
To Seed or Not to Seed?
An Empirical Analysis of Usage of Seeds for

Testing in Machine Learning Projects
Saikat Dutta, Anshul Arunachalam, Sasa Misailovic

University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
{saikatd2,anshula2,misailo}@illinois.edu

Abstract—Many Machine Learning (ML) algorithms are inher-
ently random in nature – executing them using the same inputs
may lead to slightly different results across different runs. Such
randomness makes it challenging for developers to write tests for
their implementations of ML algorithms. A natural consequence
of randomness is test flakiness – tests both pass and fail non-
deterministically for same version of code.

Developers often choose to alleviate test flakiness in ML
projects by setting seeds in the random number generators used
by the code under test. However, this approach commonly serves
as a “workaround” rather than an actual solution. Instead, it
may be possible to mitigate flakiness and alleviate the negative
effects of setting seeds using alternative approaches.

To understand the role of seeds and the feasibility of alternative
solutions, we conduct the first large-scale empirical study of the
usage of seeds and its implications on testing on a corpus of 114
Machine Learning projects. We identify 461 tests in these projects
that fail without seeds and study their nature and root causes. We
try to minimize the flakiness of a subset of 42 identified tests using
alternative strategies such as tuning algorithm hyper-parameters
and adjusting assertion bounds and send them to developers. So
far, developers have accepted our fixes for 26 tests.

We further manually analyze a subset of 56 tests and study
various characteristics such as the nature of test oracles and how
the seed settings evolve over time. Finally, we provide a general
set of recommendations for both researchers and developers in
the context of setting seeds in tests.

I. INTRODUCTION

The extensive success of Machine Learning has led to its
widespread adoption across several critical domains such as
autonomous driving, natural language processing, and medical
diagnosis. These domains implement applications that utilize
different ML algorithms such as Deep Learning [31], Reinforce-
ment Learning [43], and Probabilistic Programming [32, 35].
Consequently, this has led to the development of a rich
ecosystem of Machine Learning libraries and tools that solve
tasks at varying levels of specializations. However, bugs in
the implementation of these tools can lead to catastrophic
consequences for the end users, often amounting to loss of
lives and property [33, 68].

Testing implementations of ML algorithms is challenging.
Many ML algorithms are inherently random in nature – multiple
executions of the algorithm with same inputs and configurations
may often lead to varying results. Moreover, the lack of proper
test oracles further complicates the testing scenario. A natural
consequence of randomness is test flakiness, i.e., when a test

passes and fails non-deterministically for the same version of
code. Test flakiness undermines the reliability of test results and
puts additional burden on developers for investigating test fail-
ures (even in absence of bugs). Flakiness makes it difficult for
developers to distinguish real test failures due to programming
errors (bugs) from noisy executions due to randomness.

To minimize test flakiness, developers need to make vari-
ous non-trivial choices such as choosing the optimal hyper-
parameters for the ML algorithm under test [24] and a
reasonable assertion bound [26]. However, without a systematic
approach, it is hard for a developer to get these settings right.
Hence, to mitigate flakiness, they tend to set the seeds for the
random number generators that are used by the code under test.
Setting the seeds can make the test execution deterministic and
alleviate the developer from dealing with randomness. However,
it is unknown whether this is always the best approach or if
there are alternative ways to mitigate flakiness. Setting seeds
can also lead to unintended consequences. For instance, fixing
the seed(s) limits the sequence of computations exercised by
the code under test. Hence, developers may potentially miss
bugs in code under test that are triggered by other sequences,
thus reducing the fault-detecting effectiveness of the test [25].

Prior work [25] has shown that algorithmic randomness is
a major contributor to flakiness in ML projects. Further, it is
known that tests for ML algorithms (prone to flaky failures)
are typically more time-consuming than other tests in the suite,
often consuming more than 80% of test time [24]. This makes
it important to study such tests – and the role of seeds – in
greater depth and scale than previous works.
Our Work. In this work, we conduct the first large-scale and
systematic study of the usage of seeds (for random number
generators) and its implications for testing in Machine Learning
projects. We study several research questions and provide
insights that can be useful for both developers and researchers:
1) How prevalent are tests that fail non-deterministically without
seeds and how often they fail? (Section IV), 2) Can we use
alternative strategies to mitigate flakiness instead of setting
seeds for such tests? (Section V), and 3) What are the common
characteristics of these failing tests? (Section VI).

We conduct an empirical study on a corpus of 114 Python
projects from the Machine Learning domain. We develop a tool,
XSEED, which automatically installs each project, runs each
test a pre-specified number of times (500 in our evaluation)

in two modes: with seeds and without seeds, and generates
a report summarizing the failed tests, the different types of
failures, and the failure rates. Overall, we find 461 unique tests
across 32 projects that fail when seeds are removed but always
pass when seeds are present.

Although developers commonly try to mitigate the effects of
randomness by setting seeds [25], this is often a “workaround”
rather than an actual solution. Instead, it may be possible to
limit randomness (and test flakiness) and alleviate the negative
effects of setting seeds using statistical techniques. To evaluate
this intuition, we select a subset of tests that only fail when
seeds are removed and attempt to fix them, i.e., minimize their
flakiness, using alternative techniques such as tuning the hyper-
parameters used for the algorithm under test [24], adjusting
the bounds of the assertions in the test [26], or refactoring the
test/assertion in other ways. We sent 16 Pull Requests and 7
Issues (for cases where we were unable to fix the test) to the
developers. These covered a total of 42 tests. At the time of
writing this paper, developers have accepted our changes or
fixed 26 tests, while the rest are pending resolution.

We further analyze a subset of 56 tests, discuss and categorize
various characteristics such as nature of test oracles, source(s) of
randomness, evolution of seeds relative to the tests, and how the
seeds are set. We also provide a general set of recommendations
based on our experience for using (or not using) seeds (more
details in Section VI):
• Use fixed seeds only for tests checking for exact reproducibil-

ity of some functionality in their code.
• Randomize and log the seeds in other tests for non-

deterministic algorithms to allow both reproducibility of
failures and diverse executions.

• Use Test Re-runs on failure instead of setting seeds to
mitigate random failures.

• Determine optimal test settings such as hyper-parameters
for the algorithm(s) under test and/or assertion bounds to
minimize flakiness.

Finally, we discuss the impact of setting (or not setting) seeds
and alternative fixes on the fault-detecting ability of tests on
several examples (Sections VII-B,VII-C).
Contributions. We make the following contributions:
• We conduct the first large-scale empirical study of the usage

of seeds in tests in 114 Machine Learning projects.
• We analyze the tests that fail without seeds and study

important aspects related to the nature of such tests and
the root causes for flakiness.

• We apply various alternative strategies (instead of setting
seeds) to fix the root causes for 42 tests and mitigate flakiness.

• We provide several insights and implications related to usage
of seeds and a general set of recommendations for both
developers and researchers.
Our source code and replication package are available at

https://github.com/uiuc-arc/xseed.

II. BACKGROUND

We describe previous research on flaky tests in Machine
Learning projects.

A. Common Test Structure in Machine Learning Projects

1 def test_MLAlgo():
2 [[setup code]]

3 trainer = MLAlgo(P1 = v1,P2 = v2,. . .,Pk = vk)

4 trainer.train()
5 metrics = trainer.compute_metrics()
6 for i in range(len(metrics)):

7 assert metrics[i] >= expected[i]

Listing 1: Common Test Pattern in ML projects

The tests that developers write for testing the correctness
of their implementations of stochastic Machine Learning
algorithms typically emulate the training (or fitting) process.
Listing 1 presents the common structure of such tests, pre-
viously identified by Dutta et al. [24]. In this test, Line 2
contains setup code that performs basic initialization steps
such as loading data-set(s), creating the execution environment,
or setting up other configurations (such as seeds). Line 3
initializes the Machine Learning algorithm (MLAlgo) using a
set of values (v1, . . . , vk) for arguments (P1, . . . , Pk) known as
hyper-parameters. These hyper-parameters influence both the
accuracy and performance of the ML Algorithm. Lines 4-5 then
perform the training step and compute one or more accuracy
or performance metrics. Lines 6-7 check if the computed
metrics (metrics[i]) are greater or equal to expected values
(expected[i]). In our study, we also find that most tests
exhibit similar structure.

B. Minimizing execution time of tests for ML Algorithms

Selecting optimal hyper-parameter values for ML algorithms
is non-trivial. Quite often developers end up being conservative
– they execute the ML algorithm for long enough cycles so
that the test is highly likely to pass (less flaky). However, this
makes the test more expensive to execute and increases the
overall build time. TERA [24] is an approach to optimize such
tests (i.e., reduce their execution time) without making the test
more flaky or reducing its fault-detecting ability.

TERA formulates this trade-off of test execution time and its
flakiness as a Stochastic Optimization problem over the space
of hyper-parameter values. In particular, TERA uses Bayesian
Optimization – an instance of Stochastic Optimization, for
their solution approach. TERA constructs an objective function
thta encodes the optimization problem that it needs to solve.
More formally, given a test T : ∅ 7→ {0, 1} and algorithm
hyper-parameters θ = (P1, ..., Pk), TERA transforms the test
to an equivalent variant: T ′ : θ 7→ {0, 1}. TERA defines a
function TPP : (T ′,θ) 7→ [0, 1] that computes the passing
probability of T ′ when run with given hyper-parameters θ. It
also defines function Time : (T ′,θ) 7→ R+ that returns the
execution time of the test using the selected hyper-parameters.
Finally, it optimizes the following objective function:

θ∗ = argmin
θ∈U1×...×Uk

Time(T ′,θ)

s.t. TPP(T ′,θ) ≥ α

where Ui is the domain of Pi, i ∈ 1, . . . , k and α is the user
provided threshold that specifies the minimum test passing

https://github.com/uiuc-arc/xseed

probability. The authors apply TERA on 160 tests across 15
ML projects and obtain a geo-mean run-time improvement of
2.23x for α = 0.99.

C. Fixing Flaky Tests in Machine Learning Projects

An alternative way to fix the flaky tests is by adjusting the
assertion bounds, such as the expected values in Listing 1,
Line 6. FLEX [26] is an approach for systematically selecting
such bounds using techniques from statistical extreme value
theory (EVT). EVT is a popular approach used for modeling
extreme events such as floods or market crashes. EVT models
the tail distribution of the observed samples. The user then
queries the tail distribution to derive extreme values such as
99th or 99.99th percentile. The crucial property of EVT is that,
in the limit, the tail distribution converges to a specific group
of probability distributions.

III. METHODOLOGY

A. Selection of projects

For our study we require projects that test various
stochastic/non-deterministic algorithm implementations. Such
projects are more likely to use seeds during testing to avoid
flakiness. Hence, we select projects from the domains of
Machine Learning and Probabilistic Programming. For selecting
projects in these domains, we follow a similar methodology as
Dutta et al. [26]. We select two Machine Learning frameworks:
PyTorch [50, 56] and TensorFlow [63], and four Probabilistic
Programming libraries: Pyro [12], NumPyro [49], TensorFlow-
Probability [19], and PyMC3 [53]. We search for Python
projects that depend on these six main libraries. For this task,
we use GitHub’s API to search for the dependent projects. We
only select projects that can be installed as a Python library
(known as “packages”) and have at least 10 stars on GitHub.
This allows us to eliminate toy projects and select projects
that are more likely to have good test suites, relatively more
popular, and have an active developer base. To limit our study
to a reasonable number of projects, we only select top 100
dependent projects per library for our study.

Using this methodology, we selected 305 unique projects.
We use a general installation script to install these Python
libraries [26]. This script installs a general set of system-
level packages. It processes the project files and creates a
list of required dependencies for the project. It then creates a
virtual Python environment using Anaconda [18] and installs
the project and all its dependencies. However, in many cases
the installation may fail due to incomplete specifications in
the project files. For each project, we try to install the project
using this script and check if we can run the tests successfully
using pytest. Overall, we were able to run 114 projects.

B. Running and detecting flaky tests

In this work we aim to study tests that are affected by the
seeds set for various random number generators that are used by
the code under test. To find such tests, we run the existing tests
in each project in two modes: with seeds (using the original

version of the test) and without seeds (by removing all seed-
setting statements). We then identify the tests that always pass
when run with seeds but fail (at least once) without seeds.

To automate this task, we developed a tool: XSEED. XSEED
takes as input the GitHub slug of the project, the number of
times (N) to run each test, the number of threads to run in
parallel (K), and a timeout (T) for executing the entire test-suite.
XSEED then performs the following tasks. XSEED installs
the project in a new Conda environment using the setup script
described in Section III-A. It runs each test N times in the
project using pytest and collects the test execution logs.
XSEED parallelizes the runs by using K threads, with each
thread running all the tests in the default order. XSEED uses
the specified timeout T to limit the maximum allowable running
time for the test-suite (i.e., for a single thread).

XSEED then searches for all seed-setting code in the project
and replaces them with pass (equivalent of skip in Python). In
particular, XSEED searches for the API calls across various
libraries that provide random number generators. Some libraries
like PyTorch and TensorFlow provide multiple APIs to set seeds.
Such APIs may also change across library versions. Hence,
XSEED searches for invocations to all such APIs in the project.
Table I presents the list of all APIs used by XSEED. XSEED
then re-runs the tests using the same settings but the seeds
removed and collects the execution logs.

XSEED parses the test execution logs from the runs with
and without seeds and returns a summary report containing the
list of tests that failed and frequency of each kind of failure
(e.g., AssertionError, ValueError) per test per project.
We use this report for further analyses.

TABLE I: Seed Setting APIs
Library API

Numpy random.seed
TensorFlow random.set_seed
TensorFlow set_random_seed
TensorFlow random.set_random_seed
TensorFlow compat.v1.random.set_random_seed
PyTorch manual_seed
PyTorch cuda.manual_seed_all
PyTorch seed
Random (Python) seed

C. Analyzing results

We select a subset of tests that always pass with seeds but
fail at least once without seeds for manual analysis. For each
selected test, we try to identify various characteristics such
as the source of randomness, nature of the code under test,
and how the seeds are set. We also study historical features
of each test such as when were the seed(s) set relative to the
test creation date and how often were the test settings (such as
seeds or assertions) changed by the developers. For each studied
characteristic, we determine appropriate categorizations.

For this analysis, one author independently analyzes each test
and determines appropriate categorizations. Then another author
double-checks each test and its categorizations to mitigate any
inaccuracies. Finally, the authors discuss together and collate all
the results. We discuss the results of this analysis in Section VII.

D. Fixing failing tests

We select a subset of tests that never fail when the seeds
are set but fail at least once when the seeds are removed. We
try to fix such tests using alternative strategies:

1) Adjusting Hyper-parameters: The flakiness of a test can be
minimized by tuning the hyper-parameters of the stochastic
ML algorithm under test. We manually identify such hyper-
parameters for the algorithm under test, select appropriate
value ranges for each, and run TERA to find optimal
values that minimizes the flakiness.
TERA originally uses minimization of the test execution
time as the objective function. We adopt their approach
to minimize the flakiness of the test (instead of execution
time). We adjust the objective function used by TERA as:

θ∗ = argmin
θ∈U1×...×Uk

(1− TPP(T,θ))

2) Changing Assertion Bounds: A test can also be fixed by
adjusting the range of acceptable values used in the test
for comparing the end-result – the assertion bound. For
this strategy, we use FLEX [26] to fix the flaky tests that
we find. We use this strategy either when no suitable
hyper-parameters are available or when TERA fails to find
suitable hyper-parameters that can reduce the flakiness to
an acceptable level.

3) Refactoring the Assertion or Test: In some cases, the
test may be fixed by refactoring the assertion (other than
changing the bounds). For instance, developers may use
exact equality checks in their assertions that are only likely
to pass when using fixed seeds. These tests can be fixed
by refactoring the assertion to instead check whether the
results fall into some bounded range.
The test may also be fixed by refactoring the test in other
ways such as changing a non-deterministic input for a
model/algorithm into a fixed input.

4) Fix Code under Test: Removing the seeds may also reveal
a bug in the code under test. In these scenarios, we need
to debug and determine fixes based on the context.

If we are able to fix the test using one of the strategies
discussed above and minimize the flakiness to an acceptable
level (e.g., < 1%), we send a pull request to the developers.
Otherwise, we send an issue (bug report) to discuss possible
solutions with the developers. For each project, we initially
start by sending one pull request or issue for a single test to
gauge developer interest and not bother them with multiple
requests if they are not willing to accept such changes. If we
get a positive response, we raise further pull requests/issues for
remaining tests in the project (if any). For each case, we provide
them additional information regarding how we found the flaky
test, how we fixed it, and how many times we ran the test to
verify the fix. In each case, we also discuss with developers
if they are willing to remove the original seed settings. If
developers agree, we update the pull request accordingly and
also incorporate additional suggestions they provide.

E. Research Questions

We address the following research questions in this work.
RQ1: How many and how often do tests fail without seeds?
RQ2: What kind of assertions are used in the failing tests?
RQ3: How do we fix the tests to mitigate the (flaky) test failures?
RQ4: How do developers respond to our fixes?

We address RQs 1-2 in Section IV and RQs 3-4 in Section V.

F. Experimental Setup

We run all experiments on Azure machines (Standard_-
F32s_v2 configuration) with 3.4GHz Xeon CPUs with 32
cores and 64GB memory. For each project, we run XSEED
with 20 threads (K) in parallel. We run each test-suite 500
times (N) with a timeout of one hour (T) for each complete
test-suite run.

We run TERA to find optimal hyper-parameter values to
minimize flakiness for several tests. For TERA’s convergence
tests we use a threshold of 0.1 for the Geweke Diagnostic,
maximum iterations of 500, and batch sizes of 30. For the
optimization, we set the maximum iterations at 5000. We use
the tool implementation provided by the authors [67].

We also run FLEX to find assertion thresholds to fix the
flaky tests, where applicable. We use similar experiment
settings as the authors with 50 MIN_TAIL_SAMPLES and
0.05 SIGNIFICANCE_LEVEL. We use the tool implementation
provided by the authors [29].

IV. EMPIRICAL RESULTS

A. RQ1: Test behavior without seeds

We run the tests in 114 projects both with and without all
seed-setting code using XSEED (Section III-B). Out of these,
in 30 projects the tests timed-out. We exclude those projects
from our study and use the results from the remaining 84
projects. Table II presents the details of results for a subset of
these projects. Each row of this table represents one project.
Column Project is the name of the project. Column #Tests is
the number of tests in each project. Column Total Failures is
the total number of tests that failed (at least once out of 500)
in the project with or without seeds. Sub-column ws is the
number of failed tests when run with seeds. Sub-column wos
is the number of failed tests when run without seeds. Sub-
column wos-uniq is the number of tests that always passed
with seeds but failed at least once with seeds. Table II only
presents the results of projects with at-least one such failing
test. Overall, there are 32 such projects. In 52 projects, we did
not find any additional test failures when seeds are removed.

Columns 6-10 present the failure rate statistics for tests
in wos-uniq category. Column [0%, 5%) is the number of
tests with failure rate between 0-5 (exclusive)%. Similarly,
columns [5%, 10%), [10%, 50%), and [50%, 100%) are the
number of tests with failure rates of 5-10%,10-50%, and 50-
100% respectively. Column 100% is the number of tests with
a failure rate of 100%. The second last row presents the totals
per column for 32 projects. The last row presents the summary
for all 84 projects that did not time-out. Columns 6-10 in last

TABLE II: Running Tests With and Without Seeds

Project #Tests Total Failures [0%, 5%) [5%, 10%) [10%, 50%) [50%, 100%) 100%ws wos wos-uniq

Accenture/AmpliGraph 86 11 11 8 3 1 1 1 2
quantumlib/Cirq 10101 27 49 22 3 0 11 7 1
GPflow/GPflow 1003 0 13 13 13 0 0 0 0
ziatdinovmax/GPim 7 0 1 1 0 0 0 0 1
google/TensorNetwork 9224 37 186 149 7 1 4 0 137
SeldonIO/alibi-detect 1166 12 34 25 18 2 5 0 0
bambinos/bambi 88 16 33 17 15 2 0 0 0
pytorch/captum 769 0 102 102 23 9 31 30 9
thinkingmachines/christmAIs 32 5 5 1 1 0 0 0 0
autorope/donkeycar 65 3 5 2 2 0 0 0 0
google/dopamine 137 11 13 2 0 0 0 0 2
RaRe-Technologies/gensim 0 12 13 4 2 0 2 0 0
tensorflow/graphics 2200 17 18 1 0 0 0 0 1
learnables/learn2learn 57 6 1 1 1 0 0 0 0
magenta/magenta 354 4 6 2 2 0 0 0 0
Unity-Technologies/ml-agents 36 17 18 1 1 0 0 0 0
uber/orbit 246 0 25 25 0 0 0 0 25
josejimenezluna/pyGPGO 13 0 1 1 0 1 0 0 0
quantopian/pyfolio 80 8 9 1 0 0 1 0 0
exoplanet-dev/pymc3-ext 93 6 11 5 4 1 0 0 0
pymc-devs/pymc4 1334 20 24 4 4 0 0 0 0
jettify/pytorch-optimizer 346 0 25 25 23 1 1 0 0
tensorflow/ranking 502 23 24 2 0 0 0 0 2
refnx/refnx 227 6 16 10 1 0 0 0 9
datamllab/rlcard 208 5 6 2 1 0 0 0 1
YosefLab/scvi-tools 69 4 5 1 1 0 0 0 0
snorkel-team/snorkel 250 22 32 10 2 4 3 1 0
danielegrattarola/spektral 90 7 4 2 1 0 1 0 0
autonomio/talos 8 3 3 1 1 0 0 0 0
explosion/thinc 21 1 4 4 0 0 0 0 4
EpistasisLab/tpot 7 0 1 1 0 0 0 0 1
lmcinnes/umap 139 1 17 16 14 1 1 0 0

Total/Avg (32 projects) 28958 284 715 461 143 23 61 39 195

Overall (84 projects) 43783 1800 2226 461 236 49 82 54 1805

row present the breakdown of all failing tests without seeds
(2226).

Overall, we observe that 1800 tests fail when run with seeds
whereas 2226 tests fail when seeds are not used across all 84
projects. In the smaller subset of 32 projects, the number of
such tests are 284 and 715 respectively. 461 tests fail in these
projects when the seeds are removed but always pass with
seeds. Out of these tests, 195 tests consistently fail (i.e., 500
failures out of 500 runs) whereas 266 tests are flaky (i.e., they
non-deterministically pass or fail). Out of the failing tests, 227
of them have a failure rate of less than 50% whereas 39 of
them have a failure rate of more than 50% (but less than 100%).
These results show that a significant number of tests depend
on seeds set in their random number generators to control the
randomness during testing and avoid test failures.
Common Failure Types. We observe that the majority of
tests fail due to Assertion Error (394 out of 461), which
is expected since most of these tests contain approximate
assertions that compare the result(s) of non-deterministic
computations against a fixed value or range. When the
seeds are removed, such assertions are more likely to fail.
Other common failure types include ValueError(40) and
FileNotFoundError(17). We present a detailed analysis of
the tests that fail due to assertion errors in Section VI.
Tests with 100% failure rates. We observe that 195 tests fail
100% of the time across 12 projects. We investigate a subset
of such tests and determine the most common causes:
• Exact reproducibility: Some tests check if two successive

calls to the same/similar API produce the exact same
result when starting from the same seed. Such tests are
intended to test whether certain computations that depend
on random number generators are reproducible.
Listing 2 shows an example of such a test in google/Ten-
sorNetwork. TensorNetwork [34, 57] is a library that pro-
vides implementations of high dimensional data-structures
(called Tensor Networks) used in domains like quantum
mechanics. TensorNetwork provides a wrapper API for
backends like Numpy so that it can handle custom data
types defined in TensorNetwork. In Listing 2, Line 2
initializes the Numpy backend. Lines 3 and 4 then make
two successive calls to the randn API to create a random
matrix of size 4× 4 for the specified data type (dtype).
Both use the same seed (10). Line 5 checks whether
two matrices are close up to a certain precision level.
The randn API internally calls Numpy random number
generator. Hence, the test checks whether generating two
matrices starting from the same seed and data type are
equal. Evidently, this test is likely to almost always fail if
the seeds are removed since the probability of producing

1 def test_randn_seed(dtype):
2 backend = numpy_backend.NumPyBackend()
3 a = backend.randn((4, 4), seed=10, dtype=dtype)
4 b = backend.randn((4, 4), seed=10, dtype=dtype)
5 np.testing.assert_allclose(a, b)

Listing 2: Example test in google/TensorNetwork

the same random matrix in successive calls is very low.
• Testing for exact equality: Since seeds make the end

result deterministic, developers sometimes add assertions
checking whether the final result is exactly equal to the
expected value. However, without seeds, the computations
could lead to slightly different results that causes these
assertions to fail. In these scenarios, the test may be fixed
by using an approximate assertion that checks whether
the result is close enough to the expected values.

• Too strict assertion bounds: Developers may sometimes
specify a very strict assertion bound/tolerance level in their
tests that only works when specific seeds are used but not
for most cases when the data/sequence of computations
are non-deterministic. Such tests may be fixed by choosing
a looser bound or tolerance level.

• Bug: A test that always fails without seeds may also be
indicative of a bug. We identify one such scenario in
google/TensorNetwork [64] where the test often produces
an empty array as the end result whereas the expected
result is an array of size 1.

Tests with low failure rates. We observe that several tests
have low failure rates: 143 tests have a failure rate of less than
5%, 23 tests have a failure rate of 5-10%. The low failure
rates indicate that many of these tests can likely be fixed using
minor adjustments such as adjusting some hyper-parameters
(like iterations) or by updating assertion bounds by a modest
amount (Section III-D). In Section V, we describe how we fix
some of such tests.
Insights and Implications. We discover a large number of
tests that fail without seeds, many of which have high failure
rates (195 tests always fail). This indicates developers often
use seeds to suppress highly unstable tests instead of properly
fixing them. The only exception to this are tests that check for
exact reproducibility where setting seeds is necessary. We later
explore alternative ways to fix such flakiness (Section V).

B. RQ2: Assertions used in the failing tests

Table III presents the number of each kind of assertion that
are used in the tests that failed without seeds. For this analysis,
we only consider the tests that failed due to an assertion failure.
Some tests may have more than one type of assertion that fails,
hence the total number of assertions is more than the number
of failing tests.

Overall, the most common assertion is Python’s assert

that is used across 137 tests. The developers also use assertion
APIs provided by other frameworks like numpy (5 APIs used
across 135 tests), unittest (9 APIs used across 123 tests), and
tensorflow (5 APIs used across 7 tests).
Insights and Implications. We observe that the failing tests
use both approximate (such as Numpy’s assert_allclose) and
exact equality assertions (such as Unittest’s assertEqual). This
indicates that developers need to transform both kinds of
assertions to reduce flaky failures. For instance, they can change
exact equality assertions into approximate ones. On the other
hand, they can lower the strictness of approximate assertions
(e.g., by reducing precision level).

TABLE III: Distribution of Assertions Used in Failing Tests

API Name Framework # of Assertions

assert Python 137
assert_allclose Numpy 112
assertAlmostEqual Unittest 94
assertTrue Unittest 13
assert_almost_equal Numpy 12
assert_array_almost_equal Numpy 9
assertEqual/assertNotEqual Unittest 6
assertGreater/assertGreaterEqual Unittest 5
assertLess/assertLessEqual Unittest 5
assertEqual/assertAllEqual TensorFlow 3
assertAllClose TensorFlow 2
assertAlmostEqual TensorFlow 1
assertIn Unittest 1
assertLen TensorFlow 1
assert_ Numpy 1
assert_array_equal Numpy 1

V. FIXING FAILING TESTS

A. RQ3: Determining fix strategies for failing tests

We randomly sub-sample tests that only fail without seeds.
For each selected test, we investigate and determine appropriate
fix using the methodology described in Section III-D.

TABLE IV: Pull Requests/Issues Sent for Fixing Tests
Project Tests PRs Issues A R P

Accenture/AmpliGraph [11] 1 1 0 0 0 1
GPflow/GPflow [1] 1 1 0 0 0 1
SeldonIO/alibi-detect [10] 1 0 1 0 0 1
danielegrattarola/spektral [6] 1 0 1 1 0 0
google/TensorNetwork [64, 65, 66] 5 0 3 1 0 2
google/dopamine [21] 1 1 0 0 0 1
jettify/pytorch-optimizer [54, 55] 11 2 0 2 0 0
josejimenezluna/pyGPGO [4] 1 1 0 0 0 1
learnables/learn2learn [2] 1 0 1 0 0 1
lmcinnes/umap [8, 9] 2 2 0 0 0 2
pytorch/captum [13, 14, 15] 11 3 0 3 0 0
quantopian/pyfolio [52] 1 1 0 0 0 1
quantumlib/Cirq [16, 17] 2 2 0 1 0 1
snorkel-team/snorkel [60, 61] 2 2 0 0 0 2
ziatdinovmax/GPim [37] 1 0 1 0 0 1

Total 42 16 7 8 0 15

Table IV presents the details of all the Pull Requests (PRs)
and Issues that we sent. Each row presents details of one
project. Column Tests is the number of tests per project that
we send PR/Issues for. Column PRs is the number of PRs
that we send. Column Issues is the number of issues that we
send. Column A is the number of PRs accepted (fixed by us)
or Issues resolved (fixed by developers). Column R is number
of PRs/Issues rejected. Column P is the number of PRs/Issues
pending resolution. Overall, we send 16 PRs and 7 issues for
42 tests. So far, developers have accepted or fixed 8 (covering
26 tests), rejected none while 15 are pending resolution.

Table V presents the number of tests fixed (or not fixed)
using each kind of strategy we applied for 42 tests. Overall,
we fix most tests (27) by changing hyper-parameters. We fix
6 tests by updating the assertion bounds. In one case [1] we
used a combination of both approaches for fixing the test, i.e.,
changing both hyper-parameters and assertion bounds since
only tuning the hyper-parameters did not reduce the flakiness
to an acceptable level.

TABLE V: Types of Fixes

Fix Type #Tests

Changing Hyper-Parameters 27
Updating assertion bound 6
Refactoring Assertion 2
Refactoring Test 1
Fix code under test 2
Cannot fix/Unknown 5

For tests that we cannot
automatically fix by adjust-
ing hyper-parameters or as-
sertion bounds, we manu-
ally investigate and deter-
mine if a different fix is
possible. We fix 2 tests by
only refactoring the asser-
tion. In 1 case, we refactor the test to mitigate the failures.
In 5 cases, we are not able to determine a fix. Hence, we only
send issue (bug reports) to the developers for those cases.

1 def test_convergence(self):
2 random.seed(123)
3 np.random.seed(123)
4 torch.manual_seed(123)
5 dataloaders = create_data(N_TRAIN, N_VALID)
6 model = MultitaskClassifier(tasks=["task1", "task2"])

7 -trainer = Trainer(lr=0.001, n_epochs=10)

7 +trainer = Trainer(lr=0.00238, n_epochs=50)

8 trainer.fit(model, dataloaders)
9 for idx, task_name in enumerate(["task1", "task2"]):

10 val_loss = compute_val_loss(idx, task_name)
11 self.assertLess(val_loss, 0.05)

Listing 3: Fixed test in snorkel-team/snorkel

Example: Fixing by Changing Hyper-Parameters. Listing 3
presents an example flaky test (simplified) from snorkel-
team/snorkel that we fixed by adjusting hyper-parameters. This
is a test for Multitask Classifier model that simultaneously
trains a model on multiple tasks. The test first sets seeds
in three random number generators: Random, Numpy and
PyTorch (Lines 2-4). The test initializes the data, model, and
the trainer object (Lines 5-7). The trainer object uses two
hyper-parameters: number of epochs (default: 10) and learning
rate (default: 0.001). Then it trains the model (Line 8) and
checks whether the validation loss is less than 0.05 (Line 11).
However, when the seed settings (Lines 2-4) are removed, the
test fails very frequently: 195 failures out of 500 runs. Using
TERA, we find optimal hyper-parameters (n_epochs: 50, lr:
0.00238) that minimizes the failure probability of the test to
0.08%. We raise a PR for the fix [60].
Example: Fixing by updating assertion bounds. Listing 4
presents an example flaky test (simplified) from quantumlib/-
Cirq. Cirq is python library used for developing quantum
circuits and running them using quantum simulators and
quantum computers. test_clifford_circuit_3 is a test
for Cirq’s implementation of Clifford Simulator, which is
a special simulator used for efficient simulation of Clifford
circuits (quantum circuits that contain Clifford gates [36]). This
test, first, builds a random quantum circuit (Lines 3-5). Then,
it initializes the Clifford simulator (Line 6) and the standard
simulator (Line 7). Finally, it checks whether the end result
(i.e., the final state vector) produced by the two simulators are
close enough (Line 8). It also sets a seed (Line 4) to make the
input circuit deterministic. However, when the seed is removed,
the test turns out to be flaky: fails 61/500 times. We observed
that reducing the precision of the comparison of the end result
from 7 (default) to 6 decimal places reduced the failure rate

to 0%. Our fix (including the seed removal) was accepted by
the developers [17].

1 def test_clifford_circuit_3():
2 (q0, q1) = (cirq.LineQubit(0), cirq.LineQubit(1))
3 circuit = cirq.Circuit()

4 -np.random_seed(0)

5 circuit = create_random_circuit(circuit,
↪→ random_clifford_gate(), q0, q1)

6 clifford_sim = cirq.CliffordSimulator()
7 std_sim = cirq.Simulator()
8 np.testing.assert_almost_equal(
9 clifford_sim.simulate(circuit).final_state_vector,

10 std_sim.simulate(circuit).final_state_vector, +6)

Listing 4: Fixed test in quantumlib/Cirq

Example: Fixing by refactoring assertion. Listing 5 presents
an example of a test (simplified) in Accenture/AmpliGraph
project where we refactor the assertion for fixing the test. This is
a test for a model selection algorithm (select_best_model_-
ranking) that uses random search to find optimal hyper-
parameters for the given model and dataset. As input, it takes
the model (model), the validation data (X), the specification
of all parameters (param_grid), and the maximum parameter
combinations to evaluate (max_combinations:10). Then it

1 def test_select_best_model_ranking_random():
2 best_model,history=select_best_model_ranking(model,X)
3 assert best_params[’k’] in (2, 50)
4 assert np.log(1.00001)<=best_params[’lr’]<=np.log(100)

5 -assert set(i["param"]["k"] for i in history)=={2,50}

6 +assert all(i[param"]["k"] in [2, 50] for i in history)

Listing 5: Fixed test in Accenture/AmpliGraph

checks whether the results of the algorithm are within expected
ranges (Lines 3-4). In Line 5, it checks whether all the values
of parameter “k” were evaluated. However, since they use
random search and bound it to 10 evaluations, this property
cannot be guaranteed when the seed is not set (not shown here)
– which makes the test flaky (failed 3/500 times). We refactor
the assertion to instead check whether the evaluated values of
“k” belong to the set: ([2,50]) and raise a PR [11].

B. RQ4: Developer Response

The developers mostly responded positively to our pull
requests and issues. In general, they agreed that they typically
set seeds when they are not able to stabilize the results of
the computations in their tests or when computing the stable
result makes the test unacceptably expensive. For instance,
the developers of GPflow/GPflow commented on one of our
proposed changes: “Thanks for looking into this...! ... we ended
up setting the seeds because, without setting a seed, we might
get a test failing for no reason other than “bad luck”... but of
course that means we risk missing issues like this one!”.

For fixing a test in quantumlib/Cirq, we initially discussed
a solution with the developers and proposed a fix [16] by
replacing a loop (of size 50), which was creating a quantum
circuit with random gates, with a deterministic list of 50
gates. However, the developers responded that this reduces the
readability/interpretability of the test. After another round of

1 def test_model_loss(self):
2 label_model = LabelModel(cardinality=2, verbose=False)
3 label_model.fit(data, n_epochs=1)
4 init_loss = label_model._loss_mu().item()
5 label_model.fit(data, n_epochs=10)
6 next_loss = label_model._loss_mu().item()
7 self.assertLessEqual(next_loss, init_loss)

Listing 6: Test Oracle: Comparison against Same Model

discussions, we updated the PR to just use a fixed local random
seed using Numpy’s RandomState API instead of setting the
global seed for Numpy. The advantage of using this API is that
it has guaranteed legacy support, i.e., its implementation will
not be changed in future Numpy versions [3]. This reduces the
chances of the test failing due to any implementation changes.

For a test in snorkel-team/snorkel [60], we updated the hyper-
parameters to reduce flakiness. The developers agreed with our
changes but rejected our proposal of removing seeds since they
wanted to keep the test deterministic for better reproducibility.

In google/TensorNetwork project, we discovered a test
(test_max_truncation_error) that always failed when the
seeds were not set. However, the test did not contain any
suitable hyper-parameters that we could adjust. The test’s
assertion always failed due to a dimension mismatch between
the computed tensor values. Hence, updating the assertion
bound also was not a solution. We reported this to the
developers [64]. The developers acknowledged that this was
due to an incorrect logic in a branch in the code under test
that was leading to wrong results in the test. However, this
bug was not discovered since the fixed data input (due to the
seed) in the test did not trigger this branch. The developers
fixed the underlying code and also updated the test to use and
log different seeds instead of the previously fixed seed. This
instance demonstrates that setting seeds can sometimes hide
buggy behavior causing the developers to miss them.

VI. ANALYSIS

We select a subset of 56 tests across 21 projects that only
failed without seeds, for deeper analysis. We describe the
various categories for each characteristic that we analyze.

A. Nature of Test Oracles
We characterize the nature of oracle used in the tests:
1) Comparing against same model but different state or

configuration: This category includes the tests that compare
the results of running the same model with and without some
changes. For instance, Listing 6 shows the test test_model_-
loss in snorkel-team/snorkel. This test fits the same model
(LabelModel) twice on the same data-set data and checks
if training loss after 10 epochs is less than that after 1 epoch
(Line 7). Overall, 7 tests fall in this category.

2) Comparing against different model: Tests in this category
compare the results of running a model against a different kind
of model (baseline). Listing 4 showed such an example from
quantumlib/Cirq that compared the results of the specialized
simulator (Line 6) with the standard (baseline) simulator
(Line 7) and checked if their results are close up to a given
precision (Line 8). Overall, 5 tests belong to this category.

1 def test_tSP_opt_nograd():
2 tsp = tStudentProcess(squaredExponential())
3 tsp.fit(X, y)
4 assert 0.3 < tsp.params[’l’] < 0.5

Listing 7: Test Oracle: Comparison against Fixed Values

3) Comparing against fixed values: These tests compare
the results of training or fitting a model against a fixed value
or value range. Listing 7 shows such a test in josejimene-
zluna/pyGPGO that fits a model (tStudentProcess) on a
dataset (X,y) and checks if the fitted parameter (l) fall in the
specified range (Line 4). Overall, 44 tests fall in this category.
Insights and Implications. We observe that majority of the
failing tests (44) compare against fixed values. This implies that
developers often find it difficult to choose these values (also
known as assertion bounds) which in turn forces them to use
seeds in their tests to avoid flaky failures. Hence, developers
should be more careful when choosing assertion bounds or use
tools like FLEX to automatically find optimal values.

B. Introduction and Evolution of Seeds Relative to Tests

We look into commits between when the test was added
and when it was last modified and study the evolution of seeds
relative to the test. Overall, we find that for 23 tests, seeds were
introduced in the same commit as the test. For 16 tests, the
seeds were added after the test. In 17 tests, seeds were present
before the tests were added. Further, in 20 tests, developers
also modified the seeds in later commits.
Insights and Implications. We observe that developers often
modify the seeds they set. This indicates that setting seeds may
not always be the most reliable way of mitigating flakiness.

C. Sources of Randomness

We categorize the tests based on the source of randomness.
In 19 cases, the randomness is only due to the algorithm under
test. In 33 cases, the randomness is only due to generation of
random data. In 4 cases, randomness is due to both.
Insights and Implications. We observe that the nature of the
source of randomness does not have a strong correlation with
flakiness. Rather, other test settings such as hyper-parameters
or assertion bounds have a stronger impact on flakiness.

D. Seed Setting Location

Developers set seeds in tests in different ways, which effects
the execution of tests differently. For instance, developers can
set seeds at the global level, i.e., before executing all tests.
Developers can set the seed at module level (or file level),
i.e., before running tests in a file, or at class level, i.e., at the
beginning of test class, or at function level, i.e., inside the test
method. Out of 56 tests we analyze, developers set seeds at
global level in 7 cases, at module level in 3 cases, at class
level in 17 cases, and at test level in 29 cases.
Insights and Implications. We observe that developers mostly
prefer setting seeds at the test level, which minimizes chances
of flaky failures. Setting seeds at class level is useful when
the class initialization code involves generating some random
data that is shared among the tests in the class. Setting seeds

at higher levels (module or global) can potentially introduce
implicit order dependencies between tests such that tests only
pass for a specific set of orderings but fail for others. Future
work may explore this aspect of setting seeds.

VII. DISCUSSION

A. Should Seeds be Used in Tests?

Based on our experience with the tests and projects that we
study, we develop a set of general recommendations or best
practices for using (or not using) seeds for testing.
When to use fixed seeds. Developers should ideally use seeds
when testing for exact reproducibility of some functionality in
their code. For instance, this may include APIs that implement
functionality/wrappers related to random number generators
(such as Listing 2 from google/TensorNetwork). Another
example is a test in TensorFlow/ranking [7] that tests a sorting
algorithm that randomly shuffles ties. The test uses two different
seeds to check whether the algorithm outputs two sequences
with two different orderings of tied elements.
Randomize and Log seeds for variability and repro-
ducibility. During our discussions with developers, some
mentioned that they use fixed seeds in their tests for better
reproducibility of test failures. A better approach might be
to randomize and log the seed. This would ensure that
the code under test exhibits different sequences of com-
putations and test failures can still be reproduced. Inter-
estingly, we find one such example in pytorch/serve [5]:
random.seed(datetime.datetime.now()). Further, in
one case, the developers randomized the seed after our bug
report [64]. However, the test may also randomly fail (not due
to a bug). We next discuss a strategy for mitigating this risk.
Use Test Re-run on failure instead of setting seeds. Instead
of setting seeds, developers can choose to re-run the test on
failure (e.g., using Python’s flaky plugin [28]). This has a few
distinct advantages: 1) CI builds will not be blocked due to
intermittent failures, reducing the burden on developers, 2)
intermittent failures can still be logged allowing developers to
investigate them later, and 3) if test still fails after re-run(s),
developers can use it as signal for immediate investigation. The
expected cost of re-runs will be low if the test rarely fails [24].
Finding optimal test settings to minimize flakiness. In
general, developers can use the available tools: TERA and
FLEX, to find both optimal hyper-parameters and assertion
bounds for their tests. In our study, we were able to fix a
majority (more than 78%) of the selected tests using these
two techniques (or their combination). The positive response
for our fixes also demonstrates that developers welcome such
changes. Future research can perhaps look into making these
tools more approachable and cost-efficient for developers so
that they can easily integrate them into their workflow.

B. Impact of Seeds on Fault-Detecting Ability

Setting seeds minimizes the randomness in the test and
consequently the chance of flaky failures. But it can also limit
the ability of the test to detect faults that are only exposed by
a subset of potential sequences of random numbers. In this

work, we found such an instance in google/TensorNetwork [64]
project, where the fixed seed was hiding a truncation issue in
the code under test (described in Section V). On removing the
seed, the test failed 519 out of 1000 times exposing the issue.
Dutta et al. [25] also reported a similar observation in geom-
stats/geomstats project where the test fails in 42 out of 1000
runs only when the seed is removed and exposes a bug. These
instances show seeds can seriously impact the fault-detecting
ability of tests. Hence, developers must be careful when dealing
with randomness in tests and also consider alternative strategies,
such as ones discussed in Section III-D, when possible.

A more comprehensive analysis of fault-detecting ability
of the tests with and without seeds can be done using
techniques such as mutation testing or by leveraging historical
bugs – similar to the methodologies described in TERA [24]
(Section 6). This is however beyond the scope of this work.

C. Impact of Fixes on Fault-Detecting Ability

On another hand, without seeds, tests can become flaky –
making it difficult for developers to distinguish spurious failures
from real ones. In this work, we used two alternative fixes for
flakiness previously proposed in literature: tuning algorithm
hyper-parameters and adjusting assertion bounds. However,
they may also impact the fault-detecting ability of tests. Next
we discuss their impact in more details.
Adjusting assertion bounds. Ideally, the assertion bound in a
test should be loose enough to allow all valid executions to pass
but catch all faulty executions. We explain this trade-off in the
context of a test that we fixed by adjusting assertion bounds.

We inject an artificial fault (by changing a multiply operator
to divide) in LabelModel model (label_model.py, Line 309) in
snorkel-team/snorkel project. Listing 8 presents a test, test_-
labeling_convergence, for this model. This test fits the
model on a small training dataset and checks if the fitting error
(err) is below a fixed threshold (originally 0.05). The test
also sets seeds in three random number generators (Numpy,
PyTorch, and Python’s random). In its original form with the
seeds set, the test never fails due to this injected fault. But
when we remove the seeds, the test fails 76 out of 500 times.
However, the test also fails 55 out of 500 times even if we do
not inject any faults. This makes it difficult for developers to
distinguish real failures from spurious (or noisy) ones.

1 def test_labeling_convergence(self) -> None:
2 random.seed(123)
3 np.random.seed(123)
4 torch.manual_seed(123)
5 err=compute_fit_error(LabelModel, data, iters=100,

↪→ . . .)

6 -self.assertLess(err, 0.05)

7 +self.assertLess(err, 0.06)

Listing 8: Example test in snorkel-team/snorkel

We fix this test using FLEX [26] by updating the assertion
bound to 0.06 (the 99.99th percentile) from 0.05 (the 90th
percentile). Now, the test only fails 1 in 500 times without
any fault injections and 47 in 500 times with the injected
fault. This shows that the new bound reduces the flakiness and

also retains the fault-detecting ability of the test. Further, we
also verified that the empirical percentiles (calculated using
10,000 samples) are consistent with those calculated by FLEX.
Tuning algorithm hyper-parameters. Changing algorithm
hyper-parameters in a test affects the test runtime, flakiness,
and fault-detecting ability. Hence, developers need to consider
these trade-offs when choosing suitable hyper-parameters. We
use TERA [24] to select optimal values that minimize flakiness.

To evaluate the impact of changing hyper-parameters, we
perform mutation testing of 4 tests from pytorch/captum
(randomly chosen) that we fixed. We use the same methodology
as in TERA: comparing the original tests (with seed) against the
fixed tests (without seeds). We observed that the mutation score
of the fixed tests is 14.98% – almost the same as the original
tests, 15.02% – indicating that the fault-detecting ability is not
reduced. This observation is in line with the results reported
in TERA [24]. We refer the readers to TERA [24] (Sections 6,
RQ2 and 7.1) for a more comprehensive discussion of its
impact on fault-detecting ability of tests.

In conclusion, we observed that both fixes reduced flakiness
while only making a minimal impact on the fault-detecting
ability of the tests. Further, they can help developers in more
precisely distinguishing real failures from noisy executions.
Hence, these fixes serve as reliable alternatives to fixing seeds.
Choosing a fix. In some cases, there may be multiple ways to
mitigate flakiness, each with its own trade-offs. For instance,
adjusting hyper-parameters may make the test slower (e.g., by
increasing iterations). If the increase in run-time is significant,
developers may instead loosen assertion bounds since this
does not affect test run-time. However, if the chosen bound
is too loose (e.g., checking if error is less than 50%), it may
reduce test effectiveness. Finally, if neither of the strategies are
applicable, developers may choose to set the seeds to mitigate
flakiness and retain test effectiveness to some extent.

While fixing the tests, we observed that adjusting hyper-
parameters (in 27 tests) did not impact the test run-time signif-
icantly. Developers also responded positively to our changes.

D. Threats to Validity

The projects that we use for our empirical study only contain
a subset of all machine learning projects. Hence, our results
may not generalize well beyond the projects we study. To
mitigate this risk, we start with popular ML and probabilistic
programming frameworks and select their dependent projects
that are also fairly popular (have at least 10 stars). Using this
approach we find a large number of projects where seeds are
used and tests that are affected when those seeds are removed.
Hence, we believe that our results are representative.

Our analysis of tests may contain potential miss-
categorizations. To minimize this risk, two authors of the
paper jointly analyze the tests and determine the correct
characterizations after mutual discussions. Our fixes for the
tests using TERA and FLEX may not be optimal. For instance,
TERA may find hyper-parameters that are not globally optimal
in reducing the flakiness whereas FLEX may sometimes over-
estimate the assertion bound required to minimize the flakiness.

To minimize this risk, we use a high convergence threshold
of 0.1 for TERA and high confidence threshold for FLEX’s
hypothesis tests. Further, we attach relevant information with
each fix to allow developers to make any adjustments.

VIII. RELATED WORK

Flaky Tests. Luo et al. [48] conducted the first systematic study
on flaky tests. They studied flaky tests in Java open-source
projects and discovered common causes and fixes. Researchers
have also studied flaky tests specific to Python [38], An-
droid [69], and Embedded Systems [62]. Researchers have de-
veloped techniques to detect flaky tests of specific kinds such as
ones due to test-order dependencies [30, 46], concurrency [20],
unordered collections [58], and asynchronous wait [44, 45].
Dutta et al. [25] conducted the first study of flaky tests in Ma-
chine Learning projects. They observed that the major cause of
flakiness in this domain is due to algorithmic randomness. They
developed FLASH [25] to detect such flaky tests. Researchers
have developed various techniques for fixing flaky tests due
to test-order dependencies [59], unordered collections [72],
asynchronous waits [45], and algorithmic randomness [26].

Prior works on flaky tests in Machine Learning projects
have made brief observations regarding usage and influence of
seeds on testing [24, 25, 26]. However, their observations have
been mostly limited to small number of projects and they do
not directly address the problem of setting seeds or its general
impact. In this work, we present the first large-scale study on
how seeds are used and how they impact testing in this domain.
Testing non-deterministic or approximate software. Many
emerging systems in domains such as ML and Probabilis-
tic Programming exhibit non-deterministic behavior. These
systems require specialized testing techniques to detect deep
faults. Researchers have proposed methods for testing and
debugging various non-deterministic systems such as ML
frameworks [39, 41, 51, 70, 71, 73], Probabilistic Programming
Systems [22, 23, 27, 47], and Approximation Algorithms [42].
On the other hand, Hariri et al. [40] proposed approximate
transformations (e.g., loop perforation) for mutation testing of
Java projects. They observed that such mutations can sometimes
generate valid approximations (leading to surviving mutants)
due to the presence of approximable code.

IX. CONCLUSION

We identified 461 tests across 114 projects that are flaky
but are hidden due to developer-set seeds. This demonstrates
that setting seeds is a common workaround used by many
developers. We showed that it is possible to fix such tests using
alternative strategies and mitigate test flakiness. We hope our
study and insights will motivate developers in writing better
tests and researchers in improving the fixing techniques and
making them more accessible to developers.

ACKNOWLEDGEMENTS

This research was supported in part by NSF Grants No. CCF-
1846354, CCF-1956374, CCF-2008883, USDA NIFA Grant No.
NIFA-2024827, a gift from Facebook, a Facebook Graduate
Fellowship, and Microsoft Azure Credits.

REFERENCES

[1] “Gpflow pr 1720,” 2021, https://github.com/GPflow/GPflow/pull/1720.
[2] “Learn2learn issue 251,” 2021, https://github.com/learnables/learn2learn/

issues/251.
[3] “Numpy randomstate api,” 2021, https://numpy.org/doc/stable/

reference/random/legacy.html?highlight=randomstate#numpy.random.
RandomState.

[4] “Pygpgo pr 34,” 2021, https://github.com/josejimenezluna/pyGPGO/pull/
34.

[5] “Pytorch/serve example,” 2021, https://github.com/pytorch/serve/blob/
ccaba6f66a1f4a00a594b1371e42d5749be4e35d/test/benchmark/tests/
conftest.py#L120.

[6] “Spektral issue 273,” 2021, https://github.com/danielegrattarola/spektral/
issues/273.

[7] “Tensorflow ranking example,” 2021, https://github.com/tensorflow/
ranking/blob/019a7db68d83959b8774bc77bfb6905180504216/
tensorflow_ranking/python/utils_test.py#L157.

[8] “Umap pr 770,” 2021, https://github.com/lmcinnes/umap/pull/770.
[9] “Umap pr 773,” 2021, https://github.com/lmcinnes/umap/pull/773.

[10] “Alibi-detect issue 256,” 2021, https://github.com/SeldonIO/alibi-detect/
issues/256.

[11] “Ampligraph pr 256,” 2021, https://github.com/Accenture/AmpliGraph/
pull/256.

[12] E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan,
T. Karaletsos, R. Singh, P. Szerlip, P. Horsfall, and N. D. Goodman,
“Pyro: Deep Universal Probabilistic Programming,” Journal of Machine
Learning Research, 2018.

[13] “Captum pr 775,” 2021, https://github.com/pytorch/captum/pull/775.
[14] “Captum pr 780,” 2021, https://github.com/pytorch/captum/pull/780.
[15] “Captum pr 781,” 2021, https://github.com/pytorch/captum/pull/781.
[16] “Cirq pr 4531,” 2021, https://github.com/quantumlib/Cirq/pull/4531.
[17] “Cirq pr 4534,” 2021, https://github.com/quantumlib/Cirq/pull/4534.
[18] “Conda package management system,” 2021, https://docs.conda.io.
[19] J. V. Dillon, I. Langmore, D. Tran, E. Brevdo, S. Vasudevan, D. Moore,

B. Patton, A. Alemi, M. Hoffman, and R. A. Saurous, “Tensorflow
distributions,” arXiv preprint arXiv:1711.10604, 2017.

[20] Z. Dong, A. Tiwari, X. L. Yu, and A. Roychoudhury, “Flaky test detection
in android via event order exploration,” 2021.

[21] “Dopamine pr 185,” 2021, https://github.com/google/dopamine/pull/185.
[22] S. Dutta, Z. Huang, and S. Misailovic, “Sixthsense: Debugging conver-

gence problems in probabilistic programs via program representation
learning,” FASE, 2022.

[23] S. Dutta, O. Legunsen, Z. Huang, and S. Misailovic, “Testing probabilistic
programming systems,” in FSE, 2018.

[24] S. Dutta, J. Selvam, A. Jain, and S. Misailovic, “Tera: Optimizing
stochastic regression tests in machine learning projects,” ISSTA, 2021.

[25] S. Dutta, A. Shi, R. Choudhary, Z. Zhang, A. Jain, and S. Misailovic,
“Detecting flaky tests in probabilistic and machine learning applications,”
in ISSTA, 2020.

[26] S. Dutta, A. Shi, and S. Misailovic, “Flex: fixing flaky tests in machine
learning projects by updating assertion bounds,” in FSE, 2021.

[27] S. Dutta, W. Zhang, Z. Huang, and S. Misailovic, “Storm: program
reduction for testing and debugging probabilistic programming systems,”
in FSE, 2019.

[28] 2021, https://github.com/box/flaky.
[29] “Flex tool,” 2021, https://github.com/uiuc-arc/flex.
[30] A. Gambi, J. Bell, and A. Zeller, “Practical test dependency detection,”

in ICST, 2018.
[31] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning.

MIT Press Cambridge, 2016.
[32] N. Goodman, V. Mansinghka, D. M. Roy, K. Bonawitz, and J. B.

Tenenbaum, “Church: a language for generative models,” arXiv preprint
arXiv:1206.3255, 2012.

[33] “A google self-driving car caused a crash for the first time,” The Verge,
’16, https://bit.ly/2CNSeUZ.

[34] “Tensornetwork,” 2021, https://github.com/google/TensorNetwork.
[35] A. D. Gordon, T. A. Henzinger, A. V. Nori, and S. K. Rajamani,

“Probabilistic programming,” in FoSE, 2014.
[36] D. Gottesman, “Theory of fault-tolerant quantum computation,” Physical

Review A, vol. 57, no. 1, p. 127, 1998.
[37] “Gpim issue 34,” 2021, https://github.com/ziatdinovmax/GPim/issues/34.
[38] M. Gruber, S. Lukasczyk, F. Kroiß, and G. Fraser, “An empirical study

of flaky tests in python,” in ICST, 2021.

[39] Q. Guo, X. Xie, Y. Li, X. Zhang, Y. Liu, X. Li, and C. Shen, “Audee:
Automated testing for deep learning frameworks,” in ASE, 2020.

[40] F. Hariri, A. Shi, O. Legunsen, M. Gligoric, S. Khurshid, and S. Mis-
ailovic, “Approximate transformations as mutation operators,” in ICST,
2018.

[41] Q. Hu, L. Ma, X. Xie, B. Yu, Y. Liu, and J. Zhao, “Deepmutation++: A
mutation testing framework for deep learning systems,” in ASE, 2019.

[42] K. Joshi, V. Fernando, and S. Misailovic, “Statistical algorithmic profiling
for randomized approximate programs,” in ICSE, 2019.

[43] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of artificial intelligence research, 1996.

[44] W. Lam, P. Godefroid, S. Nath, A. Santhiar, and S. Thummalapenta,
“Root causing flaky tests in a large-scale industrial setting,” in ISSTA,
2019.

[45] W. Lam, K. Muşlu, H. Sajnani, and S. Thummalapenta, “A study on the
lifecycle of flaky tests,” in ICSE, 2020.

[46] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie, “iDFlakies: A framework
for detecting and partially classifying flaky tests,” in ICST, 2019.

[47] Y. R. S. Llerena, M. Böhme, M. Brünink, G. Su, and D. S. Rosenblum,
“Verifying the long-run behavior of probabilistic system models in the
presence of uncertainty,” in ESEC/FSE, 2018.

[48] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis of
flaky tests,” in FSE, 2014.

[49] “Numpyro,” 2020, https://github.com/pyro-ppl/numpyro.
[50] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “PyTorch: An
imperative style, high-performance deep learning library,” in NeurIPS,
2019.

[51] H. V. Pham, T. Lutellier, W. Qi, and L. Tan, “Cradle: cross-backend
validation to detect and localize bugs in deep learning libraries,” in ICSE,
2019.

[52] “Pyfolio pr 683,” 2021, https://github.com/quantopian/pyfolio/pull/683.
[53] “Pymc3,” 2021, https://github.com/pymc-devs/pymc3.
[54] “Pytorch-optimizer pr 368,” 2021, https://github.com/jettify/

pytorch-optimizer/pull/368.
[55] “Pytorch-optimizer pr 369,” 2021, https://github.com/jettify/

pytorch-optimizer/pull/369.
[56] “Pytorch,” 2021, http://pytorch.org.
[57] C. Roberts, A. Milsted, M. Ganahl, A. Zalcman, B. Fontaine, Y. Zou,

J. Hidary, G. Vidal, and S. Leichenauer, “Tensornetwork: A library for
physics and machine learning,” 2019.

[58] A. Shi, A. Gyori, O. Legunsen, and D. Marinov, “Detecting assumptions
on deterministic implementations of non-deterministic specifications,” in
ICST, 2016.

[59] A. Shi, W. Lam, R. Oei, T. Xie, and D. Marinov, “ifixflakies: A framework
for automatically fixing order-dependent flaky tests,” in FSE, 2019.

[60] “Snorkel pr 1666,” 2021, https://github.com/snorkel-team/snorkel/pull/
1666.

[61] “Snorkel pr 1671,” 2021, https://github.com/snorkel-team/snorkel/pull/
1671.

[62] P. E. Strandberg, T. J. Ostrand, E. J. Weyuker, W. Afzal, and D. Sundmark,
“Intermittently failing tests in the embedded systems domain,” in ISSTA,
2020.

[63] “Tensorflow,” 2021, https://www.tensorflow.org.
[64] “Tensornetwork issue 943,” 2021, https://github.com/google/

TensorNetwork/issues/943.
[65] “Tensornetwork issue 945,” 2021, https://github.com/google/

TensorNetwork/issues/945.
[66] “Tensornetwork issue 946,” 2021, https://github.com/google/

TensorNetwork/issues/946.
[67] “Tera tool,” 2021, https://github.com/uiuc-arc/tera.
[68] “Understanding the fatal tesla accident on autopilot and the nhtsa probe,”

electrek, ’16, https://bit.ly/2PtnDCZ.
[69] S. Thorve, C. Sreshtha, and N. Meng, “An empirical study of flaky tests

in android apps,” in ICSME, 2018.
[70] Z. Wang, M. Yan, J. Chen, S. Liu, and D. Zhang, “Deep learning library

testing via effective model generation,” in FSE, 2020.
[71] A. Wei, Y. Deng, C. Yang, and L. Zhang, “Free lunch for testing: Fuzzing

deep-learning libraries from open source,” in ICSE, 2022.
[72] P. Zhang, Y. Jiang, A. Wei, V. Stodden, D. Marinov, and A. Shi, “Domain-

specific fixes for flaky tests with wrong assumptions on underdetermined
specifications,” in ICSE, 2021.

[73] Y. Zhang, L. Ren, L. Chen, Y. Xiong, S.-C. Cheung, and T. Xie,
“Detecting numerical bugs in neural network architectures,” in ESEC/FSE,
2020.

https://github.com/GPflow/GPflow/pull/1720
https://github.com/learnables/learn2learn/issues/251
https://github.com/learnables/learn2learn/issues/251
https://numpy.org/doc/stable/reference/random/legacy.html?highlight=randomstate#numpy.random.RandomState
https://numpy.org/doc/stable/reference/random/legacy.html?highlight=randomstate#numpy.random.RandomState
https://numpy.org/doc/stable/reference/random/legacy.html?highlight=randomstate#numpy.random.RandomState
https://github.com/josejimenezluna/pyGPGO/pull/34
https://github.com/josejimenezluna/pyGPGO/pull/34
https://github.com/pytorch/serve/blob/ccaba6f66a1f4a00a594b1371e42d5749be4e35d/test/benchmark/tests/conftest.py#L120
https://github.com/pytorch/serve/blob/ccaba6f66a1f4a00a594b1371e42d5749be4e35d/test/benchmark/tests/conftest.py#L120
https://github.com/pytorch/serve/blob/ccaba6f66a1f4a00a594b1371e42d5749be4e35d/test/benchmark/tests/conftest.py#L120
https://github.com/danielegrattarola/spektral/issues/273
https://github.com/danielegrattarola/spektral/issues/273
https://github.com/tensorflow/ranking/blob/019a7db68d83959b8774bc77bfb6905180504216/tensorflow_ranking/python/utils_test.py#L157
https://github.com/tensorflow/ranking/blob/019a7db68d83959b8774bc77bfb6905180504216/tensorflow_ranking/python/utils_test.py#L157
https://github.com/tensorflow/ranking/blob/019a7db68d83959b8774bc77bfb6905180504216/tensorflow_ranking/python/utils_test.py#L157
https://github.com/lmcinnes/umap/pull/770
https://github.com/lmcinnes/umap/pull/773
https://github.com/SeldonIO/alibi-detect/issues/256
https://github.com/SeldonIO/alibi-detect/issues/256
https://github.com/Accenture/AmpliGraph/pull/256
https://github.com/Accenture/AmpliGraph/pull/256
https://github.com/pytorch/captum/pull/775
https://github.com/pytorch/captum/pull/780
https://github.com/pytorch/captum/pull/781
https://github.com/quantumlib/Cirq/pull/4531
https://github.com/quantumlib/Cirq/pull/4534
https://docs.conda.io
https://github.com/google/dopamine/pull/185
https://github.com/box/flaky
https://github.com/uiuc-arc/flex
https://bit.ly/2CNSeUZ
https://github.com/google/TensorNetwork
https://github.com/ziatdinovmax/GPim/issues/34
https://github.com/pyro-ppl/numpyro
https://github.com/quantopian/pyfolio/pull/683
https://github.com/pymc-devs/pymc3
https://github.com/jettify/pytorch-optimizer/pull/368
https://github.com/jettify/pytorch-optimizer/pull/368
https://github.com/jettify/pytorch-optimizer/pull/369
https://github.com/jettify/pytorch-optimizer/pull/369
http://pytorch.org
https://github.com/snorkel-team/snorkel/pull/1666
https://github.com/snorkel-team/snorkel/pull/1666
https://github.com/snorkel-team/snorkel/pull/1671
https://github.com/snorkel-team/snorkel/pull/1671
https://www.tensorflow.org
https://github.com/google/TensorNetwork/issues/943
https://github.com/google/TensorNetwork/issues/943
https://github.com/google/TensorNetwork/issues/945
https://github.com/google/TensorNetwork/issues/945
https://github.com/google/TensorNetwork/issues/946
https://github.com/google/TensorNetwork/issues/946
https://github.com/uiuc-arc/tera
https://bit.ly/2PtnDCZ

	Introduction
	Background
	Common Test Structure in Machine Learning Projects
	Minimizing execution time of tests for ML Algorithms
	Fixing Flaky Tests in Machine Learning Projects

	Methodology
	Selection of projects
	Running and detecting flaky tests
	Analyzing results
	Fixing failing tests
	Research Questions
	Experimental Setup

	Empirical Results
	RQ1: Test behavior without seeds
	RQ2: Assertions used in the failing tests

	Fixing failing tests
	RQ3: Determining fix strategies for failing tests
	RQ4: Developer Response

	Analysis
	Nature of Test Oracles
	Comparing against same model but different state or configuration
	Comparing against different model
	Comparing against fixed values

	Introduction and Evolution of Seeds Relative to Tests
	Sources of Randomness
	Seed Setting Location

	Discussion
	Should Seeds be Used in Tests?
	Impact of Seeds on Fault-Detecting Ability
	Impact of Fixes on Fault-Detecting Ability
	Threats to Validity

	Related Work
	Conclusion

