

Felix: Optimizing Tensor Programs with Gradient Descent ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Algorithm 1: Felix schedule tuning for each subgraph.
1 Inputs:
2 𝑝0: subgraph to be optimized
3 C: pretrained performance predicting model
4 nSeeds: number of schedules to optimize simultaneously
5 nSteps: number of steps to run gradient descent for
6 nMeasure: number of schedules to evaluate on hardware
7 _: coefficient of the constraint penalty term
8 Outputs: sbest, measuredPerfs, Cupd
9 Function ExtractAndOptimize
10 s∗, x = GenerateSymSchedulesAndVars(𝑝0);
11 O = MakeObjectiveFunc(s∗, C, _);
12 𝜎x = RandomInitSchedVars(x, nSeeds);
13 varValuesHistory = list();
14 optimizer = Adam();
15 for i in range(0, nSteps) do
16 costs = O(𝜎x);
17 varValuesHistory.append((𝜎x, costs));
18 gradients = AutoDiff(O, costs, 𝜎x);
19 𝜎x = optimizer.step(𝜎x, costs, gradients);
20 svalid = GetValidSchedules(s∗, varValuesHistory);
21 sbest = TopNSchedulesByPredPerf(svalid, nMeasure);
22 pbest = { T (𝑝0, 𝑠) | 𝑠 ∈ sbest };
23 measuredPerfs = MeasurePerfOnDevice(pbest);
24 Cupd = UpdateCostModel(C, sbest, measuredPerfs);
25 return sbest, measuredPerfs, Cupd;

and calls the Adam optimizer to move 𝜎x in the direction of
the gradient. Each step updates all the nSeeds schedules.
To get a list of valid concrete schedules svalid, Felix then

takes all the variable values traversed in the optimization pro-
cess, rounds them to integers (we use the nearest rounding
in our implementation), and removes invalid rounded sched-
ules (line 20). Felix then takes the best nMeasure schedules
sbest (sorted by cost model-predicted performance), generates
their corresponding concrete programs sbest, and empirically
evaluates them on the target hardware. Thus, Felix does only
a small set of (often expensive) evaluations on the target
hardware. Felix also uses the schedules and their measured
performance to update the cost model C (which is an inex-
pensive process) so that the cost model is better fitted to the
subgraphs of this input program in the next rounds.

3.5 Full Graph Tuning

To optimize an entire tensor program, Felix first decom-
poses the program into subgraphs (§3.1), and adopts Ansor’s
round-based tuning algorithm [38] to tune these subgraphs
in rounds of search. In each round, Felix applies its subgraph
optimization algorithm (Algorithm 1) to one subgraph. Al-
gorithm 2 shows this iterative tuning process. We adopt
Ansor’s task scheduler to select which subgraph to optimize
in each round, but any other selection algorithm would work
as well. Finally, after nRounds of tuning, Felix selects the

Algorithm 2: Felix full program schedule tuning.
1 Inputs:
2 p: subgraphs to be optimized
3 nRounds: number of rounds of tuning among all subgraphs
4 C0: pretrained cost model for target hardware
5 Outputs: optimized full program
6 Function TuneFullProgram
7 tuneHistory = list(); C = C0;
8 for i in range(0, nRounds) do
9 𝑝next = SelectNextSubgraph(p, tuneHistory);

10 s, measuredPerfs, C =
ExtractAndOptimize(𝑝next, costModel, . . .);

11 tuneHistory.append((𝑝next, s, measuredPerfs));
12 bestFullSchedule = CombineBestSchedules(tuneHistory);
13 return bestFullSchedule;

best schedule of each subgraph and combines them into a
full schedule for the whole tensor program.

3.6 Felix Programming Interface

Felix is developed as a Python library with an easy-to-use
API. Figure 5 presents an example of using Felix to optimize
ResNet-50 to run on the Nvidia Xavier NX GPU. The key
interface functions in the example are explained within the
comments. As the figure shows, using Felix interface to opti-
mize a DNN requires only a few lines of code. Developers
only need to provide the network to optimize and the net-
work’s input shape, and specify the total tuning time budget
in terms of the number of tuning rounds. This is a common
practice in existing autotuning works, as automatic stopping
criteria (e.g. stop on convergence) are rarely satisfied.

4 Implementation
Felix is implemented on top of TVM [7] and its Ansor [38]
optimizer. Felix represents its symbolic programs in the TVM
TIR intermediate representation language and uses TVM’s
program transformation passes and hardware backends. It
also reuses two algorithms fromAnsor: its graph partitioning
algorithm and sketch generation algorithm. Felix extends An-
sor’s graph partitioning algorithm to track additional infor-
mation for creating symbolic variables (§3.1), and processes
the sketches produced by Ansor’s sketch generation algo-
rithm to generate symbolic programs (§3.2). We implement
Felix to utilize all hardware-independent and GPU-specific
optimizations in TVM, and support the tuning of all the pro-
gram transformation parameters that Ansor tunes on GPU.
Felix’s search space includes the following tunable pa-

rameters: (1) CUDA thread/block sizes, (2) loop tiling sizes,
(3) vectorization dimension sizes, (4) parallelization dimen-
sion sizes, and (5) loop unrolling factors. This search space
also includes the options of skipping a transformation, as
Felix treats a size/factor of value 1 as a no-op. In Felix and
Ansor, some optimizations are applied without tuning; these

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Yifan Zhao, Hashim Sharif, Vikram Adve, and Sasa Misailovic

import felix
from torchvision import resnet50
Define the hardware target to optimize for
device = felix.device.cuda("xavier-nx")
Define the DNN to optimize and its input shape
dnn, input_shape = resnet50(), [1, 3, 256, 256]
Extract subgraphs to tune from the DNN
graphs = felix.extract_subgraphs(dnn, input_shape)
Get pretrained cost model for the target device
cost_model = felix.pretrained_cost_model(device)
Felix `Optimizer` sets up the search space
and the objective function for each subgraph
opt = felix.Optimizer(graphs, cost_model, device)
Run the search process for 100 rounds
opt.optimize_all(n_total_rounds=100,

measure_per_round=16, save_res="resnet50.json")
Apply the best schedules found for each subgraph
and generate a compiled module
compiled_lib = opt.compile_with_best_configs(

configs_file="resnet50.json")
The module can be called as a function in Python
or saved to a file and loaded later
compiled_lib.save("resnet50_xavier_nx.pkl")

Figure 5. Example code for using Felix’s programming in-
terface to optimize a ResNet-50 network defined in PyTorch.

decisions are delegated to built-in rules in TVM and Ansor.
For example, Felix and Ansor use a rule-based loop reorder-
ing and apply operator fusion greedily when applicable. For
each subgraph, the search space of Felix (and Ansor) only
include orderings of transformations suggested by Ansor’s
sketch generation algorithm. A search that includes arbitrary
orderings of transformations is out of scope of this work.
Felix uses PyTorch [26] for gradient back-propagation

and invoking the Adam optimizer used in Algorithm 1, and
TenSet [39] for the cost model definition and the dataset for
training the cost model. We choose the multi-layer percepton
(MLP) architecture provided by TenSet, which is a network
with 4 linear layers and approximately 250K parameters.

Felix is implemented as 13K lines of C++, Python, and
Rust code. Since TVM requires concrete integer-valued pa-
rameters in some program transformations and some parts
of the program, e.g., certain loop bounds, we patch 1.5K lines
of TVM code to add support for Felix’s symbolic schedule
and symbolic program representation. A large part of the
symbolic program generation and feature extraction is imple-
mented in C++, and Felix’s expression rewriter is written in
Rust to interface with egg [36], an equality saturation-based
rewriting framework we use to enable efficient rule-based
expression rewriting described in Section 3.3. A developer
can extend Felix to tune an existing transformation in TVM
by modifying the source code of the transformation to use
symbolic parameters. Moreover, retraining Felix’s cost model
and adding simplification rules to Felix’s expression rewriter
are optional and can help achieve better search results.

5 Experimental Methodology
Tensor programs to optimize.We choose 6 neural networks
to evaluate Felix: ResNet-50 [15], MobileNet-v2 [30], R3D-
18 [14], DCGAN [27], Vision Transformer (ViT) [12], and
LLaMA [33]. Each of these networks contains different types
of operators, such as 2d/3d convolutions, transposed con-
volutions, and batched matrix multiplications, and together
they cover a large part of operators commonly seen in to-
day’s deep learning workloads. We optimize all the networks
for inference at full (float32) precision. In all experiments
except §6.4, the networks run on a batch size of 1, i.e., the
input to each network is 1 image, video, or sentence, depend-
ing on the network. For LLaMA, the length of each input
sentence is 100 tokens. We study the effect of other input
batch sizes in §6.4.

Hardware platforms.We choose three GPU devices for Fe-
lix to optimize programs for: Nvidia A10G, Nvidia RTXA5000
and Nvidia Xavier-NX. Nvidia A10G represents devices in
a server setting [8], A5000 represents desktop devices [10],
while Xavier-NX is representative of devices seen in an edge
computing setting [9]. For Xavier-NX, we run the code of
Felix and TVM themselves on a separate machine with a
32-core AMD Ryzen 3975WX CPU and 512 GB of RAM, and
use remote-procedure calls to run the tensor programs on
the Xavier-NX.

Baseline frameworks.We include PyTorch 2.2, TensorFlow
2.15, TensorRT 8.6, and Ansor (commit hash: 95aac9224) as
baseline frameworks. PyTorch, TensorFlow, and TensorRT
are off-the-shelf inference frameworks that contain man-
ually optimized kernel libraries and can mix and match
them with JIT-generated code. Ansor is a state-of-the-art
search-based tensor compiler. All these frameworks are ca-
pable of graph compilation, graph optimization, code gener-
ation, and schedule autotuning. We use the TorchInductor
backend in PyTorch via the command torch.compile(...,
backend=’inductor’), and XLA with TensorFlow via the
command tf.function(..., jit_compile=True).We use
Ansor with a cost model pretrained on the TenSet dataset;
this method, the architecture of the cost model, and the
dataset are provided by the original TenSet work [39], so
we refer to this setup as Ansor-TenSet. It achieves equal or
better tuning result than Ansor in less search time [39], and
is hence a better baseline. Ansor-TenSet has the same search
space definition and tuning techniques as Ansor.

Search parameter settings.We use 8 initial schedules, 200
gradient descent steps, and 16 empirical measurements (nSeeds,
nSteps, and nMeasure in Algorithm 1) as the default settings
for the gradient optimizer of Felix. When comparing against
Ansor, we use the recommended settings for Ansor a popula-
tion size of 2048 and 4 generations for Ansor’s evolutionary
search, and 64 empirical measurements per tuning round,

Felix: Optimizing Tensor Programs with Gradient Descent ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

since using a lower setting with Ansor produces worse re-
sults. While the search parameters of Ansor and Felix are
not directly comparable, they indicate that Ansor predicts
the performance of approximately 8192 = 2048× 4 schedules
per search round, while Felix predicts 1600 = 8 × 200 per
round. We set both Felix and Ansor to run each candidate
schedule for 100 milliseconds when evaluating schedules on
hardware, which corresponds to repeating the program 10 –
1000 times depending on the latency of the program.
Cost model training. The cost model is trained on a dataset
provided by TenSet [39], which contains over 1000 subgraphs
and thousands of schedules for each subgraph. We select a
subset of 500 subgraphs, covering all common types of bottle-
neck workloads such as convolutions and linear layers. For
each subgraph, we select 512 schedules (or all the schedules
if fewer than 512 is provided for that subgraph), such that
our selected dataset contains ~250,000 schedules in total. We
don’t use the entire dataset provided by TenSet, as doing so
has negligible benefits to both the accuracy of the cost model
and tuning results. We split our dataset into 90% training set
and 10% validation set, and use the same hyperparameters
as in TenSet code, such as learning rate and batch size.

6 Evaluation
We evaluate the efficacy of Felix on both entire neural net-
works and single operator benchmarks, while targeting mul-
tiple hardware platforms. For each setting, we compare Felix
against state-of-the-art search framework (Ansor-TenSet)
and off-the-shelf inference frameworks (PyTorch, Tensor-
Flow, TensorRT). In our experiments, we consider the fol-
lowing questions:
RQ1: Can Felix provide higher performance than off-the-
shelf inference frameworks? How much optimization search
time needs to be allocated for Felix to surpass the perfor-
mance offered by these inference frameworks?
RQ2:Does Felix produce better or similar level of perfor-
mance improvements in shorter search time compared to
today’s practice of discrete-space program search?
RQ3:How do individual operators optimized by Felix com-
pare to those provided by kernel libraries or optimized by
Ansor-TenSet?

6.1 Felix vs. Off-the-shelf Inference Frameworks

Figure 6 present the inference performance of 6 DNNs on
3 hardware platforms when using Felix vs. PyTorch, Ten-
sorFlow, and TensorRT. Felix improves the performance of
the 6 networks on average (geometric mean) by 1.41× on
A5000, 1.50× on A10G and 1.70× on Xavier NX, and up
to 4.48×, 5.40×, and 10.8× respectively. A few configura-
tions do not produce results: TensorFlow is unable to run
the high memory-footprint vision transformer (ViT-B/32)
on Xavier NX due to insufficient memory; LLaMA does

Table 1. Tuning time (seconds) Felix takes to exceed the per-
formance of the best-performing manual library on different
DNNs and hardware devices.

Network RTX A5000 A10G Xavier NX
ResNet-50 278 s 416 s 416 s∗
MobileNet-v2 496 s 527 s 496 s
DCGAN 495 s 144 s 145 s
ViT 144 s 496 s 145 s∗
LLaMA 389 s — —

not run on Xavier NX with any framework due to insuf-
ficient memory to hold its parameters; LLaMA is not yet
supported in TensorFlow [13] and produces a segmentation
fault error with TensorRT.

Insights on performance improvements.We observe that
Felix usually provides much higher performance compared
to PyTorch, TensorFlow, and TensorRT, on network with
smaller layers, such as MobileNet-v2 and DCGAN. One rea-
son we identify is smaller neural network layers are harder
to parallelize in a way that does not under-utilize GPU com-
pute resources. Even though PyTorch, TensorFlow, and Ten-
sorRT have some code generation and autotuning capabil-
ities, Felix explores a larger space of schedules to increase
parallelism and cache reuse (among other performance char-
acteristics) and is hence more effective at optimizing in these
scenarios. For example, Felix gets significant speedup (3.42×)
for MobileNet-v2 and DCGAN (2.25×) on A5000 because
MobileNet-v2 consists of many relatively small layers, which
is harder to schedule with enough parallelism to fully utilize
the 8192 cores of A5000.
Meanwhile, the speedup of Felix over off-the-shelf infer-

ence frameworks can depend on the type of operators in the
tensor program. Felix did not outperform the baselines on
R3d-18 due to 3d convolutions, which make up more than
99% of computation in R3d-18 and are highly optimized in
the baselines. Our study in §6.3 confirms that the low per-
formance of Felix on R3d-18 is due to 3d convolutions, and
show that Felix still outperforms off-the-shelf frameworks
for all other types of operators in the evaluated networks.

Amount of tuning time to surpass the baselines. Table 1
shows the amount of tuning time Felix takes to surpass the
best performance among the kernel libraries (PyTorch, Ten-
sorFlow, TensorRT). The efficient gradient-based search in
Felix allows it to generate programs that outperform Py-
Torch, TensorFlow, and TensorRT in as little as 2.4 minutes
(144 seconds) and on average 6.9 minutes (413 seconds). The
asterisk for Xavier NX indicates that we compare the search
time against the second best-performing inference frame-
work, as Felix slightly under-performed TensorRT on ViT
(by 6%) and ResNet-50 (by 8%). These off-the-shelf infer-
ence frameworks can also perform some tuning to achieve

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Yifan Zhao, Hashim Sharif, Vikram Adve, and Sasa Misailovic

ResNet-50 MobileNet-v2 R3d-18 DCGAN ViT-B/32 LLaMA GeoMean
0.0

0.5

1.0

RTX A5000

ResNet-50 MobileNet-v2 R3d-18 DCGAN ViT-B/32 LLaMA GeoMean
0.0

0.5

1.0

A10G

ResNet-50 MobileNet-v2 R3d-18 DCGAN ViT-B/32 GeoMean
0.0

0.5

1.0

Xavier NX

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

P
er

fo
rm

an
ce

PyTorch TensorFlow TensorRT Felix

Figure 6. DNN inference performances when using Felix vs. deep learning frameworks (PyTorch, TensorFlow) on three
hardware platforms. The y-axis is the performance of one framework normalized to the best performance across all frameworks
for a network.

their best performance. When these frameworks invoke au-
totuning, it takes ~20 seconds to ~7 minutes to optimize one
network (depending on the GPU architecture and the tensor
operators).

Overall, Felix generates high-performance tensor program
that outperforms off-the-shelf inference frameworks in most
cases, and does so with low tuning overhead due to its effi-
cient gradient descent search technique.

6.2 Felix vs. Ansor-TenSet Search-based Compiler

To answer RQ2, we now compare Felix against a state-of-
the-art search-based tensor program compiler, Ansor-TenSet.
Ansor-TenSet achieves equal or better tuning result than
Ansor in less search time (confirmed in the TenSet paper [39]
and in our preliminary experiments) and is hence a better
baseline.

Figure 7 shows how Felix and Ansor’s best result improves
(latency decreasing, y-axis) over increasing tuning time (in
seconds, x-axis) on three hardware architectures. Figure 7a
additionally shows the minimal and maximal latency among
five runs as a band, where the curve in the band is the
mean latency. While Felix and Ansor eventually converge
to the same or similar performance levels, Felix finds bet-
ter schedules in significantly less tuning time owing to its
gradient-based optimization process. The reason Ansor and

Felix have similar eventual performance improvements is
because both use the same program transformations and
schedule sketch (described in §3.2).
We summarize the speedup of Felix search compared to

Ansor-TenSet in Table 2a. This table compares the search
time for Felix and Ansor-TenSet to reach performance mile-
stones: 90%, 95%, and 99% of the best performance achieved
in the entire search, whichwe call 90%, 95%, and 99% peak per-
formance. On average, Felix reaches 90% peak performance in
3.4× less search time than Ansor, and 95% peak performance
in 2.8× less search time, across the three hardware architec-
tures. DCGAN on A10G is the only case where Felix does not
achieve 99% of Ansor’s best performance (indicated in the
table with a dash), which may not be statistically significant
given the stochasticity of tuning as in our other experiments.

Insight on Felix’s fast convergence. Felix discovers high-
performance program schedules much more early-on than
Ansor-TenSet because Felix’s gradient-based search opti-
mizes the schedules according to its cost model more ef-
ficiently and finds a population of many high predicted-
performance schedules in significantly fewer tuning itera-
tions. Moreover, we find that the cost model does not need
to perfectly reflect the empirical performance of schedules.
If the cost model is a good indicator of performance, some

Felix: Optimizing Tensor Programs with Gradient Descent ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

1.5

1.6

1.7

1.8
ResNet-50

0 5000 10000
0

0.30

0.35

0.40
MobileNet-v2

0 5000 10000 15000
0

7

8

9

10
R3d-18

0 2500 5000 7500
0

0.2

0.4

0.6

DCGAN

0 2000 4000
0

3

4

5
ViT-B/32

0 2000 4000
0

180

200

220

LLaMA

0 2000 4000
0

0.0 0.2 0.4 0.6 0.8 1.0

Tuning time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

L
at

en
cy

(m
s)

(a) RTX A5000

1.4

1.6

ResNet-50

0 5000 10000
0

0.30

0.35

0.40
MobileNet-v2

0 5000 10000 15000
0

5

6

R3d-18

0 2000 4000 6000 8000
0

0.2

0.4

0.6
DCGAN

0 2000 4000
0

3.0

3.5

4.0
ViT-B/32

0 2000 4000
0

175

200

225

LLaMA

0 1000 2000 3000 4000
0

0.0 0.2 0.4 0.6 0.8 1.0

Tuning time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

L
at

en
cy

(m
s)

(b) A10G

16

17

18

ResNet-50

0 2500 5000 7500 10000
0

2.25

2.50

2.75

3.00
MobileNet-v2

0 5000 10000 15000
0

110

120

130
R3d-18

0 2000 4000 6000 8000
0

1.0

1.5

2.0
DCGAN

0 2000 4000
0

20

25

30
ViT-B/32

0 2000 4000
0

0.0 0.2 0.4 0.6 0.8 1.0

Tuning time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

L
at

en
cy

(m
s)

Ansor-TenSet

Felix

(c) Xavier NX

Figure 7. Best performance (shown as network inference latency) vs. search time during the schedule search of Felix and
Ansor-TenSet.

of the high predicted-performance schedules Felix finds will
have high performance in empirical evaluation.

Figure 8 shows how the predicted performance of the pop-
ulation of schedules (y-axis) improves as Felix’s (orange) and
Ansor’s (blue) search technique searches an increasing num-
ber of schedules (x-axis). At 𝑥 = 𝑛, the search technique has
searched 𝑛 schedules [𝑠1, 𝑠2, . . . , 𝑠𝑛] whose predicted perfor-
mances are 𝑝𝑖 := EstmPerf(𝑠𝑖). The blue and orange lines in
the Figure shows the best predicted performance seen among
𝑠𝑖 , i.e., max([𝑝1, 𝑝2, . . . , 𝑝𝑛]) when 𝑥 = 𝑛, and the blue and
orange shaded portion shows the 64th best performance, i.e.,

sorted([𝑝1, 𝑝2, . . . , 𝑝𝑛]) [64] when 𝑥 = 𝑛. The goal of show-
ing the best 64 predicted schedules is to show the spread of
the predicted performance of the search population (closer to
the best is better). We run both search techniques on 3 tensor
subgraphs taken from the set of DNNs we use for our evalu-
ation, including Conv2d (left), Conv3d (middle), and Dense
(right). For a fair comparison, Felix and Ansor have the same
search space of program transformations in each subgraph.
The key takeaway of Figure 8 is that the gradient-based

search technique in Felix finds more schedules with higher
predicted-performance compared to Ansor’s evolutionary

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Yifan Zhao, Hashim Sharif, Vikram Adve, and Sasa Misailovic

Table 2. Tuning speedup of Felix compared to Ansor, measured by how much time Felix and Ansor take to converge to 90%,
95%, and 99% of the best Ansor performance achieved.

(a) Batch size = 1

Network A5000 A10G Xavier NX
peak perf.: 90% 95% 99% 90% 95% 99% 90% 95% 99%

ResNet-50 9.6× 5.2 × 3.3× 7.4× 1.8× 1.1× 6.4× 11.2× 5.9×
MobileNet-v2 12.0× 16.6× 2.9× 1.9× 1.2× 1.3× 2.5× 2.0× 1.5×
R3d-18 4.2× 2.9 × 2.7× 2.2× 1.6× 1.4× 5.8× 7.3× 3.4×
DCGAN 2.4× 2.6 × 1.0× 2.3× 3.7× — 1.2× 1.5× 1.6×
ViT 3.3× 2.9 × 1.8× 3.1× 2.5× 1.0× 3.2× 5.0× 1.3×
LLaMA 3.9× 1.5 × 1.4× 1.0× 0.7× 2.6× — — —
Geomean 5.0× 3.2× 2.0× 2.5× 1.7× 1.4× 3.2× 4.1× 2.3×

(b) Batch size = 16

Network A5000
peak perf.: 90% 95% 99%

ResNet-50 10.9× 11.8× 1.8×
MobileNet-v2 6.4× 6.9× 2.0×
R3d-18 3.1× 1.8× 1.5×
DCGAN 14.7× 7.0× 6.6×
ViT 2.0× 2.8× 3.3×
LLaMA — — —
Geomean 5.8× 4.9× 2.6×

0 2000 4000 6000 8000
0

2

4

6

8

10
Conv2d

0 2000 4000 6000 8000
0

2

4

6

8

10
Conv3d

0 2000 4000 6000 8000
0

2

4

6

8

10
Dense

0 2000 4000 6000 8000
0

2

4

6

8

10
Conv2d

0 2000 4000 6000 8000
0

2

4

6

8

10
Conv3d

0 2000 4000 6000 8000
0

2

4

6

8

10
Dense

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

P
re

di
ct

ed
p

er
fo

rm
an

ce

0.0 0.2 0.4 0.6 0.8 1.0

of schedules searched

0.0

0.2

0.4

0.6

0.8

1.0

Ansor (Evolutionary) Felix (Gradient)

Figure 8. Predicted performance of the candidate schedule
population as the search progresses in Felix and Ansor. The
top row shows earlier tuning iterations close to the beginning
of the tuning session. and the bottom row shows later tuning
iterations close to convergence (both tools’ lines overlap).

search. Felix’s search converges more uniformly than An-
sor’s search, as indicated by the much smaller orange shaded
area (barely visible in the figure) compared to the blue shaded
area, and provides a pool of better candidate schedules to
be evaluated on hardware. The larger blue shaded area for
Ansor shows the randomness in Ansor’s search which may
sometimes find good configurations since it covers a wider
spread over the search space, but is less effective in following
the cost model. Most other tensor operator subgraphs follow
similar convergence patterns for Felix vs. Ansor.

6.3 Single Operator Performance of Felix vs. Other
Tools

Figure 9 shows the performance of search-based compilers
(Felix, Ansor) and manually-optimized libraries (PyTorch
and TensorFlow) for different types of tensor operators on
the RTX A5000 hardware platform. All of these operators are
taken from the DNNs we include in our evaluation. Felix out-
performs PyTorch and TensorFlow on 7 out of 8 types of op-
erators, and delivers similar performance as Ansor on every

Conv2d TConv2d Conv3d Dense BatchMatmul Softmax MaxPool
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

P
er

fo
rm

an
ce

PyTorch TensorFlow Felix Ansor

Figure 9. Single operator performance of Felix, Ansor, and
manually-optimized libraries (PyTorch, TensorFlow) on RTX
A5000. The y-axis is the performance of one framework
normalized to the best performance across all frameworks
for an operator.

type of operator. The only exception is 3D convolution where
both PyTorch and TensorFlow outperform Felix and Ansor.

As discussed in 6.1, Felix usually outperforms off-the-shelf
inference frameworks on small and uncommon neural net-
work layers/operators. The hand-tuned implementation for
3D convolution is quite efficient because its a commonly
occurring tensor operation, hence a significant amount of
manual development and optimization effort has been spent
to optimize it. Moreover, 3D convolutions usually work with
large tensor shapes and is thus easier to parallelize usingman-
ual tuning. However, the performance of 3D convolution in
PyTorch and TensorFlow significantly differs across the eval-
uated hardware platformswhich is because the code has to be
tuned differently to get high performance for each platform.
In contrast, Felix automates the hardware-specific tuning of
tensor operators and does not need any manual tuning.

6.4 Felix vs. Ansor under Different Batch Sizes

To demonstrate that Felix is also effective in bulk inference
scenarios, we now compare Felix against Ansor-TenSet on
the same 6 networks using a input batch size of 16. Figure
10 shows how Felix and Ansor’s best result improves over

Felix: Optimizing Tensor Programs with Gradient Descent ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

14

16

ResNet-50

0 5000 10000

0
2.0

2.5

3.0
MobileNet-v2

0 5000 10000 15000
0

100

120

140

R3d-18

0 2000 4000

0

1.0

1.5

2.0
DCGAN

0 2000 4000
0

15

20

ViT-B/32

0 2000 4000

0

0.0 0.2 0.4 0.6 0.8 1.0

Tuning time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

L
at

en
cy

(m
s)

Ansor-TenSet

Felix

Figure 10. Best performance (network inference latency)
vs. search time during the schedule search of Felix and Ansor-
TenSet. The networks are optimized for RTX A5000 with a
input batch size of 16.

increasing tuning time on RTX A5000. This experiment ex-
cludes LLaMA, as a batch size of 16 with LLaMA requires
more GPU memory for inference than is available on RTX
A5000. Similar to §6.2, Table 2b shows the speedup of Fe-
lix search over Ansor-TenSet for reaching 90%, 95%, and
99% peak performance. In this setting, Felix on average (ge-
omean over the networks) reaches 90% peak performance
in 5.8× less search time than Ansor-TenSet and 95% peak
performance in 4.9× less search time. These results indicate
that Felix provides fast convergence to high-performance
schedules even when the input batch size is increased.

7 Related Work
Automatic tensor program generation.A number of ten-
sor program compilers, including Halide [28], TVM [7], and
Tiramisu [4], provide the capability to define the computa-
tion and the schedule separately. These compilers provide a
schedule language or API to specify optimization primitives,
and then the schedule that includes these optimization prim-
itives is either developer-specified or provided by automatic
search (autotuning). Halide includes three search-based auto-
schedulers [2, 21, 25], based on different tuning techniques,
each of which automatically discovers good schedules. Simi-
larly, TVM has three different tuning systems: AutoTVM [7],
Ansor [38], and MetaSchedule [31]. These auto-schedulers
utilize combinatorial discrete search algorithms, such as ge-
netic algorithm (e.g., in [31, 38]), tree search (e.g., in [2]), or
brute force in a limited search space (e.g., in [25]), to discover
schedules with good performance. These tuning techniques
have also been extended to exploring trade-offs between per-
formance and accuracy of tensor computations, while still

using discrete search algorithms [32, 37]. In contrast to all
of these works, Felix instead applies gradient descent on the
tensor program schedule directly as the search technique,
based on the insight that gradient descent is commonly effi-
cient for smooth functions. While we have shown Felix to
be effective for tensor program optimization, the efficacy of
gradient descent depends on the domain of the problem [29],
and there is no single best optimization algorithm.
Among TVM tuning systems, we used Ansor [38] as our

baseline for comparison, since it outperforms AutoTVM as
shown in their evaluation and now supersedes AutoTVM
in the TVM ecosystem. MetaSchedule supports automatic
sketch generation for new program transformations, and
thus allows the optimizer to easily adapt to the growing
search space. MetaSchedule uses a genetic search algorithm
for optimization and is thus orthogonal to the contribution of
this paper. Importantly, Felix is complementary to these exist-
ing tensor program compilers. While we implement Felix on
top of the Ansor framework, the gradient-based search tech-
niques are also applicable to other optimization systems.

Gradient-based optimization for DNN search problems.
MindMappings [16] introduces a gradient-based algorithm
formapping space search for custom accelerators: optimizing
schedule parameters involved in mapping a tensor algorithm
to custom accelerators, such as data tile size, to improve
performance. MindMappings trains a differentiable surro-
gate cost model from the schedule parameters directly to
the estimated cost, and applies gradient descent on the sur-
rogate. The cost model is tied to the schedule parameters
of the specific operator. Thus unlike Felix, for every type
of operator, MindMapping has to collect a new dataset and
train a separate cost model, since the schedule parameters
change significantly across operators (e.g., Conv2d has differ-
ent loop tiling and loop ordering parameters from Matmul).
This process is time-consuming and requires manual efforts.
Felix instead uses a single pretrained cost model to opti-
mize all tensor operators fully automatically. As a second
distinction, the search space of MindMappings is tailored to
programmable accelerators with parameters such as the per-
centage of banks allocated to each tensor, and does not apply
to pre-existing GPUs and CPUs. Finally, MindMappings is
not a tensor compiler (no code generation capabilities, no em-
pirically measured costs on hardware), while Felix produces
CUDA code (using TVM) that runs on commodity GPUs.
Gradient techniques are routinely used for optimization

problems, such as DNN training or hyperparameter tuning.
While gradient techniques are mostly applied to optimization
problems that are continuous and differentiable by formula-
tion, some techniques relax discrete optimization problems
into continuous ones and apply gradient techniques to re-
place discrete search. DARTS [22] is a neural architecture
search algorithm which relaxes a discrete set of candidate
architectures into a continuous space, and uses gradient

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Yifan Zhao, Hashim Sharif, Vikram Adve, and Sasa Misailovic

descent to optimize network architecture and weights simul-
taneously. SSL [35] optimizes structured pruning choices in
DNNs by relaxing discrete masks over DNN weights into
continuous ones and optimize these masks by gradient de-
scent. Although these techniques also create differentiable
optimization problems from discrete ones, the objective func-
tions are often already analytical expressions that are readily
differentiable after some hand-written mathematical refor-
mulation of the problem. Felix is unique in that it automati-
cally creates symbolic expressions for program features and
converts these to differentiable counterparts for optimization
using gradient descent.
Automatic differentiation.Automatic differentiation (AD)
is a technique that automatically generates gradients for
a given program. All deep-learning frameworks that allow
training provideAD capability onDNNs, such as PyTorch [26],
TensorFlow [1], and MXNet [6]. A Halide scheduler [21] au-
tomatically derives gradients for image processing pipelines
developed in Halide. General AD frameworks, such as En-
zyme [24], can derive gradients at the LLVM IR level. These
AD frameworks generate gradients for a given program
where the program itself represents an objective function to
be optimized with regard to its inputs. Thus, these systems
have entirely different goals from Felix, which generates the
gradients of the schedule parameters of the given program to
optimize its execution.

8 Conclusion
We present Felix, a novel gradient-based compiler optimiza-
tion framework for tensor-based programs. We show how
to create differentiable space of program transformation
schedules and use gradient descent to find high-performance
schedules. The novel aspects of Felix optimization algorithm
are the careful continuous relaxation of the space of sched-
ules and the generation of a differentiable cost function,
that is amenable to optimization with gradient descent. Our
evaluation shows that the efficient gradient-based search
in Felix can quickly find better optimized tensor programs
than those offered by PyTorch, TensorFlow, and TensorRT.
Moreover, we show the benefits of Felix over state-of-the-art
evolutionary search: it generates high-performing programs
significantly faster than TVM Ansor. Our evaluation demon-
strates that Felix can be used widely, across commodity GPUs
from server, desktop, and resource-constrained edge devices.
We believe that the main idea behind Felix – optimizing

computation graphs by variable relaxation and numerical
optimization – is general and can be implemented on top of
other tensor compilers that operate on computation graphs
(e.g. Halide [28], MLIR [20], TACO [18], Tiramisu [4]). We
see our approach as the first step toward gradient-based
optimization for a broader class of programs in general pro-
gramming languages, with more complicated cost features
and control flow.

Acknowledgements
We thank the anonymous reviewers and our shepherd Albert
Cohen for their comments. This research was supported in
part by the National Science Foundation (Grants No. CCF-
1846354, CCF-2217144, CCF-2313028).

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng

Chen, Craig Citro, Gregory S. Corrado, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Ian J. Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Józefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga,
Sherry Moore, Derek Gordon Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul A.
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda B. Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. Tensorflow: Large-scale machine learning
on heterogeneous distributed systems. CoRR, abs/1603.04467, 2016.

[2] Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-
Mao Li, Michaël Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fata-
halian, Frédo Durand, and Jonathan Ragan-Kelley. Learning to opti-
mize halide with tree search and random programs. ACM Transactions
on Graphics (TOG), 38, 2019.

[3] Riyadh Baghdadi, Massinissa Merouani, Mohamed-Hicham Leghet-
tas, Kamel Abdous, Taha Arbaoui, Karima Benatchba, and Saman P.
Amarasinghe. A deep learning based cost model for automatic code
optimization. CoRR, abs/2104.04955, 2021.

[4] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del
Sozzo, Abdurrahman Akkas, Yunming Zhang, Patricia Suriana, Shoaib
Kamil, and Saman Amarasinghe. Tiramisu: A polyhedral compiler
for expressing fast and portable code. In 2019 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), 2019.

[5] Swarat Chaudhuri and Armando Solar-Lezama. Smooth interpretation.
ACM Sigplan Notices, 45(6), 2010.

[6] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,
Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet:
A flexible and efficient machine learning library for heterogeneous
distributed systems. CoRR, abs/1512.01274, 2015.

[7] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen Shen, Eddie Q.
Yan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind
Krishnamurthy. TVM: end-to-end optimization stack for deep learning.
CoRR, abs/1802.04799, 2018.

[8] NVIDIA Corporation. NVIDIA A10 Tensor Core GPU. https://www.
nvidia.com/en-us/data-center/products/a10-gpu/, 2024.

[9] NVIDIA Corporation. NVIDIA Jetson Xavier. https:
//www.nvidia.com/en-us/autonomous-machines/embedded-
systems/jetson-xavier-series/, 2024.

[10] NVIDIA Corporation. NVIDIA RTX A5000 Graphics Card. https:
//www.nvidia.com/en-us/design-visualization/rtx-a5000/, 2024.

[11] Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. L2 regu-
larization for learning kernels. CoRR, abs/1205.2653, 2012.

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for
image recognition at scale. CoRR, abs/2010.11929, 2020.

[13] Hugging Face. Transformer Supported Frameworks (2023). https:
//huggingface.co/docs/transformers/index#supported-frameworks.

[14] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Learning spatio-
temporal features with 3d residual networks for action recognition.
CoRR, abs/1708.07632, 2017.

https://www.nvidia.com/en-us/data-center/products/a10-gpu/
https://www.nvidia.com/en-us/data-center/products/a10-gpu/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://www.nvidia.com/en-us/design-visualization/rtx-a5000/
https://www.nvidia.com/en-us/design-visualization/rtx-a5000/
https://huggingface.co/docs/transformers/index#supported-frameworks
https://huggingface.co/docs/transformers/index#supported-frameworks

Felix: Optimizing Tensor Programs with Gradient Descent ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016.

[16] Kartik Hegde, Po-An Tsai, Sitao Huang, Vikas Chandra, Angshuman
Parashar, and Christopher W Fletcher. Mind mappings: enabling
efficient algorithm-accelerator mapping space search. In ASPLOS,
2021.

[17] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2014.

[18] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and
Saman Amarasinghe. The tensor algebra compiler. Proc. ACM Program.
Lang., 1(OOPSLA), oct 2017.

[19] Paolo Sylos Labini, Marco Cianfriglia, Damiano Perri, Osvaldo Gervasi,
Grigori Fursin, Anton Lokhmotov, Cedric Nugteren, Bruno Carpentieri,
Fabiana Zollo, and Flavio Vella. On the anatomy of predictive models
for accelerating gpu convolution kernels and beyond. ACM Trans.
Archit. Code Optim., 18(1), jan 2021.

[20] Chris Lattner, Jacques A. Pienaar, Mehdi Amini, Uday Bondhugula,
River Riddle, Albert Cohen, Tatiana Shpeisman, Andy Davis, Nicolas
Vasilache, and Oleksandr Zinenko. MLIR: A compiler infrastructure
for the end of moore’s law. CoRR, abs/2002.11054, 2020.

[21] Tzu-Mao Li, Michaël Gharbi, Andrew Adams, Frédo Durand, and
Jonathan Ragan-Kelley. Differentiable programming for image pro-
cessing and deep learning in halide. ACM Trans. Graph., 37(4), 2018.

[22] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: differentiable
architecture search. CoRR, abs/1806.09055, 2018.

[23] Charith Mendis, Cambridge Yang, Yewen Pu, Saman Amarasinghe, and
Michael Carbin. Compiler auto-vectorization with imitation learning.
Advances in Neural Information Processing Systems, 32, 2019.

[24] William Moses and Valentin Churavy. Instead of rewriting foreign
code for machine learning, automatically synthesize fast gradients. In
Advances in Neural Information Processing Systems, volume 33, 2020.

[25] Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet, Jonathan Ragan-
Kelley, and Kayvon Fatahalian. Automatically scheduling halide image
processing pipelines. ACM Trans. Graph., 35(4), jul 2016.

[26] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information processing sys-
tems, 32, 2019.

[27] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised rep-
resentation learning with deep convolutional generative adversarial
networks. CoRR, abs/1511.06434, 2015.

[28] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, Frédo Durand, and Saman Amarasinghe. Halide: A language
and compiler for optimizing parallelism, locality, and recomputation
in image processing pipelines. In ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, 2013.

[29] R. Salomon. Evolutionary algorithms and gradient search: similarities
and differences. IEEE Trans. on Evolutionary Computation, 2(2), 1998.

[30] Mark Sandler, AndrewG. Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. Inverted residuals and linear bottlenecks:
Mobile networks for classification, detection and segmentation. CoRR,
abs/1801.04381, 2018.

[31] Junru Shao, Xiyou Zhou, Siyuan Feng, Bohan Hou, Ruihang Lai,
Hongyi Jin, Wuwei Lin, Masahiro Masuda, Cody Hao Yu, and Tianqi
Chen. Tensor program optimization with probabilistic programs. In
Advances in Neural Information Processing Systems, volume 35, 2022.

[32] Hashim Sharif, Yifan Zhao, Maria Kotsifakou, Akash Kothari, Ben
Schreiber, Elizabeth Wang, Yasmin Sarita, Nathan Zhao, Keyur Joshi,
Vikram S Adve, Sasa Misailovic, and Sarita V Adve. Approxtuner: a
compiler and runtime system for adaptive approximations. In Proceed-
ings of the 26th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, 2021.

[33] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-
Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric
Hambro, Faisal Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. CoRR, abs/2302.13971, 2023.

[34] Yao Wang, Xingyu Zhou, Yanming Wang, Rui Li, Yong Wu, and Vin
Sharma. Tuna: A static analysis approach to optimizing deep neural
networks. CoRR, abs/2104.14641, 2021.

[35] WeiWen, ChunpengWu, YandanWang, Yiran Chen, and Hai Li. Learn-
ing structured sparsity in deep neural networks. CoRR, abs/1608.03665,
2016.

[36] Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt,
Zachary Tatlock, and Pavel Panchekha. egg: Fast and extensible equal-
ity saturation. Proc. ACM Program. Lang., 5(POPL), January 2021.

[37] Yifan Zhao, Hashim Sharif, Peter Pao-Huang, Vatsin Ninad Shah, Arun
Narenthiran Sivakumar, Mateus Valverde Gasparino, Abdulrahman
Mahmoud, Nathan Zhao, Sarita Adve, Girish Chowdhary, Sasa Mis-
ailovic, and Vikram Adve. Approxcaliper: A programmable framework
for application-aware neural network optimization. In Proceedings of
Machine Learning and Systems 5, 2023.

[38] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao
Yu, Ameer Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik
Sen, Joseph E. Gonzalez, and Ion Stoica. Ansor: Generating high-
performance tensor programs for deep learning. In USENIX Conference
on Operating Systems Design and Implementation, OSDI’20, USA, 2020.

[39] Lianmin Zheng, Ruochen Liu, Junru Shao, Tianqi Chen, Joseph E
Gonzalez, Ion Stoica, and Ameer Haj Ali. Tenset: A large-scale program
performance dataset for learned tensor compilers. In NeurIPS; Datasets
and Benchmarks Track, 2021.

[40] Tao Zhuang, Zhixuan Zhang, Yuheng Huang, Xiaoyi Zeng, Kai Shuang,
and Xiang Li. Neuron-level structured pruning using polarization
regularizer. In Advances in Neural Information Processing Systems,
volume 33, 2020.

	Abstract
	1 Introduction
	2 Problem Statement
	3 Felix Design
	3.1 Computation Graph Partitioning
	3.2 Symbolic Schedule and Symbolic Program Generation
	3.3 Feature Formula Extraction and Rewriting
	3.4 Optimizing Schedules with Gradient Descent
	3.5 Full Graph Tuning
	3.6 Felix Programming Interface

	4 Implementation
	5 Experimental Methodology
	6 Evaluation
	6.1 Felix vs. Off-the-shelf Inference Frameworks
	6.2 Felix vs. Ansor-TenSet Search-based Compiler
	6.3 Single Operator Performance of Felix vs. Other Tools
	6.4 Felix vs. Ansor under Different Batch Sizes

	7 Related Work
	8 Conclusion
	References

