
Accuracy-Aware Optimization of Approximate Programs

by

Saša Misailović

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2015

c○ Massachusetts Institute of Technology 2015. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 28, 2015

Certified by. .
Martin C. Rinard

Professor
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Chair, Department Committee on Graduate Students

Accuracy-Aware Optimization of Approximate Programs

by

Saša Misailović

Submitted to the Department of Electrical Engineering and Computer Science

on August 28, 2015, in partial fulfillment of the

requirements of the degree of

Doctor of Philosophy

Abstract

Many modern applications (such as multimedia processing, machine learning, and big-data

analytics) exhibit a natural tradeoff between the accuracy of the results they produce and

the application’s execution time or energy consumption. These applications allow us to

investigate new, more aggressive optimization approaches.

This dissertation presents a foundation of program optimization systems that expose

and profitably exploit tradeoffs between the accuracy of the results that the program pro-

duces and the time and energy required to produce those results. These systems apply

accuracy-aware program transformations that intentionally change the semantics of opti-

mized programs.

A key challenge to applying accuracy-aware transformations is understanding the

uncertainty that the transformations introduce into the program’s execution. To address

this challenge, this dissertation presents program analysis techniques that quantify the un-

certainty introduced by program transformations. First, this dissertation identifies the

properties of subcomputations that are amenable to loop perforation (an accuracy-aware

transformation that skips loop iterations). Second, it presents how static analysis can derive

expressions that characterize the frequency and magnitude of errors. Third, it presents a

system that automatically applies accuracy-aware transformations by formulating accuracy-

aware program optimization as standard mathematical optimization problems. The ex-

perimental results show that accuracy-aware transformations can help uncover significant

performance and energy improvements with acceptable accuracy losses.

Thesis Supervisor: Martin C. Rinard

Title: Professor, Electrical Engineering and Computer Science

3

Acklowledgements can be found in the printed version of the thesis.

4

x

5

Contents

1 Introduction 13

1.1 Accuracy-Aware Program Transformations 14

1.2 Accuracy-Aware Program Optimization . 14

1.2.1 Approximate Kernels . 16

1.2.2 Analyzing Approximate Kernel Transformations 17

1.2.3 Searching for Approximate Kernel Transformations 19

1.3 Problem Statement . 19

1.4 Contributions . 21

2 Characterization of Approximate Kernels Using Loop Perforation 22

2.1 Sensitivity Profiling in SpeedPress . 23

2.1.1 Developer’s Specification . 24

2.1.2 Loop Perforation Transformation . 25

2.1.3 Sensitivity Profiling Algorithm . 26

2.2 Benchmarks and Inputs . 28

2.3 Quantitative Exploration Results . 31

2.3.1 Sensitivity Profiling Results . 31

2.3.2 Tradeoff Space Exploration Results 34

2.3.3 Execution Time of Analysis Results 36

2.4 Computational Patterns Amenable to Loop Perforation 37

2.4.1 Functional Patterns . 38

2.4.2 Structural Patterns . 39

2.5 Analysis of Perforated Computations in Benchmarks 40

2.5.1 x264 . 40

2.5.2 Bodytrack . 42

2.5.3 Swaptions . 43

2.5.4 Ferret . 44

2.5.5 Canneal . 45

2.5.6 Blackscholes . 45

6

2.5.7 Streamcluster . 45

2.6 Analysis of Perforated Kernel’s Absolute Error 47

2.6.1 Worst-Case Absolute Error Analysis 48

2.6.2 Error Analysis Results . 49

2.7 Discussion . 50

2.7.1 Approximate Kernels . 51

2.7.2 Limitations of Testing-Based Accuracy-Aware Optimization 52

3 Probabilistic Analysis of Kernels Transformed with Loop Perforation 54

3.1 Motivating Example . 57

3.2 Preliminaries . 60

3.2.1 Pattern Components . 60

3.2.2 Definition of Loop Perforation . 61

3.2.3 Useful Probabilistic Inequalities . 61

3.3 Sum Pattern . 62

3.3.1 General Inputs . 63

3.3.2 Independent Inputs . 64

3.3.3 Independent Gaussian Inputs . 64

3.3.4 Independent Bounded Inputs . 65

3.3.5 Random Walk . 65

3.4 Mean Pattern . 66

3.5 Argmin-Sum Pattern . 67

3.5.1 Gaussian Inputs . 69

3.5.2 Analysis for Approximate Assumptions 69

3.6 Ratio Pattern . 70

3.6.1 Gamma Inputs . 71

3.7 Discussion . 72

4 Reliability-Aware and Accuracy-Aware Optimization with Chisel 74

4.1 Motivating Example . 78

4.1.1 Reliability Specification . 78

4.1.2 Obtaining Kernel’s Reliability Specification 80

4.1.3 Optimization Results . 82

4.2 Approximate Hardware Specification and Semantics 83

4.2.1 Hardware Specification . 83

4.2.2 Hardware Semantics . 85

7

4.2.3 Compilation and Runtime Model . 90

4.2.4 Big-step Semantics . 91

5 Chisel Optimization Algorithm 92

5.1 Configurable Approximate Programs . 94

5.1.1 Labeled Instructions and Variables 94

5.1.2 Intermediate Language for Analysis 94

5.2 Reliability Constraint Construction . 96

5.2.1 Reliability Predicates . 96

5.2.2 Semantics of Reliability Predicates 97

5.2.3 Paired Execution Semantics . 98

5.2.4 Reliability Precondition Generator 100

5.2.5 Optimization Constraint Construction 106

5.3 Accuracy Constraint Construction . 107

5.3.1 Accuracy Specification . 108

5.3.2 Accuracy Predicates . 109

5.3.3 Extended Reliability Predicates . 109

5.3.4 Extended Reliability Precondition Generator 111

5.3.5 Auxiliary Interval Analysis . 112

5.3.6 Analysis of Arithmetic Instructions 113

5.3.7 Generalized Reliability and Accuracy Analysis 114

5.3.8 Optimization Constraint Construction 119

5.3.9 Soundness . 120

5.4 Energy Objective Construction . 125

5.4.1 Absolute Energy Model . 125

5.4.2 Relative Energy Model . 127

5.5 Final Optimization Problem Statement . 129

5.6 Discussion . 130

5.6.1 Computational Patterns with Approximate Kernels 130

5.6.2 Limitations of Chisel’s Optimization 131

5.6.3 From Kernel Optimization to Full Program Optimization 133

6 Evaluation and Extensions of Chisel Optimization Algorithm 134

6.1 Chisel Implementation . 134

6.2 Hardware Reliability and Energy Specifications 135

6.3 Benchmarks . 136

8

6.4 Sensitivity Profiling Results . 138

6.5 Optimization Problem Solving Results . 140

6.6 Energy Savings Results . 140

6.7 Output Quality Results . 142

6.8 Kernel Transformations . 143

6.9 Chisel’s Extensions . 144

6.9.1 Operation Selection Granularity . 144

6.9.2 Function Calls . 144

6.9.3 Overhead of Operation Mode Switching 145

6.9.4 Array Index Computations and Control Flow 145

6.9.5 Energy Analysis and Control Flow 145

6.9.6 Hardware with Multiple Approximate Operation Specifications . . . 146

6.9.7 Interval-Based Reliability Specifications 146

6.9.8 Multiple Kernels . 147

7 Related Work 148

7.1 Compiler-Level Approximations . 148

7.1.1 Sensitivity Analysis . 148

7.1.2 Safety Analysis . 150

7.1.3 Search for Accuracy-Performance Tradeoffs 150

7.2 Approximation at Intersection of Software and Hardware 152

7.3 Probabilistic Languages and Analyses . 154

7.4 Analytic Properties of Programs . 155

7.5 Approximate Queries in Database Systems 156

8 Future Work 157

9 Conclusion 160

A Transformed Chisel Kernels 161

9

List of Figures

1.1 Approaches for Accuracy-Aware Optimization 16

2.1 Sensitivity Profiling Algorithm . 27

2.2 x264 Tradeoff Space . 34

2.3 Bodytrack Tradeoff Space . 34

2.4 Swaptions Tradeoff Space . 34

2.5 Ferret Tradeoff Space . 34

2.6 Canneal Tradeoff Space . 34

2.7 Streamcluster Tradeoff Space . 34

2.8 Local Perforation Patterns . 39

3.1 Original and Transformed Swaptions Code 57

3.2 Sum Pattern; Original and Transformed Code 62

3.3 Mean Pattern; Original and Transformed Code 66

3.4 Argmin-Sum Pattern; Original and Transformed Code 67

3.5 Ratio Pattern; Original and Transformed Code 71

4.1 Chisel Overview . 74

4.2 Model of Approximate Hardware . 76

4.3 Image Scaling Kernel . 79

4.4 Sensitivity Profiling for Image Scaling . 81

4.5 Assembly Language Syntax . 84

4.6 Machine Semantics of Arithmetic Operations 86

4.7 Machine Semantics of Control Flow Instructions 87

4.8 Machine Semantics of Loads and Stores . 88

4.9 Machine Semantics of Array Loads and Stores 89

5.1 Syntax of the Analyzable Part of Rely . 95

5.2 Chisel’s Intermediate Language . 95

5.3 Semantics of Reliability Factors . 98

10

5.4 Semantics of Accuracy Predicates . 110

5.5 Generalized Joint Reliability Factor . 110

A.1 Scale Kernel Generated for Configuration M/M/M (part 1) 161

A.2 Scale Kernel Generated for Configuration M/M/M (part 2) 162

A.3 DCT Kernel Generated for Configuration M/m/M 163

A.4 IDCT Kernel Generated for Configuration M/m/m 164

A.5 Blackscholes Kernel Generated for Configuration M/m/m (part 1) 165

A.6 Blackscholes Kernel Generated for Configuration M/m/m (part 2) 166

A.7 Sor Kernel Generated for Configuration M/M/M 167

11

List of Tables

2.1 Summary of Training and Production Inputs 28

2.2 Sensitivity Profiling Results for Individual Loops 33

2.3 Training and Production Results for Pareto-optimal Perforations 35

2.4 Sensitivity Profiling Statistics for Benchmark Applications. 36

2.5 Patterns in Pareto-optimal Perforations . 41

2.6 Execution Statistics for Example Structural Pattern Computations 47

2.7 Observed and the Worst-Case Local Error of Perforated Computations. . . 50

6.1 Approximate Hardware Configurations and Operation Failure Rates 135

6.2 Benchmark Description . 137

6.3 Description of Benchmark’s Accuracy Metric 137

6.4 Software Specification PSNR and Sensitivity Profiling 138

6.5 Optimization Problem Statistics . 139

6.6 Energy Savings and Sensitivity Metric Results 141

12

1 Introduction

Modern applications are expected to run fast. Many emerging applications, such as multi-

media processing, machine learning, and big data analytics, operate on noisy inputs, large

data sets, or solve computationally intensive problems with multiple acceptable solutions.

The developers of these applications have the freedom to intentionally trade some of the

accuracy of the application’s result in return for faster execution. For instance, the main

task of a video encoder is to compress streams of raw video frames. To achieve the desired

level of compression, video processing researchers and practitioners have devised various

approximate compression algorithms that produce videos with acceptable quality [14].

Modern hardware architectures are expected to be energy-efficient. For a long time,

standard circuit-design techniques have successfully scaled the voltage and the size of the

circuits, while maintaining reliable operation. However, these techniques are reaching their

limit (also known as the end of Dennard scaling [41]). To enable their hardware architectures

to operate efficiently, hardware designers have proposed various designs of on-chip compo-

nents, memories, and accelerators that trade reliability and accuracy of their operations for

reduced circuit size and energy consumption [42, 43, 66, 67, 85, 89].

Modern computer systems are expected to be resilient to faults. The standard fault-

tolerance mechanisms implement expensive reexecution or replication techniques to achieve

resiliency. However, modern system infrastructures, such as Google’s MapReduce, have

offered the ability to continue the execution of a computation even if some of the software

or hardware components become unresponsive or experience fatal errors [34]. As a result,

the application continues its execution to produce a partial and/or approximate result,

instead of no result at all.

Despite the prominent role of approximation in applications, architectures, and systems,

standard program analysis and compilation systems do not take the advantage of these

approximation opportunities. The traditional approaches to program optimization aim to

preserve program semantics and are, therefore, too rigid to exploit the full optimization po-

tential of the applications. This leaves a software developer solely responsible for managing

all aspects of approximation, which often results in inflexible computations with approxi-

mation choices hard-coded in the implementation of the computation.

13

1.1 Accuracy-Aware Program Transformations

To enable flexible choices for approximating applications and automate the optimization

of these applications, researchers, including the author of this dissertation, have proposed

compiler-level accuracy-aware transformations. These transformations intentionally change

the semantics of programs to trade accuracy for improved performance, energy consumption,

or resilience by exploiting the properties of program’s inputs, structure, and execution

environment.

Performance-oriented transformations. These transformations reduce the amount

of work that a program performs [25, 53, 71, 75, 79, 80, 95, 96, 102, 113, 125]. For in-

stance, loop perforation is an accuracy-aware transformation that causes a program to

skip iterations of for loops [79, 113]. Loop perforation can cause the loop such as

for (int i = 0; i < n; i++) {...} to execute only a subset of its iterations. For

instance, the transformation can cause the loop to execute only half of iterations by chang-

ing the induction variable increment from i++ to i+=2, or by changing the loop bounds

check from i < n to i < n/2.

Energy-oriented transformations. These transformations instruct a program to use

hardware components that aggressively save energy by allowing errors in the results of their

operations [19, 43, 73, 105]. For instance, these hardware platforms can provide exact and

approximate standard arithmetic operations and reliable and unreliable memories. Anno-

tations of the standard operator symbols, such as “+.”, specify that arithmetic operations

execute approximately. Annotations of declarations, such as “int x in urel”, specify that

variables can be stored in approximate memories [19, 73].

Resiliency-oriented transformations. These transformations allow a program to con-

tinue executing through otherwise fatal errors to produce at least a part of the original

result [18, 58, 97, 112]. For instance, infinite loops cause programs to be unresponsive; to

regain program responsiveness, Bolt can detect whether the loop is infinite and if so, trans-

forms the running program to continue the execution past the infinite loop and produce at

least a part of its result [18, 58].

1.2 Accuracy-Aware Program Optimization

Automatically optimizing approximate programs using accuracy-aware transformations pro-

vides new opportunities for reducing engineering effort and resource consumption and in-

14

creasing program resilience. This opportunity, however, comes at a price – the transforma-

tions introduce uncertainty into the program’s execution, which reflects on the quality of

the results it produces. This uncertainty raises a number of new research questions: 1) how

to identify parts of a program that are good candidates for accuracy-aware transformations;

2) how to characterize the effects of a transformation on the program’s execution, especially

the result’s accuracy; and 3) how to automatically discover transformations that provide

maximum performance gains for acceptable accuracy losses.

The early techniques for accuracy-aware optimization (such as those we previously pro-

posed [53, 75, 79, 95, 96]) have used a sensitivity profiling-based approach to answer

these questions. These techniques require a developer to provide a set of representative in-

puts and an application-level sensitivity metric that quantifies the accuracy of the produced

result (e.g., peak signal-to-noise for video encoders). Then, a sensitivity profiler applies the

accuracy-aware transformations at various points in the program and validates the trans-

formations by testing whether the transformed programs, when executed on the provided

inputs, produce results with acceptable accuracy (as calculated by the sensitivity metric).

While these techniques are effective in finding transformed programs with attractive trade-

offs, they do not provide accuracy guarantees. Specifically, since this approach relies only

on the representative inputs provided by the developer, its results do not generalize and do

not provide guarantees for other inputs.

In contrast to these purely dynamic optimization approaches, this dissertation investigates

a novel analysis-based approach that combines static program analysis with mathematical

optimization techniques to provide a foundation for rigorous program optimization using

accuracy-aware transformations. This approach operates on time-consuming subcomputa-

tions (that we call approximate kernels) for which a developer provides a formal specification

of the kernel’s inputs and the expected output accuracy. Our program analysis can ensure

that the approximate version of the kernel satisfies the probabilistic output specification

for all inputs that adhere to the input specification. The program optimization algorithm

can use this analysis to reduce the kernel approximation to a standard mathematical opti-

mization problem. This approach does not require representative inputs, but a developer

can optionally use sensitivity profiling to 1) help identify approximate kernel computations

and 2) derive the kernel-level accuracy specifications that likely satisfy the application-level

sensitivity metric.

Figure 1.1 illustrates the conceptual difference between the two approaches. The profile-

based optimization transforms program subcomputations driven by the inputs and subject

to the application-level sensitivity metric. While it can often find attractive tradeoffs, it

15

(a) Profile-Based Optimization (b) Analysis-Based Optimization

Figure 1.1: Approaches for Accuracy-Aware Optimization

does not provide an intuition for why the transformations work and how we can quantify

the effect of the changes (illustrated by a shaded area of the program). In contrast, the

analysis-based optimization operates on explicitly exposed approximate kernels with their

specifications, which the developer wrote to meet the application-level accuracy requirement

(optionally derived using sensitivity profiling). Then, the rigorous analysis and optimization

techniques can automatically approximate the kernel functions, while satisfying the devel-

oper’s specifications. This approach can, therefore, improve a developer’s understanding of

why accuracy-aware transformations work. In the rest of this section, we present the main

components of the analysis-based accuracy-aware optimization.

1.2.1 Approximate Kernels

Many approximate computations have a specific structure. A majority of their work is

performed in one or several approximate kernel computations. Each execution of a kernel

computation typically processes a part of the application’s input and either directly produces

a part of the application’s output or guides the execution of the application to produce the

final output. Transforming the kernels and modifying their results has the potential to only

slightly reduce the accuracy of the application’s final output.

An instance of an approximate kernel is a loop that iterates over a list of elements and

aggregates the elements to produce a final sum:

float sum = 0;

for (int i = 0; i < n; i++)

sum = sum + a[i];

16

This loop computes the sum sum by aggregating the elements of an array a with n elements.

In this dissertation, we identify that a number of approximate kernels have similar structure

and functionality and show that they are instances of computational patterns amenable

to approximation. We divide patterns by their structural properties (e.g., a kernel loop

calculates a sum) or functional properties (e.g., a kernel loop’s result is used as a distance

metric within the application).

We can apply multiple transformations to the summation loop. For instance, to run the

loop faster, loop perforation can change the induction variable increment from i++ to i+=2.

To save energy when executing the loop body on approximate hardware, a compiler can

1) transform the addition operator in the expression sum = sum + a[i] to its approximate

version sum = sum +. a[i] or 2) specify that the array a should be stored in unreliable

memory using a declaration float[] a in urel [19, 73]. Each of these transformations can

cause the loop to produce a result sum that differs from the result of the original loop. To

quantify this difference, we use static program analysis.

1.2.2 Analyzing Approximate Kernel Transformations

The motivation for our analysis approach rests on the empirical observation that the results

of many transformed approximate kernels exhibit small deviations from the results of the

original kernels most of the time [25, 27, 77, 78, 113]. Therefore, this dissertation investi-

gates the set of program analyses of approximate kernels that characterize how accuracy-

aware transformations affect the accuracy of the kernel’s result.

We split the accuracy analysis of accuracy-aware transformations into two subproblems:

1) analyze how the transformation affects the results of the kernel computations and 2) an-

alyze how the error propagates through the execution. For the first subproblem, this dis-

sertation presents a program analysis-based approach for optimizing the computations that

satisfy the developer’s accuracy specification. For the second subproblem, this dissertation

shows how sensitivity analysis can help developer identify the kernels and derive accuracy

specification. To run the analysis, a developer provides the specification of typical inputs

and the specification of output accuracy for the kernel.

Kernel Input Specification. The input specification contains intervals or distributions

of the kernel’s inputs. This specification characterizes the developer’s level of knowledge

about the inputs. For instance, a developer can specify that the elements of the array a in

the example computation belong to the interval [0, 10] or that the elements have Gaussian

𝑁(0, 1) distribution. Specifications can also be relational – for instance, the elements of the

17

array a in the approximate program execution have the same value as the elements in the

exact program execution with probability at least 0.99.

Output Accuracy Specification. The output specification is a probabilistic assertion

about the output of the computation, which checks for a typical error of the computation.

The assertions are relational in that they compare the outputs of the original and approx-

imate executions. They have a general form: “Assuming that the inputs have the specified

properties, the absolute difference between the results of the original and transformed pro-

gram is less than or equal to Δ with probability at least 𝑝.” The developer provides the

numerical quantities Δ and 𝑝. The special cases of these assertions consider only the mag-

nitude of numerical error when 𝑝 = 1 and the frequency of producing an incorrect result,

when Δ = 0.

Accuracy Analysis. Analyses operate on approximate kernels that are amenable to

accuracy-aware transformations. Given the input specification for a kernel, the analyses

compute expressions that represent the error induced by the transformation. The analyses

then check whether these expressions satisfy the output accuracy specifications.

This dissertation presents analysis of representative accuracy-aware transformations. The

analysis of loop perforation operates on a set of structural computational patterns amenable

to perforation. The analysis expects that the input specification provides a distribution of

the inputs of the computation. For instance, to analyze the effect of loop perforation,

a developer can specify that all elements of the array a come from a Gaussian 𝑁(0, 1)

distribution. The accuracy assertion specifies that the difference between the sum variable

computed by the original version of the summation computation is smaller than 0.5 with

probability at least 0.99. The analysis calculates the accuracy expression (parameterized

by the amount of skipped loop iterations) for the summation structural pattern and checks

whether it satisfies the developer’s accuracy assertion.

The analysis of approximate arithmetic operations and data stored in approximate mem-

ories operates on functions with scalar and array assignments, conditionals and finite loops.

For instance, a developer’s specification may state that for any input the kernel computa-

tion can provide the correct result with probability at least 0.99. The analysis computes

the expressions for the probability that the operations within the kernel executed correctly

(parameterized by the choice of approximate operations and data stored in approximate

memory) and checks whether it satisfies the developer’s output specification.

18

1.2.3 Searching for Approximate Kernel Transformations

In contrast to previous approaches for optimizing programs with accuracy-aware transfor-

mations that generate transformed versions of kernels and check whether they satisfy the

developer’s accuracy specification [53, 75, 79, 95, 96], this dissertation presents the first

system that uses the results of a probabilistic accuracy analysis to reduce the problem of

selecting the accuracy-aware transformations in approximate kernels to a standard mathe-

matical optimization problem.

This system, called Chisel, formulates the placement of approximate arithmetic oper-

ations and placement of data in approximate memories as an integer linear optimization

problem. Chisel’s sound static analysis generates inequalities that constrain the probability

that the function executes with acceptable accuracy. Chisel’s optional sensitivity profiler

helps a developer derive the accuracy specification for the kernel. Chisel also generates

an objective function that estimates energy savings from execution traces of the function

on representative inputs. All constraints and the objective function are functions of the

configuration vector that encodes the choices for approximating instructions and variables.

Chisel then dispatches the constructed optimization problem to an off-the-shelf integer opti-

mization solver to find the optimal configuration vector. Finally, Chisel uses the computed

configuration vector to place approximate instructions and data in the kernel. This approx-

imate version of the kernel is guaranteed to satisfy its output specification.

1.3 Problem Statement

The described techniques for analysis and optimization of approximate kernel computations

comprise the foundation of a rigorous framework for accuracy-aware optimization. The goal

of such accuracy-aware program optimization framework is to automatically find profitable

and controllable accuracy/performance tradeoffs. A tradeoff is profitable if the approximate

computation executes faster than the original computation, with acceptable accuracy losses.

A tradeoff is controllable if the accuracy of the approximate result satisfies the developer’s

accuracy specification.

By constructing the main components of the accuracy-aware optimization framework,

this dissertation therefore investigates the following main hypothesis:

Systems that automatically transform programs to trade accuracy

for performance and/or energy guided by program analysis

can obtain profitable and controllable tradeoffs

19

The dissertation presents the result of our investigation of the main hypothesis:

Chapter 2. This chapter presents a quantitative and qualitative analysis of approximate

kernels in real-world benchmark applications. To identify and analyze the approximation

of these kernel computations, we use a sensitivity profiler that applies loop perforation and

extends our previous SpeedPress approximate compiler [79]. Our quantitative evaluation

shows that transforming one or several approximate kernels can substantially improve the

performance of the benchmark applications. The evaluation found the maximum observed

performance improvements of over six times for a 10% output quality loss. Our qualitative

analysis of approximated computations identifies several functional and structural patterns

of approximated computational kernels. We also identified that the transformed computa-

tions rarely experience large errors. The results presented in this chapter guide our design

of rigorous analysis and optimization of approximate computations.

Chapter 3. This chapter formally represents loop perforation and presents a probabilistic

analysis of computations transformed using loop perforation. We present an analysis for

four structural code patterns including summation, averaging, ratio, or finding a value with

minimum/maximum score computed within the loop. The randomness that the analysis

quantifies comes from the inputs – a developer specifies the probability distribution of the

inputs and/or intermediate values that the computation produces. Given this specification,

the analysis computes expressions for the expected error, variance, and the probability of

large errors as functions of the fraction of the skipped loop iterations.

Chapter 4. This chapter introduces Chisel, a system for accuracy-aware and reliability-

aware optimization of kernel functions that run on approximate hardware. We also present

the formalization of an approximate hardware system that consists of a processor with an

approximate ALU and cache memory, and an approximate main memory.

Chapter 5. This chapter presents Chisel’s optimization algorithm. We present the foun-

dations of the accuracy analysis that quantifies the frequency and magnitude of the kernel’s

error induced by the transformations. We show how Chisel can use the analysis results

to construct a mathematical optimization problem to automatically generate an approxi-

mate kernel function that executes with minimum energy consumption while satisfying the

developer’s specification.

Chapter 6. This chapter presents the evaluation of Chisel’s optimization algorithm. Our

evaluation shows that Chisel was able to optimize approximate functions in five programs

from the image processing and financial analysis domains to obtain system-level energy

20

savings of up to 20% on a set of accuracy/energy specifications of several approximate

hardware designs while preserving reliability guarantees.

Chapter 7. This chapter presents related work, which includes research on software-level

and hardware-level approximate computing and related areas such as probabilistic program-

ming, program analysis of emerging computations, and approximate database queries.

Chapter 8. This chapter presents directions for future research that can extend accuracy-

aware optimization and advance the general area of approximate computing.

1.4 Contributions

This dissertation makes the following main contributions:

Rigorous Accuracy-Aware Optimization. It presents an optimization framework for

analyzing and optimizing programs transformed using accuracy-aware transformations. Our

analysis-based approach operates on approximate kernel computations and provides guaran-

tees that the transformed computations satisfy developer-provided accuracy specifications.

Transformation and Accuracy Specification. It presents a formalization of several

representative accuracy-aware transformations. This set of transformations includes loop

perforation, approximate arithmetic instructions, and storing data in approximate mem-

ories. We also present specifications that enable a developer to specify probabilistic con-

straints that characterize the accuracy of approximate kernel computations and the prop-

erties of their inputs.

Accuracy Analysis of Approximate Kernels. It presents a set of static accuracy

analyses for accuracy-aware transformations. These analyses use probabilistic reasoning to

quantify the magnitude and frequency of the differences between the results of the original

and transformed versions of the approximate kernels.

Accuracy-Aware Optimization Algorithm. It presents Chisel, the first system that

reduces the problem of selecting accuracy-aware transformations in programs to a math-

ematical optimization problem (in particular, integer linear programming). It therefore

provides a novel strategy for efficiently exploring the tradeoff space and finding optimal

accuracy/performance tradeoffs.

21

2 Characterization of Approximate Kernels

Using Loop Perforation

This chapter investigates properties of transformed approximate computations. We perform

a quantitative and qualitative analysis of programs transformed using loop perforation (an

accuracy-aware transformation that skips loop iterations).

Our analysis is based on sensitivity profiling. This is a dynamic program analysis that gen-

erates approximate programs by using accuracy aware transformations and checks whether

these computations produce results that satisfy the developer’s accuracy specification. This

chapter presents sensitivity profiling that extends the SpeedPress compiler framework,

which we previously constructed to transform programs using loop perforation [79]. Sec-

tion 2.1 presents the overview of the sensitivity profiling.

We characterize the approximate execution of programs by transforming seven applica-

tions from the PARSEC benchmark suite [11] using loop perforation. Section 2.2 presents

the approximate benchmarks, their accuracy specifications, and representative inputs used

in the experiments. This chapter presents several results of our investigation:

Performance and Accuracy of Perforated Computations. Our results show that

loop perforation can help significantly improve performance for five of the seven applications.

In each of these applications, our evaluation identified a single loop or a small number of

loops that are good candidates to loop perforation.

Specifically, our performance measurements show that the perforated applications can run

as much as seven times faster than the original applications while producing outputs that

differ by less than 10% from the corresponding outputs of the original applications. Our

empirical results also show that the perforated programs produce outputs with similar level

of accuracy even for a different set of inputs (and not just those used to guide sensitivity

profiling). Section 2.3 presents the results of quantitative analysis for loop perforation.

22

Structure and Functionality of Perforated Kernels. We have identified computa-

tional patterns that interact well with loop perforation. Specifically, we have identified

structural patterns, which indicate that loop perforation works well in cases when the loops

have a specific structure (e.g., computing a sum of data items computed in each loop it-

eration). We have also identified functional patterns, which indicate how the rest of the

computation uses the subcomputation’s results. Overall, these results indicate that suc-

cessful perforations target computations that are partially redundant at both the local level

of a loop and the global level of applications. Section 2.4 presents the description of func-

tional and structural computational patterns 1) that we identified in our evaluation of the

approximate benchmarks and 2) that are amenable to loop perforation. Section 2.5 further

presents a detailed description of the instances of these patterns (i.e., computations that

loop perforation successfully transformed) in the benchmark applications.

Frequency and Magnitude of Perforated Kernel’s Error. Our results show that

the approximate kernels that belong to the identified computational patterns, when trans-

formed, rarely produce large absolute errors (compared to the original kernel). We observed

that the likelihood of large errors increases as we apply more aggressive transformations,

but even then, the errors are typically much smaller than the maximum error. Section 2.6

presents an empirical study of error magnitude and frequency of perforated computations.

Overall, these results give us useful insights that can help us build a rigorous analysis of

approximate computations. We discuss these insights in Section 2.7.

Sources. The previous version of the research presented in this chapter appeared in [113].

Section 2.6 is based on research previously presented in [77]

2.1 Sensitivity Profiling in SpeedPress

SpeedPress [79, 113] is a compiler framework that automates program optimization with

loop perforation. SpeedPress uses a profiling-based approach to explore the tradeoff space

and discover loops that maximize the performance of the transformed program while satis-

fying the accuracy specification for a set of representative inputs.

As input to SpeedPress, a developer provides the original application, a set of represen-

tative inputs, and a specification of the program’s accuracy. We describe the parts of the

23

specification in Section 2.1.1. SpeedPress operates in three steps. In the first step, Speed-

Press performs standard performance profiling to find loops in which the program spends

the majority of the time. In the second step, SpeedPress finds the set of time consuming

loops that can be perforated by generating approximate programs and checking if they sat-

isfy the developer’s accuracy specification. SpeedPress uses loop perforation (Section 2.1.2)

as its transformation. In the third step, SpeedPress perforates multiple loops at the same

time and constructs a Pareto-optimal tradeoff curve, which contains the approximate pro-

grams that exhibit the most profitable tradeoffs between performance and accuracy. We

describe these steps in Section 2.1.3.

2.1.1 Developer’s Specification

The program-level developer’s accuracy specification consists of three components:

Output Abstraction. The output abstraction is a function that works with the pro-

gram’s output (and optionally its input) to compute a value or a list of values that represent

relevant properties of the output. We denote a result of output abstraction as 𝑜 = (𝑜1, . . . , 𝑜𝑚).

The output abstraction function is application-specific and is provided by the developer.

Typically, an output abstraction function selects relevant numbers from an output file or files

or computes an application-specific measure of the quality of the output. Many approximate

computations come with such quality measures already defined and available (e.g., as a part

of program testing). We present examples of output abstractions in Section 2.2.

Sensitivity Metric. The sensitivity metric function computes the distance between the

results of the original and transformed programs. The sensitivity function 𝑄(𝑜, 𝑜̂) takes as

input the two lists of values computed by the output abstraction function. The abstracted

output 𝑜 comes from the execution of the original program. The abstracted output 𝑜̂ comes

from the execution of the transformed program.

The function 𝑄(·, ·) is also specified by the developer. We will typically use a dis-

tance function based on the relative difference, called distortion [95]. In particular, dis-

tortion is a weighted mean scaled difference between the output abstraction components

𝑜 = (𝑜1, . . . , 𝑜𝑚) from the original program and the output abstraction components 𝑜̂ =

(𝑜1, . . . , 𝑜𝑚) from the perforated program:

𝑄(𝑜, 𝑜̂) =
1

𝑚

𝑚∑︁
𝑖=1

𝑤𝑖

⃒⃒⃒⃒
𝑜𝑖 − 𝑜𝑖
𝑜𝑖

⃒⃒⃒⃒
(2.1)

24

Each weight 𝑤𝑖 captures the relative importance of the 𝑖-th component of the output ab-

straction. Note that the closer this sensitivity metric 𝑄 is to zero, the more accurate the

transformed program is. We often report sensitivity metrics as percentages.

For multiple inputs, the developer can select the overall sensitivity of the transformed

program as an average or as a maximum sensitivity out of those computed for each input.

Sensitivity Goal. A developer can specify the bound 𝑏 that indicates the maximum

acceptable (tolerable) accuracy loss. Specifically, the bound represents the extreme value

of the sensitivity metric. It can be a maximum or a minimum, which depends on whether

the value 0 of the metric 𝑄(·, ·) represents the maximum or the minimum accuracy of the

result. For instance, for the sensitivity metric 𝑄 from Equation 2.1, the program executes

acceptably if 𝑄(𝑜, 𝑜̂) is less than 𝑏 (since the distortion value of 0 indicates fully accurate

output). On the other end, if infinity (or other large value) is the maximum of the sensitivity

metric, then the program executes if 𝑄(𝑜, 𝑜̂) is greater than 𝑏.

2.1.2 Loop Perforation Transformation

SpeedPress implements the loop perforation transformation within the LLVM compiler

framework [64]. The perforation pass works with any loop that the existing LLVM loop

canonicalization pass, loop-simplify, can convert into the following form:

for (i = 0; i < M; i++) { ... }

In this form, the loop has a unique induction variable (in the code above, i) initialized to

0 and incremented by 1 on every iteration, with the loop terminating when the induction

variable i exceeds the bound (in the code above, M). The class of loops that LLVM can

convert into this form includes, for example, for loops that initialize an induction variable

to an arbitrary initial value, increment the induction variable by an arbitrary constant value

on each iteration, and terminate when the induction variable exceeds an arbitrary bound.

The loop perforation transformation takes as a parameter a loop perforation rate 𝑟,

which represents the expected percentage of loop iterations to skip. Interleaving perforation

transforms the loop to perform every n-th iteration (here the perforation rate is 𝑟 = 1-1/n).

Conceptually, the perforated computation looks like:

for (i = 0; i < M; i += n) { ... }

In addition to interleaving perforation, SpeedPress can also apply other types of perforation.

Truncation perforation skips a contiguous sequence of iterations at either the beginning or

25

the end of the loop. For example, it can replace the loop condition i < M with i < M/n.

Random perforation randomly skips loop iterations. Perforated computations can also skip

only one out of M iterations. Our previous work [52] presents a detailed treatment of how

to implement various loop perforation strategies.

2.1.3 Sensitivity Profiling Algorithm

The loop perforation space exploration algorithm takes as input an application, an accuracy

specification for that application, a set of training inputs, and a set of perforation rates.

The algorithm produces a set 𝑆 of loops to perforate at specified perforation rates.

Sensitivity Profiling for Individual Loops

The exploration algorithm starts with a set of candidate loops. The algorithm can be

configured to consider only loops that execute for more than a certain percentage of the

execution time. In general, perforating a candidate loop may cause the program to crash,

generate unacceptable output, produce an infinite loop, or decrease its performance. Algo-

rithm 2.1 is designed to find and remove such critical loops from the set of candidate loops.

The algorithm perforates each loop in turn, using each of the specified perforation rates,

then runs the perforated program on the training inputs.

The sensitivity profiling algorithm filters out a loop if its perforation (1) fails to improve

the performance as measured by the speedup 𝑠, which is the execution time of the perforated

application divided by the execution time of the original unperforated program running

on the same input, (2) causes the application to exceed the sensitivity bound 𝑏 or, (3)

introduces memory errors (such as out of bounds reads or writes, reads to uninitialized

memory, memory leaks, double frees, etc.). If a memory error causes the execution to crash

on some input 𝑡, its sensitivity 𝑎𝑡 is ∞. The result of sensitivity profiling is the set of

perforatable loops 𝑃 = {⟨𝑙, 𝑟⟩}, where ⟨𝑙, 𝑟⟩ specifies the perforation of loop 𝑙 at rate 𝑟.

Perforation Space Exploration

To find the potential for how much an application can be perforated, the algorithm for

exploring the space of perforated programs tests programs in which it perforates all combi-

nations of perforatable loops using sensitivity profiling.

The algorithm starts with the set of perforatable loops, then exhaustively explores all

combinations of perforatable loops 𝑙 at their specified perforation rates 𝑟. The algorithm

executes all combinations on all training inputs and records the resulting speedup and

26

Inputs:

𝐴 - an application

𝑇 - a set of representative inputs

𝑄 - a sensitivity metric

𝑏 - a sensitivity bound

𝐿 - a set of candidate loops for perforation

𝑅 - a set of perforation rates

Outputs: 𝑃 - a set of loops and perforation rates for 𝐴 that satisfy

the developer’s accuracy specification.

𝑃 = ∅
for 𝑡 ∈ 𝑇 do

Run 𝐴 on 𝑡, record execution time 𝑒𝑡 and output abstraction 𝑜𝑡

end for

for ⟨𝑙, 𝑟⟩ ∈ 𝐿×𝑅 do

Let 𝐴⟨𝑙,𝑟⟩ be 𝐴 with 𝑙 perforated at rate 𝑟

for 𝑡 ∈ 𝑇 do

Run 𝐴⟨𝑙,𝑟⟩ on 𝑡, record execution time 𝑒𝑡 and output abstraction 𝑜̂𝑡

a𝑡 = 𝑄(𝑜𝑡, 𝑜̂𝑡) and s𝑡 = 𝑒𝑡/𝑒𝑡.

end for

s = (
∑︀
𝑡∈𝑇 s𝑡)/||𝑇 || ; a = (

∑︀
𝑡∈𝑇 a𝑡)/||𝑇 ||

if a < 𝑏 ∧ s > 1 then

for 𝑡 ∈ 𝑇 do

Run 𝐴⟨𝑙,𝑟⟩ using Valgrind to find 𝐸𝑡 (memory errors)

end for

if
⋃︀
𝑡∈𝑇 𝐸𝑡 = ∅ then

𝑃 = 𝑃 ∪ {⟨𝑙, 𝑟⟩}
end if

end if

end for

return 𝑃

Figure 2.1: Sensitivity Profiling Finds the Set of Perforatable Loops 𝑃 in Application 𝐴

Given Training Inputs 𝑇 , Sensitivity metric 𝑄 and Sensitivity Goal 𝑏.

accuracy. It also runs each perforated candidate program under Valgrind [86], discarding

the combination if Valgrind detects a memory error (similar to sensitivity profiling algorithm

for individual loops).

27

We use the results of exploration to compute the set of Pareto-optimal perforations in

the induced performance vs. accuracy tradeoff space. A perforation is Pareto-optimal if

there is no other perforation that provides both better performance and better accuracy.

A user of the analysis can provide a sensitivity bound 𝑏 to obtain the perforated program

whose sensitivity is the closest below 𝑏, and provides the maximum speedup.

This approach is feasible for applications (such as those in our set of benchmarks) that

spend the majority of their time in relatively few loops. If the application has enough loops

to make exhaustive exploration infeasible, it is possible to either use a greedy algorithm

(e.g., as one in [79]) or drop enough of the least time-consuming perforatable loops to make

exhaustive exploration feasible. Hybrid approaches are also possible.

2.2 Benchmarks and Inputs

Benchmark Training Inputs Production Inputs Source

x264 4 HD videos 12 HD videos PARSEC & videos

of 200+ frames of 200+ frames from xiph.org [70]

bodytrack sequence of sequence of PARSEC & additional input

100 frames 261 frames provided by benchmark authors

swaptions
64 swaptions 512 swaptions

PARSEC & randomly

generated swaptions

ferret 256 image queries 3500 image queries PARSEC

canneal 4 netlists of 16 netlists of PARSEC & additional inputs

2M+ elements 2M+ elements provided by benchmark authors

blackscholes 64K options 10M options PARSEC

streamcluster 4 streams of 10 streams of PARSEC & UCI Machine

19K-100K data points 100K data points Learning Repository [8]

Table 2.1: Summary of Training and Production Inputs

Table 2.1 summarizes the sources of the evaluation inputs. We evaluate loop perforation

using a set of benchmark applications from the PARSEC 1.0 benchmark suite [11]. These

applications were chosen to be representative of modern and emerging workloads for the next

generation of processor architectures. We use the following applications: x264, bodytrack,

swaptions, ferret, canneal, blackscholes, and streamcluster. Together these benchmarks rep-

resent a broad range of application domains including financial analysis, media processing,

computer vision, engineering, data mining, and similarity search.

28

For each benchmark we acquire a set of evaluation inputs, then pseudorandomly partition

the inputs into training and production sets. We use the training inputs to drive the loop

perforation space exploration algorithm (Section 2.1.3) and the production inputs to eval-

uate how well the resulting perforations generalize to unseen inputs. For each benchmark,

the PARSEC benchmark suite contains “native” inputs designed to represent the inputs

that the application is likely to encounter in practical use. We always include these inputs

in the set of evaluation inputs. For many of the benchmarks we also include other repre-

sentative inputs, typically to increase the coverage range of the evaluation set, to promote

an effective partition into reasonably-sized training and production sets, or to compensate

for deficiencies in the native inputs provided with the PARSEC benchmark suite.

For each of the benchmarks we describe below what the application does, what inputs

we executed, and how we defined the sensitivity metric of the computation.

x264. This media application performs H.264 encoding on raw video data. It outputs a file

containing the raw (uncompressed) input video encoded according to the H.264 standard.

The output abstraction extracts the peak-signal-to-noise ratio (PSNR) (which measures

the quality of the encoded video relative to the original, unencoded video) and the bitrate

(which measures the compression achieved by the encoder). The sensitivity metrics weighs

both PSNR and bitrate equally with a weight of one. If the reference decoder fails to parse

the encoded video during training, we record the sensitivity metric of 100% and reject the

perforation.

Since the native PARSEC input contains only a single video, we augment the evaluation

input set with additional inputs from xiph.org [70]. These inputs represent the standard

test videos that are used by developers of software that manipulates video files.

Bodytrack. This computer vision application uses an annealed particle filter to track the

movement of a human body [35]. It produces two output files: a text file containing a series

of vectors representing the positions of the body over time and a series of images graphically

depicting the information in the vectors overlaid on the video frames from the cameras. The

output abstraction extracts vectors that represent the position of the body. The weight of

each vector in the sensitivity metric is proportional to its magnitude (in the result of the

original program). Vectors which represent larger body parts (such as the torso) therefore

have a larger influence on the sensitivity metric than vectors that represent smaller body

parts (such as forearms).

The application requires data collected from carefully calibrated cameras. The native

PARSEC input contains a single sequence of 261 frames. We augment the evaluation input

29

set with another sequence of 100 frames that we obtained from the maintainers of the

PARSEC benchmark suite.

Swaptions. This financial analysis application uses a Monte Carlo simulation to solve a

partial differential equation that prices a portfolio of swaptions. The output abstraction

simply extracts the swaption prices. The sensitivity metric computes the distortion between

the extracted prices.

Each input to this application contains a set of parameters for each swaption. The native

PARSEC input simply repeats the same parameters multiple times, causing the application

to repeatedly calculate the same swaption price. We therefore augment the evaluation input

set with additional randomly generated parameters so that the application computes prices

for a range of swaptions.

Ferret. This application performs a content-based similarity search of an image database.

For each input query image, ferret outputs a list of similar images found in its database.

The sensitivity metric computes the degradation of precision of Ferret’s search. To compute

the sensitivity metric, the procedure first calculates the intersection of the sets of images

returned by the perforated and original versions, then computes recall by dividing the size

of this set by the size of the set of images returned by the original version, then subtracting

this number from one. So, if both versions return 10 images, 9 of which are the same, the

sensitivity metric is 0.1.

The PARSEC benchmark suite contains 3500 different image queries. We do not use

additional inputs.

Canneal. This engineering application uses simulated annealing to minimize the routing

cost of a microchip design. Canneal prints a number representing the total routing cost

of a netlist representing the chip design; we use this cost as the output abstraction and

distortion as the sensitivity metric. The resulting accuracy specification directly captures

the application’s ability to reduce routing costs.

The PARSEC benchmark contains only one large netlist. We obtained additional input

netlists from the maintainers of the PARSEC benchmark suite.

Blackscholes. This financial analysis application solves a partial differential equation to

compute the price of a portfolio of European options. The PARSEC application produces

no output. We therefore modified the application to print the option prices to a file. The

output abstraction extracts these option prices. The distortion calculation weights these

prices equally (with a weight of one). The resulting accuracy specification directly captures

the ability of the perforated application to compute accurate option prices.

30

The native input from the PARSEC benchmark suite contains 10 million different option

parameters. We do not augment this input set with additional inputs.

Streamcluster. This data mining application solves the online clustering problem. The

program outputs a file containing the cluster centers found for the input data set. The

output abstraction extracts the quality of the clustering as measured by the BCubed met-

ric [4]. The sensitivity metric is the absolute difference between the results of the clustering

metric. The resulting accuracy specification directly captures the ability of the application

to solve the clustering problem.

The native PARSEC input consists of a randomly generated set of points drawn from a

uniform distribution. Since for this input all clusterings have equal low quality clustering

where even the trivial algorithm (that randomly selects cluster centers) have almost identical

accuracy, we augment the evaluation input set with more realistic inputs from the UCI

Machine Learning Repository [8].

Other Benchmarks. The PARSEC benchmark suite also contains the following bench-

marks: facesim, dedup, fluidanimate, freqmine, and vips. We did not include freqmine

and vips because these benchmarks did not successfully compile with the LLVM compiler

version 2.5. We did not include dedup and fluidanimate because these applications produce

complex binary output files. Not having deciphered the meaning of these files, we were

unable to develop meaningful accuracy specification. We do not include facesim because its

discards the output and produces only timing information.

2.3 Quantitative Exploration Results

We next present the results of applying SpeedPress to our benchmark applications with

representative inputs and the accuracy specification presented in Section 2.2. The goal of

this exploration is to find the upper bound to applicability of loop perforation and identify

common properties of approximate computations that make loop perforation successful,

and generalize the properties of these transformations beyond this specific transformation.

2.3.1 Sensitivity Profiling Results

We first execute the sensitivity profiling algorithm to find loops that can be perforated in

each application. We collect the count of loops that the sensitivity profiling filtered out for

different reasons. We also collect the number of loops that the testing procedure identified

31

as perforatable, which indicates the number of approximate computations in the benchmark

applications.

Methodology. We used the benchmarks and inputs from Section 2.2. To start sensitivity

profiling, we considered the loops (identified by profiling) that contribute at least 1% of the

executed instructions (with a cutoff after the top 25 loops). We specified a sensitivity bound

𝑏 of 0.1 (representing 10%). We instructed SpeedPress to perforate loops with interleaving

perforation, which skips every other iteration. We applied four different perforation rates –

0.25 (skip a quarter of iterations), 0.5 (skip a half of iterations), 0.75 (skip three quarters

of iterations), and execute a single loop iteration (skip all iterations after the first). We

performed all of our runs on eight dual quad Intel Xenon X5460 3.1 GHz machines with 8

GB of RAM running Linux.

Profiling Results. Table 2.2 summarizes, for each application, the result of checking

each loop in the sensitivity profiling algorithm from Section 2.1.3. Each column presents

results for a given perforation rate (0.25, 0.5, 0.75 and 1 iteration). The first row (Candidate)

presents the starting number of candidate loops. This number is always 25 unless the

application has fewer than 25 loops that account for 1% of the executed instructions.

The second row (Crash) presents the number of loops that Algorithm 2.1 filters out be-

cause perforating the loop caused the application to crash or otherwise terminate with an

error. The third row (Accuracy) presents the number of loops filtered by the algorithm

because perforating the loop caused the application to violate the corresponding accuracy

bound. The fourth row (Speed) presents the number of remaining loops that Algorithm 2.1

filters out because perforating the loop does not improve the overall performance (this typ-

ically happens for tight loops at a 0.25 perforation rate). The fifth row (Valgrind) presents

the number of remaining loops that Algorithm 2.1 filters out because their perforation

introduces a latent memory error detected by the Valgrind memcheck tool [86].

SpeedPress was able to find at least one perforatable loop in each of the benchmarks

(these loops improve the program’s performance, while satisfying the developer’s accuracy

requirement). The maximum number of perforatable loops is 13 (bodytrack, while running

a single iteration of the loop). These results show that most of the benchmarks have only

a few perforatable loops, which indicates that the applications have a small number of

approximate computational kernels, comprising these perforatable loops. Modifying the

approximate computational kernels affects only the accuracy of the computation, and not

its proper execution (on the set of representative inputs). In Sections 2.4 and 2.5, we will

focus on the function and structure of the approximate computations.

32

x264

Filter 25% 50% 75% 1 iter

Candidate 25 25 25 25

Crash 1 1 1 1

Accuracy 6 7 7 6

Speed 16 12 10 11

Valgrind 0 0 1 1

Remaining 2 6 6 6

bodytrack

Filter 25% 50% 75% 1 iter

Candidate 25 25 25 25

Crash 2 5 7 1

Accuracy 1 1 2 2

Speed 12 10 1 1

Valgrind 3 1 6 8

Remaining 7 8 9 13

swaptions

Filter 25% 50% 75% 1 iter

Candidate 25 25 25 25

Crash 3 6 8 0

Accuracy 13 12 13 16

Speed 5 4 2 2

Valgrind 2 2 1 5

Remaining 2 1 1 2

ferret

Filter 25% 50% 75% 1 iter

Candidate 25 25 25 25

Crash 8 12 12 6

Accuracy 13 11 11 17

Speed 0 0 0 0

Valgrind 0 0 0 0

Remaining 4 2 2 2

canneal

Filter 25% 50% 75% 1 iter

Candidate 16 16 16 16

Crash 7 10 10 6

Accuracy 1 1 1 4

Speed 7 4 4 5

Valgrind 0 0 0 0

Remaining 1 1 1 1

blackscholes

Filter 25% 50% 75% 1 iter

Candidate 6 6 6 6

Crash 0 0 0 0

Accuracy 4 4 4 4

Speed 1 1 1 1

Valgrind 0 0 0 0

Remaining 1 1 1 1

streamcluster

Filter 25% 50% 75% 1 iter

Candidate 15 15 15 15

Crash 1 1 2 4

Accuracy 0 0 0 0

Speed 13 11 8 7

Valgrind 0 0 0 0

Remaining 1 3 5 4

Table 2.2: Sensitivity Profiling Results for Individual Loops. For Each Perforation Rate,

Table Contains the Number of Loops Identified by Each of the Filters.

33

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 5 10 15 20 25 30 35

M
e
a
n
 N

o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
c
e

Accuracy loss

x264

Perforated points
Perforated points (> bound)

Pareto points

Figure 2.2: x264

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12 14 16

M
e
a
n
 N

o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
c
e

Accuracy loss

bodytrack

Perforated points
Perforated points (> bound)

Pareto points

Figure 2.3: Bodytrack

 1

 2

 3

 4

 5

 6

 7

 0 0.5 1 1.5 2 2.5 3 3.5 4

M
e
a
n
 N

o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
c
e

Accuracy loss

swaptions

Perforated points
Pareto points

Figure 2.4: Swaptions

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 2 4 6 8 10 12 14 16 18 20

M
e
a
n
 N

o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
c
e

Accuracy loss

ferret

Perforated points
Perforated points (> bound)

Pareto points

Figure 2.5: Ferret

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 4 4.5 5 5.5 6 6.5 7 7.5

M
e
a
n
 N

o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
c
e

Accuracy loss

canneal

Perforated points
Pareto points

Figure 2.6: Canneal

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6

M
e
a
n
 N

o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
c
e

Accuracy loss

streamcluster

Perforated points
Pareto points

Figure 2.7: Streamcluster

2.3.2 Tradeoff Space Exploration Results

We execute SpeedPress’s exhaustive loop perforation space exploration algorithm to get a

sense for the approximation potential of the benchmark applications (i.e., the maximum

amount of perforation that we can apply). For the set of programs transformed using loop

perforation, SpeedPress identifies Pareto-optimal perforated programs.

Methodology. We used the benchmarks and inputs from Section 2.2 and the results from

sensitivity profiling. After the algorithm calculated the set of Pareto-optimal perforated

programs, we executed those that satisfy the sensitivity bounds of 2.5%, 5%, 7.5% and

10.0% on a different set inputs (also described in Section 2.2). We compared the obtained

performance and accuracy results to check whether the results generalize to other inputs.

We performed all of our runs on the same machines as sensitivity profiling.

Exploration Results. Figures 2.2 through 2.7 present the results of this exploration.

The graphs plot a single point for each explored perforation. The y coordinate of the point

is the mean speedup of the perforation (over all profiling inputs). The x coordinate is

the corresponding percentage accuracy loss of the perforation. Green points have accuracy

losses below 10%; red points have accuracy losses above 10%. The blue line in each graph

connects the points from Pareto-optimal perforations.

34

Training

Results

Application Bound

2.5% 5% 7.5% 10%

x264 2.38 (2.5%) 2.66 (5%) 3.17 (6.53%) 3.25 (9.31%)

bodytrack 3.44 (2.23%) 6.32 (4.36%) 6.89 (6.19%) 6.89 (6.19%)

swaptions 5.08 (1.0%) 5.08 (1.0%) 5.08 (1.0%) 5.08 (1.0%)

ferret 1.02 (0.2%) 1.03 (4%) 1.03 (4.0%) 1.16 (10.0%)

canneal 1.14 (4.38%) 1.18 (4.43%) 1.91 (7.14%) 1.91 (7.14%)

blackscholes 33.0 (0.0%) 33.0 (0.0%) 33.0 (0.0%) 33.0 (0.0%)

streamcluster 5.51 (0.54%) 5.51 (0.54%) 5.51 (0.54%) 5.51 (0.54%)

Production

Results

Application Bound

2.5% 5% 7.5% 10%

x264 2.34 (5.15%) 2.53 (6.08%) 3.12 (8.72%) 3.19 (10.3%)

bodytrack 2.70 (4.00%) 4.93 (6.12%) 4.81 (6.58%) 4.81 (6.58%)

swaptions 5.05 (0.20%) 5.05 (0.20%) 5.05 (0.20%) 5.05 (0.20%)

ferret 1.00 (0.15%) 1.02 (0.23%) 1.02 (0.23%) 1.07 (7.90%)

canneal 1.14 (4.38%) 1.14 (4.38%) 1.46 (7.88%) 1.46 (7.88%)

blackscholes 28.9 (0.0%) 28.9 (0.0%) 28.9 (0.0%) 28.9 (0.0%)

streamcluster 4.87 (1.71%) 4.87 (1.71%) 4.87 (1.71%) 4.87 (1.71%)

Table 2.3: Training and Production Results for Pareto-optimal Perforations for Varying

Accuracy Bounds. A pair 𝑥 (𝑦%) presents the corresponding mean speedup 𝑥

and mean accuracy 𝑦

The graphs show that, for these applications, loop perforation is usually able to increase

performance on the profiling inputs by at least a factor of two (up to a factor of seven for

bodytrack) while reducing the accuracy by less than 10% (ferret is the exception). The

graphs also illustrate the broad range of points in the performance vs. accuracy trade-off

space that the loop perforation space exploration algorithm is able to find. Overall, this

indicates that the benchmark applications have a substantial optimization potential that

can be uncovered by perforating individual loops and combinations of loops.

Sensitivity of Tradeoffs to Different Inputs. Table 2.3 presents accuracy and speedup

results for selected Pareto-optimal perforations in the loop perforation space. There is a

row for each application and a group of columns for the profiling and production inputs.

Each group of columns presents results for the Pareto-optimal perforation for four accuracy

loss bounds 𝑏: 2.5%, 5%, 7.5%, and 10%. Each entry of the form 𝑋(𝑌%) presents the

corresponding mean speedup 𝑋 and mean accuracy 𝑌 for that combination of application,

35

Application Sensitivity Profiling (Individual Loops) Tradeoff Exploration

Accuracy Valgrind Total (Multiple Loops)

x264 500 (108m) 110 (840m) 610 (949m) 3071 (665m)

bodytrack 100 (35m) 47 (1316m) 147 (1351m) 5624 (1968m)

swaptions 100 (7m) 16 (108m) 116 (115m) 32 (9m)

ferret 100 (17m) 40 (53m) 140 (71m) 255 (43m)

canneal 256 (405m) 60 (540m) 316 (945m) 2 (12m)

blackscholes 24 (0.5m) 12 (5m) 36 (5.5m) 19 (1m)

streamcluster 500 (3083m) 17 (782m) 517 (3865m) 639 (3941m)

Table 2.4: Sensitivity Profiling Statistics for Benchmark Applications.

bound, and input set. With the exception of ferret, all applications show a reasonable

correlation between profiling and production results, indicating that the results from the

sensitivity profiling generalize well to other inputs.

2.3.3 Execution Time of Analysis Results

Table 2.4 presents timing results for the sensitivity profiling runs (Algorithm 2.1). The table

contains a row for each application. The second column Accuracy presents timing results

for executions that measure the speedup and accuracy of different perforations. The third

column (Valgrind) presents timing results for the Valgrind dynamic analysis that searches

for memory errors. The fourth column (Total) presents the sum of results from columns two

and three. The fifth column (Tradeoff Exploration) presents timing results for exploring the

combinations of perforated loops. Each entry of the form 𝑋(𝑌) indicates that algorithm

considered 𝑋 different combinations of perforated loops and that the executions took a

total of 𝑌 minutes to complete.

The total execution times for sensitivity profiling range from 6 minutes for blackscholes

to approximately 64 hours for streamcluster, with other applications requiring significantly

less time. The total execution times range from 1 minute for blackscholes to 65 hours for

streamcluster. These execution times include both the execution of the program and the

additional sensitivity profiling of the combined perforations with Valgrind.

36

2.4 Computational Patterns Amenable to Loop Perforation

This section presents the properties of approximate computations. We identified these

properties by examining perforatable loops in the benchmark applications (discovered by the

quantitative exploration in Section 2.3). Then in Section 2.5 we present the computations

we identified in the benchmark applications that are instances of these patterns. Based on

our investigation, we present two kinds of patterns:

∙ Functional patterns. These patterns focus on how the rest of the application uses

the approximate computations by describing how the results of the computation con-

tribute to computing the program’s output. For instance, a computation may calculate

a distance metric that the application uses to compare the fitness of multiple elements

before returning the fittest element; or a computation may perform Monte-Carlo sim-

ulation that computes one of the application’s results.

∙ Structural patterns. These patterns describe the statements and expressions that

comprise the pattern and specify the points in the code that the transformation can

modify. For example, a computation may represent a sum that aggregates the values

computed in each loop iteration; in this loop, perforation can change the expression

that increments the induction variable and the expression that checks the loop’s exit

condition.

We remark that while functional and structural patterns may often apply together to the

same computation, they are conceptually different. For instance, a distance metric is often

computing as an average of element-wise differences. However, a Monte-Carlo simulation

may also compute the average of the large number of individual trials. While the structure

of the computation in this case is the same – and we can analyze these computations using

the same analysis – the role of the computation can clearly be different – and therefore we

can have different goals when specifying the accuracy requirements of the computation.

Methodology. Our analysis of approximate computation focuses on those computations

that are amenable to loop perforation. We specifically studied loops that appear in Pareto-

optimal perforations (Section 2.3.2), as those loops contribute most to the approximate

program’s accuracy and performance. To identify likely patterns, we investigated the source

code of the application and used debugging tools to understand the behavior of applications.

In almost all cases, we defined patterns after identifying the common properties in two or

more studied computations.

37

2.4.1 Functional Patterns

In this section we describe the functional computational patterns that interact well with

loop perforation. We identified the following patterns (see Section 2.5 for a discussion of

the pattern instances, which we identified in the benchmarks):

Search Space Enumeration (SSE): The application iterates over a search space of

items. The perforated computation skips some of the items, returning one of the items

from the remaining part of the search space.

Search Metric: The application uses a search metric to drive a search for the most

desirable item from a set of items:

∙ Selection (SMS): A selection metric quantifies the desirability of each item encoun-

tered during the search.

∙ Filtering (SMF): A filtering metric determines if the search should remove the item

from a set of active items.

∙ Termination (SMT): A termination metric determines if the search should termi-

nate, either because an acceptable item has been found or because the likelihood of

finding a more desirable item appears to be small.

Perforating a search metric computation produces a new, less accurate but more efficiently

computable metric. The effect is that the perforated search may return a less desirable but

still acceptable item. We note that some applications use the same metric for more than

one purpose, i.e., a metric can be a combined selection, filtering, and/or termination metric.

Monte-Carlo Simulation (MC): The application performs a Monte-Carlo simulation.

The perforated computation evaluates fewer samples to produce a (potentially) less accurate

result more efficiently.

Iterative Improvement (II): The application repeatedly improves an approximate re-

sult to obtain a more accurate result. The perforated computation performs fewer improve-

ment steps to produce a (potentially) less accurate result more efficiently.

Array Update (UPD): The application traverses an array, updating its elements. The

perforated computation skips some of the updates, leaving the previous values in place.

Fully Redundant Computation (RED): This application produces data that is not

later used. The perforated computation skips redundant computation.

38

2.4.2 Structural Patterns

We have identified several structural computational patterns that interact well with loop

perforation. Figure 2.8 presents four patterns that we identified in the perforated computa-

tions. All four patterns perform reduction – they aggregate data computed in each iteration

and produce a single result.

In each pattern, the computation inside the loop body is denoted as a generic function

f(). While it can read the induction variable i and other state variables surrounding the

loop, the function is side-effect free. It only produces the value and does not otherwise

affect the program state. The type of variables is also generic, denoted as val, except for

the type of the induction variable, which is always an integer (int).

Sum Pattern Average Pattern

val sum = 0.0;

for (int i = 1 ; i <= n ; i++) {

sum += f(i);

}

return sum;

val sum = 0.0;

for (int i = 1 ; i <= n ; i++) {

sum += f(i);

}

val mean = sum / n;

return mean;

Argmin Pattern Ratio Pattern

val best = MAX_DOUBLE;

int best_index = -1;

for (int i = 1 ; i <= n ; i++) {

val s = f(i);

if (s < best) {

best = s; best_index = i;

}

}

return best_index;

val numer = 0.0;

val denom = 0.0;

for (int i = 1 ; i <= n ; i++) {

numer += f1(i);

denom += f2(i);

}

ratio = numer / denom;

return ratio;

Figure 2.8: Local Perforation Patterns. Loop Perforation Transforms Shaded Code Blocks.

Sum Pattern. The loop sums up the values computed in each iteration. In each iteration,

the computation inside the loop body, represented by the function f(), produces a single

contribution.

39

Average Pattern. The loop sums up the values computed in each iteration and computes

the average by dividing the running sum with the number of elements.

Argmin (Argmax) Pattern. This pattern compares the value computed in each loop

iteration against the minimum (maximum) value that was observed so far. The computation

saves and returns the iteration count of the minimum computed element. This pattern often

represents computations that iterate over collections.

Ratio Pattern. This pattern consists of a single loop that computes two aggregate values,

numerator (numer) and denominator (denom) using the function f1 and f2, respectively. After

the loop, the computation computes the ratio of the two sums. One can see this pattern as

the generalization of the average pattern.

2.5 Analysis of Perforated Computations in Benchmarks

Table 2.5 presents data for every loop which is perforated in at least one Pareto-optimal

approximate program with an accuracy loss under 10%. The first column presents the

function in which the loop appears and (when the loop appears in a loop nest) whether

the loop is an inner loop or outer loop of a loop nest. The second column presents the

percentage of time spent in each loop (before perforation). The third column presents both

the functional (as discussed in Section 2.4.1) and structural (as discussed in Section 2.4.2)

computation patterns for the loop. For example, the entry for the first loop in x264 is

SSE/Argmin, which indicates that the functional pattern for the loop is the Search Space

Enumeration pattern, while the structural pattern is the Argmin pattern. Some loops are

not an instance of any of the structural patterns. In this case we present the functional

pattern only.

2.5.1 x264

The x264 encoder divides each frame into blocks, then performs the encoding at the gran-

ularity of blocks. Motion estimation attempts to find a block from a previously encoded

frame that is similar to the block that x264 is currently attempting to encode. If it finds

such a block, x264 encodes the delta over this previously encoded block. Motion estimation

consumes the vast majority of the computation time in x264.

All of the perforatable loops in x264 appear in the motion estimation computation. Two of

these loops (x264 mb analyze inter p16x16 and x264 search ref) are instances of the Search

Space Enumeration functional pattern and the Argmin structural pattern (which computes

40

x264

Function Time Pattern Type

x264 mb analyse inter p16x16 64.20% SSE / Argmin

x264 pixel sad 16x16, outer 55.80% SMS+T / Sum

x264 pixel sad 16x16, inner 54.60% SMS+T / Sum

x264 me search ref 25.00% SSE / Argmin

pixel satd wxh, outer 18.50% SMS+T / Sum

pixel satd wxh, inner 18.30% SMS+T / Sum

bodytrack

Function Time Pattern Type

Update 77.00% II

ImageErrorInside, inner 37.00% SME / Ratio

ImageErrorEdge, inner 29.10% SME / Ratio

InsideError, outer 28.90% SME / Sum

IntersectingCylinders 1.16% SMF+SSE

swaptions

Function Time Pattern Type

HJM Swaption Blocking, outer 100.00% MC / Mean

HJM SimPath Forward Blocking, outer 45.80% RED

HJM SimPath Forward Blocking, inner 31.00% RED

Discount Factors Blocking 1.97% UPD

ferret

Function Time Pattern Type

emd 37.60% SMS+II

LSH query bootstrap 27.10% SSE

LSH query bootstrap 26.70% SSE

LSH query bootstrap 2.70% SSE

canneal

Function Time Pattern Type

reload 2.38% UPD

blackscholes

Function Time Pattern Type

bs thread 98.70% RED

streamcluster

Function Time Pattern Type

pFL, inner 98.50% II

pgain 84.00% SME+T+UPD

dist 69.30% SME+T / Sum

pgain 5.01% SME+T

Table 2.5: Patterns in Pareto-optimal Perforations. Pattern Type lists loop’s functional and

(optional) structural patterns. These patterns are described in Sections 2.4.1

and 2.4.2, respectively.

41

the index and value of the minimum element in an array of elements). The most time con-

suming loop (x264 mb analyze inter p16x16) searches previously encoded reference frames

to find a block that is a good match for the block that x264 is currently encoding. Perfo-

rating this loop causes x264 to search fewer reference frames. The second (x264 search ref)

is given a single reference frame and searches within that frame to find a good match.

Perforating this loop causes x264 to consider fewer blocks within the frame.

All of the remaining loops are instances of the Search Metric for both Selection and

Termination functional pattern and the Sum structural pattern (which computes the sum

of a set of numbers). These loops all compute a metric that measures how well the current

block matches a previously encoded block. Perforating these loops causes x264 to skip

pixels when it computes the metric, producing a new, less accurate, but more efficiently

computable metric. In addition to using this metric to select the previously encoded block

that is the best match, x264 also uses the metric to decide when it should terminate the

search (within a frame, x264 terminates the search when it fails to find a new desirable block

after a given number of probes). Because the perforated metric makes fewer distinctions

between blocks, perforation will typically cause the search to terminate with fewer probes.

All of these perforations may cause x264 to choose a less desirable previously encoded

block as a starting point for encoding the current block. But because there is significant

redundancy in the set of previously encoded blocks (typically, many previously encoded

blocks are a reasonably good match for the current block), the results show that x264 is

still usually able to find a good block even after perforation.

2.5.2 Bodytrack

Bodytrack uses an annealed particle filter to track the movement of specific parts of a human

body (head, torso, arms, and legs) as a person moves through a scene [35]. At each input

video frame bodytrack starts with a probabilistic model of the position of the body from

the previous frame. This model consists of a weighted set of particles. Each particle consists

of a set of angles between body parts that together specify a body pose. Each particle is

assigned a weight (a likelihood that it accurately represents the current body pose). The

goal of the computation is to calculate a new model of the body in the current frame as a

weighted average of the particles. Bodytrack starts with the model from the previous frame,

then refines the model by iterating through multiple annealing layers. At each annealing

layer it processes each particle to create a representation of the body position and location

as a set of cylinders, each of which represents a specific body part. It then compares this

42

representation to image processing data from the current frame, then uses the comparison

to update the weight of the corresponding particle.

The Update loop performs the annealing steps. Because these steps are designed to

improve the accuracy of the model, we identify this loop as an instance of the Iterative

Improvement functional pattern (even though it is possible for an individual step to produce

a slightly less accurate model). Perforating this loop causes bodytrack to perform fewer

annealing steps and produce a potentially less accurate model more efficiently.

The ImageErrorInside, ImageErrorEdge, and InsideError loops compute a metric that

characterizes how closely the body pose for a given particle matches the observed image

data. These loops select a number of sample points along the edges and interiors of the

cylinders that represent the body position. We identify these loops as instances of the

Search Metric for Selection pattern — they compute values that measure how closely the

particle matches the image data. Two of these loops are instances of the Ratio structural

pattern (which computes the ratio of two sums). The third is an instance of the Sum

structural pattern. Perforating these loops causes bodytrack to consider only a subset of

the sample points when it computes the metric. The result is a more efficiently computable

but potentially less accurate metric.

The IntersectingCylinders loop iterates over all pairs of cylinders in a given particle to

compute if any of the pairs intersect. If so, bodytrack removes the particle from the model

(and may potentially replace it with a new particle). We identify this loop as an instance

of the Search Metric for Filtering pattern because it computes a simple metric (either the

particle is valid or invalid). We also identify this loop as an instance of the Search Space

Enumeration pattern because it enumerates all pairs of cylinders. Perforating this loop

causes bodytrack to consider only a subset of the pairs of cylinders. The result is that

bodytrack may consider a particle to be valid even though it represents an unrealistic body

pose. Bodytrack will therefore keep the particle in the model instead of filtering it out.

Because these particles represent unrealistic positions, they will typically be given little or

no weight in the model and will therefore have little or no effect on the accuracy. Note that

this effect may actually decrease the performance (although we observed little or no impact

on the performance or accuracy in practice).

2.5.3 Swaptions

Swaptions uses Monte Carlo simulation to price a portfolio of swaptions. Each iteration

of the HJM Swaption Blocking loop computes a single Monte-Carlo sample. Each complete

execution of this loop computes the price of a single swaption. Perforating this loop causes

43

swaptions to compute each swaption price with fewer Monte-Carlo samples. Because of the

way the computation is coded, the perforation produces prices that are predictably biased

by the perforation rate. The system therefore uses extrapolation (as described in [95]) to

correct the bias.

The HJM SimPath Forward Blocking loop updates the matrix representing the path of the

forward interest rate. While this matrix is later used to calculate the swaption price, the

computation does not access the majority of elements after the second time step in the

future (i.e., the second row of the table). Perforating the computation leaves the skipped

matrix elements at their initial value, while avoiding the computation of unnecessary values.

The Discount Factors Blocking loop updates a data structure containing discount factors

used to compute the price of the swaptions. Perforating the computation leaves the skipped

elements at their initial value of 1 instead of the original initial value. Our results show

that both of these perforations have a small impact on the accuracy of the computation.

2.5.4 Ferret

Given a query image, ferret performs a content-based similarity search to return the 𝑁

images in its image database most similar to the query image. Ferret first decomposes the

query image into a set of segments, extracts a feature vector from each segment, indexes its

image database to find candidate similar images, ranks the candidate images by measuring

the distance between the query image and the candidate images, then returns the highest

ranked images. The computation has two main phases. The first phase uses an efficient

hash-based technique to retrieve a fixed-length (double the number of requested images) list

of likely candidate images from the database. The second phase performs a more accurate

comparison between the retrieved images and the query image.

The LSH query bootstrap loops execute as part of the first phase. The first two loops

iterate over lists of images indexed in selected hash buckets to extract the set of candidate

images from the database. Perforating these loops causes ferret to skip some of these images

so that they are not considered during the subsequent search (these images will therefore

not appear in the search result). We identify these loops as instances of the Search Space

Enumeration pattern because they iterate over (part of) the search space.

The remaining LSH query bootstrap loop finds where to insert the current candidate image

in the fixed-length sorted list of search results. Perforating this loop may cause the candidate

image to appear in the list out of order. Because the second phase further processes the

images in this list, the final set of retrieved images is presented to the user in sorted order.

44

The emd loop executes as part of the second phase. This loop computes the earth mover

distance metric between the query image and the current candidate image from the image

database. Because ferret uses this metric to select the most desirable images to return, we

identify the loop as an instance of the Search Metric for Selection pattern. This metric is

also used for the final sorting of the images according to desirability. Interestingly enough,

this search metric is implemented as an instance of the Iterative Improvement pattern –

it improves the distance estimate until it obtains an optimal distance measure or exceeds

a maximum number of iterations. Perforating this loop creates a new, more efficient, but

less accurate metric. As a result, the program may return a different set and/or ordering

of images to the user.

2.5.5 Canneal

Canneal uses simulated annealing to place and route an input netlist with the goal of

minimizing the total wire length. The reload loop traverses the state vector for the canneal

Mersenne twister random number generator to reinitialize the values in this vector. For

our set of inputs, the resulting change in the generated sequence of random numbers causes

canneal to execute marginally more efficiently.

2.5.6 Blackscholes

The experimental results show that it is possible to perforate the outer loop in bs thread

without changing the output at all. Further investigation reveals that this loop simply

repeats the same computation multiple times and was apparently added to the benchmark

to increase the workload.

2.5.7 Streamcluster

Streamcluster partitions sets of points into clusters, with each cluster centered around one

of the points. Each clustering consists of a set of points representing the cluster centers.

The goal is find a set of cluster centers that minimizes the inter-cluster and intra-cluster

distances. Streamcluster uses a version of the facility location algorithm to find an ap-

proximately optimal clustering. The facility location algorithm contains a while loop that

executes a sequence of clustering rounds, each of which attempts to improve the clustering

from the previous round. The while loop terminates if a round fails to generate a clustering

with significantly improved cost.

45

The pFL loop executes once per round. Each iteration of this loop generates (by adding

a randomly chosen new candidate cluster center to the current set of cluster centers) and

evaluates a new candidate clustering. If this candidate clustering improves on the current

clustering, the loop body updates the current clustering (optionally merging some of the

clusters). We identify this loop as an instance of both the Search Space Enumeration pat-

tern (because it iterates over a part of the search space of candidate clusterings) and the

Iterative Improvement pattern (because it uses the current clustering to generate improved

clusterings). Perforating the pFL loop therefore causes streamcluster to consider fewer can-

didate clusterings per round. The result is that streamcluster performs fewer attempts to

improve the clustering before the next round termination check, which may in turn cause

streamcluster to produce a less desirable clustering more efficiently.

We note that the following comment appears in the source code above the definition of

the constant (ITER) that controls the number of iterations of the pFL loop:

/* higher ITER --> more likely to get correct number of centers */

/* higher ITER also scales the running time almost linearly */

This comment reflects the fact that the number of iterations of the pFL loop controls a

performance vs. accuracy tradeoff (which is not exposed to the user of the application). In

effect, the perforation space exploration algorithm rediscovers this tradeoff.

The first pgain loop calculates the partial cost of a candidate clustering by computing

sums of distances between data points and the new cluster center. It also marks the data

points that would be assigned to the new cluster center. The second pgain loop uses the

computed partial sums to compute the total cost of the candidate clustering. We identify

these loops as instances of the Search Metrics for Selection (because the computed costs are

used to select desirable clusterings) and Termination (because the facility location algorithm

uses this cost as a measure of progress, and stops if the progress is too small) pattern.

Perforating these loops produces a less accurate but more efficiently computable cluster

cost metric. We also identify the first pgain loop as an instance of the Data Structure

Update pattern. Perforating this loop may leave some of the data points assigned to an old

cluster, even though these points should be assigned to the newly opened cluster.

The dist loop computes the distance between two points. We identify this loop as an

instance of the Search Metric for Selection and Termination pattern because it is used to

compute candidate clustering costs. It is also an instance of the Sum structural pattern.

Perforating this loop causes streamcluster to compute the distance between points using a

subset of the coordinates of the points. The result is a more efficiently computable but less

accurate distance metric.

46

Exec. Mean Loop

Application Computation Location Time % Iterations Runs

bodytrack ImageErrorInside ImageMeasurements.cpp, 142 37.0% 40 202824

swaptions HJM Swaption Blocking HJM Swaption Blocking.cpp, 157 99.9% 1250 64

streamcluster pFL streamcluster.cpp, 600 98.5% 52 49

x264 x264 search ref me.c, 411 25.0% 15.5 3581705

Table 2.6: Execution Statistics for Example Structural Pattern Computations

2.6 Analysis of Perforated Kernel’s Absolute Error

The previous section described the function and structure of the approximate computations

that interact well with loop perforation. This section investigates the numerical error of in-

dividual perforated computations. We specifically focus on computations that are instances

of the structural computational patterns and study the nature of errors that perforation

introduces compared to the original version of the computation.

Methodology. We selected four computations that belong to each of the four structural

patterns. Specifically, we analyzed four representative computations that appear in Pareto-

optimal perforated programs (see Table 2.5) that consume a significant amount of the

benchmark’s execution time. Table 2.6 presents the execution statistics for the perforated

loops. The first two columns present the application and computation names. The third

column (Location) presents the file name and the line where the loop begins. The fourth

column (Execution Time %) presents the percentage of instructions executed within the

computation. The fifth column (Mean Iterations) presents the mean number of iterations

that the loop executes. Finally, the sixth column (Loop Runs) presents the number of times

the loop was executed. This number corresponds to the number of the outputs that the

computation produces during the lifetime of the application. We use these parameters to

compute the worst-case error for the computations.

We perforate each subcomputation using the sampling perforation strategy with three

perforation rates, 𝑟 ∈ {0.25, 0.50, 0.75}. For each subcomputation we record the inputs and

local error of the perforated version of the computation. The local error is an absolute error

between the result of the original and perforated subcomputations. It captures only the

error that emerges in a single execution of the perforated computation. It does not include

the error that accumulated from possible previous perforated executions.

To compute the local error, our manual instrumentation copies and executes side-by-side

the original and perforated versions of the computation. Conceptually, if the original com-

47

putation is f() and perforated is f’(), then the instrumented computation has the form

r = f(); r’ = f’(); record (r, r’); return r; We ensure that the perforated computa-

tion does not have side-effect or otherwise change the original execution. Therefore, the

execution continues by using the result r produced by the original program execution.

We used selected representative inputs from Section 2.2. For bodytrack, we used the

first 20 frames of the sequenceA input provided by benchmark developers. For swaptions,

we used the simlarge input that comes with the benchmark suite. For streamcluster, we

used 105 points from the animalNorm dataset from UCI Machine Learning Repository [8]

For x264, we used a sequence of 60 frames from the tractor video sequence from Xiph.org

Foundation web site.

2.6.1 Worst-Case Absolute Error Analysis

To compare the errors that the computations experienced and the maximum errors that

the computations may have, we derived the expressions for the worst-case error for the

structural patterns from Figure 2.8 as functions of the the percent of skipped iterations, 𝑟:

Sum Pattern. The analysis assumes that the result of the function f() is in the range

[𝑎, 𝑏], and the perforated computation executes only ⌊𝑟 ·𝑛⌋ iterations. Then, the worst-case
error is (𝑛− ⌊𝑟 · 𝑛⌋) · (𝑏− 𝑎).

Average Pattern. The analysis assumes that the result of the function f() is in the

range [𝑎, 𝑏]. When the perforated computation executes ⌊𝑟 · 𝑛⌋ iterations, the worst-case

error is (1− 1
𝑛 · ⌊𝑟 · 𝑛⌋) · (𝑏− 𝑎).

Argmin (Argmax) Pattern. The analysis assumes that the the result of the function

f() is in the range [𝑎, 𝑏]. To express the error of the computation, we specify that the error

selecting an inexact index is proportional to the difference of the computed value best in

perforated execution from its value in the exact execution.

Even skipping a single iteration of the loop incurs the error 𝑏−𝑎. This error corresponds to
the case when the skipped iteration would produce the minimum value 𝑎 and all remaining

L-1 iterations produced the value 𝑏. This analysis demonstrates that the worst-case error

of the minimum (and maximum) function, unlike the analysis of the sum, is more sensitive

to perforation – the error is either 0 when perforation is not applied (𝑟 = 0), or maximum

error when the perforation is applied (𝑟 ̸= 0).

48

Ratio Pattern. We consider the case when the result of the function f1() is in the range

[𝑎, 𝑏] and the result of the function f2() is in the range [𝑐, 𝑑].

If the range [𝑐, 𝑑] contains the value 0 (i.e., 𝑐 and 𝑑 have the different signs), then the

worst case error is infinite, since the perforation may cause a division by zero. Otherwise,

if 𝑐 and 𝑑 have the same sign, then we analyze the error as follows. Let 𝑠1 =
∑︀𝑛

1 f1𝑖

be the numerator, 𝑠2 =
∑︀𝑛

1 f2𝑖 be the denominator. If 𝑛′ = ⌊𝑟 · 𝑛⌋, then the perforated

loop computes the perforated numerator and denominator 𝑠1 =
∑︀𝑛′

1 f1𝑖 and 𝑠2 =
∑︀𝑛′

1 f2𝑖,

respectively. We express the error as |(𝑠1 · 𝑠2 − 𝑠1 · 𝑠2)/(𝑠2 · 𝑠2)|. This error reaches the

maximum when the difference in its numerator reaches maximum and the product in its

denominator reaches minimum, and is equal to 𝑛−𝑛′

𝑛 · |𝑏·𝑑−𝑎·𝑐|
min(𝑐2,𝑑2)

.

2.6.2 Error Analysis Results

Table 2.7 presents the observed and the worst-case bounds on the absolute error. The first

and the second columns present the name of the application and the analyzed pattern.

The third column (Observed Input Range) represents the range of inputs collected from the

program’s execution. The fourth column (Perforation Rate) presents the amount of skipped

loop iterations. The columns five to seven present the local error observed while running

the representative inputs. Column 5 presents the local error that is 95th percentile (i.e.,

it is greater than 95% of the observed errors). Column 6 presents the 99th percentile of

the local error and Column 7 presents the maximum observed local error. Finally, Column

8 presents the worst-case error computed using the expressions in Section 2.6.1 and the

maximum observed input ranges.

The comparison of the worst-case and the observed error shows that the observed errors

are significantly smaller than the worst-case error. In particular, the worst-case error is

between 1.3 times (bodytrack, 𝑟 = 0.25) and 576 times (swaptions, 𝑟 = 0.25) greater than

the maximum observed error, even though the worst-case error was calculated on the ob-

served input intervals and the worst-case error analyses for the patterns are tight – i.e., it

is possible to observe the intervals produced by the analysis.

The comparison of the worst-case error with the 95th and 99th percentile errors (i.e.,

errors that are greater than 95% and 99% of the observed errors, respectively) shows that

the relatively small number of errors is in the tail of the distribution. For instance, the

worst-case error is between 217 times (swaptions, 𝑟 = 0.25) and 3.5 times (bodytrack,

𝑟 = 0.50) greater than the 95th percentile error. Moreover, the argmin computation in

x264 benchmark often produces the correct result even when perforated. For perforation

49

Observed Perforation Observed Error Worst-Case

Application Pattern Input Range Rate · > 95% · > 99% Max. Error

[𝑎, 𝑏] = [77, 311]

[𝑐, 𝑑] = [1145, 1223]

0.25 0.016 0.022 0.044 0.056

bodytrack ratio 0.50 0.032 0.040 0.068 0.111

0.75 0.037 0.047 0.112 0.168

0.25 0.00023 0.00024 0.00024 0.05

swaptions mean [𝑎, 𝑏] = [0.0, 0.2] 0.50 0.00015 0.00015 0.00015 0.10

0.75 0.00022 0.00026 0.00026 0.15

0.25 1144 18805 18805 160823

streamcluster sum [𝑎, 𝑏] = [0, 12371] 0.50 9542 18805 91252 309275

0.75 18805 19623 28698 457727

0.25 0.00 0.00 1903 9411

x264 argmin [𝑎, 𝑏] = [2, 9413] 0.50 0.00 0.00 4081 9411

0.75 0.00 13.0 4081 9411

Table 2.7: Observed and the Worst-Case Local Error of Perforated Computations.

rates 0.25 and 0.50, more than 99% of the approximate executions do not experience any

error – i.e., the perforated computation was able to find the minimum element.

A comparison between the observed errors across different perforation rates (0.25, 0.50,

and 0.75) shows that in all benchmark the magnitude of errors for the same frequency of

large errors (95% or 99%) increases with the perforation rate of the computation. This local

error increase is consistent with the increase of the global program error (Section 2.3.2),

but the rate of error increase for these computations can be non-linear with the respect to

the increase of perforation rate. For instance, the examination of the loop in streamcluster

shows that each iteration computes the value that represents heuristic cost of opening a

new cluster center. In most iterations this value is close to zero, but sometimes it is much

larger. Therefore skipping some of the iterations that skip some of the larger values causes

the greater variation in the magnitude of observed error.

2.7 Discussion

The experimental results presented in Section 2.3 show that loop perforation can effectively

augment a range of applications with the ability to operate at various attractive points

in the tradeoff space. The experimental results also present several key properties of the

computations that can be approximated using loop perforation. This section discusses

experimental results presented in this chapter and provides an insight that can help us

build the formal foundation of the optimization with accuracy-aware transformations.

50

2.7.1 Approximate Kernels

Sensitivity profiling (Section 2.3.1) identified that the approximate benchmarks spend the

majority of time in one or several loops that represent approximate kernel computations.

Our manual examination of the kernels (Section 2.5) shows that each execution of kernel

computations consumes a fraction of the application’s input and contributes to producing

a fraction of the program’s output. Therefore, approximations that (like loop perforation)

alter these kernels to perform less work, cause the program to produce less accurate parts

of the output.

Tunable Approximate Knobs. In this chapter, we presented transforming kernel com-

putations using loop perforation. A manual inspection of these computations shows that

these computations are also amenable to other forms of approximation. Specifically, some

of these computations have explicitly exposed parameters that control the manually imple-

mented choice between the accuracy/performance tradeoff. For other kernels, such choice

is hidden from the user, but the developers selected a fixed approximation choice (we pre-

sented a developer’s comment for an approximation in streamcluster in Section 2.5.7). In

our previous work, we also manually implemented alternative approximate implementations

of these computations [79]. In all these cases, loop perforation opened new, or augmented

existing ways to approximate the application.

Functional and Structural Patterns. We examined the kernel computations that are

amenable to loop perforation and identified common functional and structural properties

of these computations. In Section 2.4 we outlined these common properties as a set of

computational patterns. While this set of patterns is not exhaustive, it covers a number of

interesting cases that our evaluation with loop perforation uncovered.

These two classes of patterns are complementary. Structural patterns help us understand

why the computation is amenable to approximation (e.g., loops that aggregate data are

good candidates for loop perforation). Functional patterns help us understand how the

application uses the result of the kernel execution to produce its result (e.g., each execution

of perforated loops in x264 finds how to better compress the input data).

In addition to understanding the effect of loop perforation, identification of these pat-

terns also guides the construction of a foundation for the rigorous analysis of approximate

computations. First, we can exploit the structural patterns to define program analysis tech-

niques that analyze the effects of the transformations. Second, we can exploit the functional

patterns to provide a formal specification that the transformed computation should satisfy

to fulfill the application’s accuracy goal.

51

Of course, this set of patterns is not exhaustive. The evaluation shows that loop per-

foration is successful in identifying computations that aggregate data computed in loop’s

iterations. However, an example of a computation not amenable to loop perforation is one

that in each iteration computes a single element value in an output array. Skipping itera-

tions of such loops does not produce these array elements and results in unacceptable final

output. For such computations, we discuss one alternative developer-guided approach to

sensitivity profiling in Chapter 4.

Magnitude and Frequency of Errors. Section 2.6 presents the comparison of the

worst-case error analysis and errors observed for several approximate perforated kernels. It

shows that the approximate kernels rarely produce large errors – the typical errors were an

order of magnitude smaller than the worst-case error (and the full program executions did

not experience the maximum errors, even for a large number of kernel executions). These

experimental results indicate that the worst-case analysis alone is insufficient to reason

about the accuracy of the program.

To augment the understanding of the accuracy of transformed kernels, a more general

property of interest is how often the approximate computations exhibit large error. An

analysis that can answer this question reasons about the distribution of errors and can

consequently analyze both the magnitude and frequency of acceptable errors. Such analysis

generalizes both the worst-case analysis (which is the error that is greater than 100% of

possible errors) and typical-case analyses (e.g., ensuring that with probability 0.95, the

magnitude of error is smaller than a provided bound, such as the statistical analysis in 2.6).

2.7.2 Limitations of Testing-Based Accuracy-Aware Optimization

Our experimental results indicate that we can use testing-based techniques (that only use

sensitivity profiling for accuracy-aware optimization) to optimize complex approximate pro-

grams, their dependence on developer-provided representative inputs limits their power in

several ways.

Lack of Accuracy Guarantees. Our evaluation in Section 2.3 shows that for approxi-

mate benchmarks the programs optimized on one set of representative inputs often provide

similarly accurate results for other inputs. However, in some cases the applications can

experience visible differences when executed on a different set of inputs (e.g., in some con-

figurations of ferret and x264 benchmarks). Overall, providing stronger guarantees about

the accuracy would require a conceptually different approach that allows specifying a class

of inputs (e.g., represented by input intervals or distributions) instead of individual inputs.

52

Lack of Safety Guarantees. While sensitivity profiling can identify errors that exist in

concrete executions (and our examination in Sections 2.3.1 and 2.5 shows its effectiveness),

it cannot provide guarantees about safety of transformed programs. Examples of concrete

safety properties that the developer may be interested in include pointer safety and output

integrity. For instance, a perforated loop should not leave unallocated array elements; a

perforated argmin loop in x264 should always produce a legal index of the minimum el-

ement in the list. Likewise, a transformed distance computation in streamcluster should

still satisfy the properties of a distance metric (i.e., non-negativity, coincidence, symmetry,

and subadditivity). In our other work, we presented techniques for automatically check-

ing several key safety properties [17]. Michael Carbin also presented a general interactive

verification system for reasoning about arbitrarily complex safety and worst-case accuracy

predicates in approximate computations [15, 16].

Scalability of Tradeoff Space Exploration. The execution time of the tradeoff space

exploration algorithm is proportional to the number of combinations of transformations

that we can apply and the number of representative inputs. Section 2.3 shows that such

an approach is feasible for a transformation like loop perforation that is typically applied

to a small number of loops. However, even for the case when we have combinations of 5

loops with different perforation rates, the search can exceed 60 hours (as in case of stream-

cluster). Such complexity can be overly prohibitive for transformations that are designed

to be applied to program locations at a finer granularity than loops (e.g., approximation of

arithmetic operations).

To address some of these limitations, the chapters that follow discuss techniques for accuracy

analysis that provide guarantees on the frequency of large output deviations and algorithms

for navigating tradeoff spaces equipped to optimize large space that are outside of the reach

of the test-based techniques.

53

3 Probabilistic Analysis of Kernels

Transformed with Loop Perforation

This chapter presents probabilistic accuracy analysis for four computational patterns that

interact well with loop perforation. We described the structural patterns that appeared in

benchmark applications in Section 2.4. The sum pattern calculates the sum of elements.

The mean pattern calculates the mean of elements. The argmin-sum pattern calculates the

index of the minimum sum of elements. The ratio pattern, calculates the ratio of two sums.

The patterns describe the structure of the computation, the locations in the code that

are amenable to transformation, and the pattern’s inputs and outputs. For example, the

following code represents a mean pattern:

val sum = 0.0;

for (int i = 1 ; i <= n ; i++) {

sum += f(i);

}

val mean = sum / n ;

return mean;

The pattern abstracts away the details of the computation performed in each loop iter-

ation by representing the value computed by the loop body as a function call f(i). We

call each such abstracted value an input to the pattern. The output of the computational

pattern is the variable mean.

Loop perforation can change the shaded parts of the code to skip a fraction of iterations r.

In addition to skipping iterations, we extend the definition of loop perforation to perform

an optional bias reduction transformation. Bias reduction modifies the output of a pattern

to remove systematic bias of the computation by multiplying it with a constant factor. For

example, the output mean is transformed from sum / n to sum / (r * n).

The analysis operates on structural patterns that are amenable to loop perforation. We

now describe the main components of the analysis.

54

Local error analysis. The analysis quantifies the effect of loop perforation as the

difference between the results produced by the exact computation (without perforation)

and perforated computation (with perforation rate 𝑟). In this chapter, we refer to this

difference as perforation noise and denote it as 𝐷(𝑟). For example, if the execution of

mean computation produces the value mean in the exact version and the value mean′𝑟 in the

perforated version of the computation, then perforation noise is 𝐷mean(𝑟) = mean− mean′𝑟.

We define perforation noise similarly for the other computational patterns.

Probabilistic model of uncertainty. We use random variables to model our uncertainty

about the computation’s inputs and the results. We express the perforation noise as a

function of these random variables. Specifically, the analysis models the result of each loop

body (represented by a call to f(i)) as a random variable 𝑋𝑖.

The perforation noise 𝐷(𝑟), which is a function of the values computed by the loop body,

is therefore also a random variable. In general, random variables 𝑋𝑖 in our analyses can

represent 1) inherent randomness in the inputs and/or 2) the developer’s incomplete knowl-

edge about the exact underlying processes that produce these inputs. This probabilistic

model therefore allows analyzing both probabilistic computations (when the pattern’s in-

puts f(i) are random quantities) and deterministic computations (when the pattern’s inputs

f(i) are not necessarily random quantities, but the developer represents his or her partial

understanding about the computation that produces the pattern’s inputs as a probability

distribution of its output).

Specification

The analysis takes a specification of inputs, specification of the accuracy of the computa-

tion’s output, and the desired perforation rate.

Input Specification. It specifies full distribution or properties of the random variables

𝑋1, 𝑋2, . . . , 𝑋𝑛, which represent the pattern’s inputs. For instance, the variables can be

independent and identically distributed (i.i.d.), each with the mean 𝜇 and variance 𝜎2.

Transformation Specification. The analysis takes as inputs the loop perforation strat-

egy (e.g., sampling, truncation, or random) and perforation rate, 𝑟 (percentage of skipped

loop iterations).

55

Output Specification. The probabilistic output specifications represents bounds of the

following quantities:

∙ Expected noise: E(𝐷(𝑟)) < 𝐵𝐸 . A developer provides a numerical constant

𝐵𝐸 , which is an upper bound on the expected perforation noise. The analysis

calculates an overapproximation of E(𝐷(𝑟)).

∙ Variance of noise: Var(𝐷(𝑟)) < 𝐵𝑉 . A developer provides a numerical constant

𝐵𝑉 , which is an upper bound on the variance of perforation noise. The analysis

calculates an overapproximation of Var(𝐷(𝑟))

∙ Probability of large noise: Pr(|𝐷(𝑟)| ≥ 𝐵𝑃) ≤ 𝜀. A developer provides the

pair (𝐵𝑃 , 𝜀), which specifies 1) 𝐵𝑃 , an upper bound on the acceptable absolute

perforation noise and 2) 𝜀, an upper bound on the probability of observing noise

greater than 𝐵𝑃 . The analysis calculates an overapproximation of the probability

Pr(|𝐷(𝑟)| ≥ 𝐵𝑃).

Analysis

For each pattern, the analysis produces algebraic expressions that characterize the expected

value and variance of the perforation noise, and the probability of observing large absolute

perforation noise. We use properties of random variables, in combination with the applied

transformations, to derive algebraic expressions that characterize the perforation noise.

We manually derive perforation noise for a number of representative combinations of input

and transformation specifications. Conceptually, for each pattern, the analysis maintains a

dictionary of algebraic expressions for calculating noise bounds. Each of these expressions

is parameterized by the perforation rate and the properties of the input random variables

(e.g., their mean or variance). In the remainder of this chapter, we present derivations of

representative perforation noise expressions for various input assumptions.

The analysis operates in three steps. In the first step, the analysis identifies the structure

of the computation. To identify the structural patterns, it is possible to use existing program

analyses, such as classical reduction recognition [49, 57] or recent pattern identification

procedure from [102]. As a result, this auxiliary analysis returns the pattern, with marked

pattern’s input and the output variable.

In the second step, the analysis matches the input and transformation specifications

with the set of assumptions for each derived algebraic bound that the analysis’ dictionary

56

double dPrice = 0.0;

for (int i = 1; i <= lTrials; i += 1) {

double simres = runSimulation(this, i)

dPrice += simres;

}

double dMeanPrice = dPrice / lTrials;

printf("%g\n", dMeanPrice);

double dPrice = 0.0;

for (int i = 1; i <= lTrials; i += 2) {

double simres = runSimulation(this, i)

dPrice += simres;

}

double dMeanPrice = (dPrice * 2) / lTrials;

printf("\%g\n", dMeanPrice);

(a) Original Computation (b) Transformed Computation

Figure 3.1: Original and Transformed Swaptions Code

contains. This step returns the matched expression (if it exists) or indicates that the analysis

cannot continue with the current specifications.

In the third step, the analysis calculates the noise bound by substituting the input and

transformation parameters from the developer’s specification. Finally, the analysis checks

if this computed bound is smaller than the developer-provided acceptable noise bound from

the output specification.

Sources. The previous version of the research presented in this chapter appeared in [78] and

accompanying technical report [77].

3.1 Motivating Example

Swaptions is a financial analysis application from the PARSEC benchmark suite [11]; it uses

Monte Carlo simulation to calculate the price of a portfolio of swaption financial instru-

ments. Figure 3.1(a) presents a simplified version of a perforatable computation from this

application. The loop performs a sequence of simulations to produce an estimated swaption

value dMeanPrice.

Figure 3.1(b) presents the transformed version of the computation after applying loop

perforation [52]. The transformed expressions are shaded. The transformation changes the

induction variable increment from i += 1 to i += 2. The perforated loop therefore executes

half of the iterations of the original loop. The transformed computation also extrapolates

the result by doubling dPrice to eliminate a systematic bias introduced by executing fewer

loop iterations.

57

Pattern Structure

This computation as an instance of the mean pattern. The variable simres is the input

of the pattern. The variable dMeanPrice is the output of the pattern. The number of loop

iterations is n. The analysis models the values of the program variable simres during the

execution of the loop as a sequence of random variables 𝑋1, 𝑋2, . . . , 𝑋𝑛. Therefore, the

program variables dPrice and dMeanPrice, which are derived from the value of simres, are

also modeled as random variables.

The program variable dPrice contains the sum of the 𝑋𝑖. In the original computation, the

analysis represents the value of dMeanPrice is 𝑆𝑂 = 1
𝑛

∑︀𝑛
𝑖=1𝑋𝑖. In the perforated compu-

tation, the value of dMeanPrice is 𝑆𝑃 = 2
𝑛

∑︀𝑛/2
𝑖=1𝑋2𝑖−1 (for notational simplicity, we present

the analysis for the case when n is even). The perforation noise is 𝐷 = 𝑆𝑃 − 𝑆𝑂.

Specifications

We have developed analyses to support different input specifications. The specification

states different properties of the distributions of the random variables 𝑋1, . . . , 𝑋𝑛 and the

number of loop iterations n. Below are some instances of input specifications:

∙ I.I.D. Inputs : All 𝑋1, . . . , 𝑋𝑛 are independent and identically distributed (i.i.d.) with

the mean 𝜇 and variance 𝜎2.

∙ I.I.D. and Bounded Inputs: All 𝑋1, . . . , 𝑋𝑛 are random variables bounded on the in-

terval [𝑎, 𝑏]. A special case is when they the variables are uniformly distributed.

∙ I.I.D. and Gaussian Inputs: All 𝑋1, . . . , 𝑋𝑛 are i.i.d. 𝑁(𝜇, 𝜎2) variables.

∙ Correlated Random Walk: The variables 𝑋1, . . . , 𝑋𝑛 are correlated, and there exist

random noise variables 𝜉1, . . . , 𝜉𝑛−1, such that 𝑋𝑖+1 = 𝑋𝑖 + 𝜉𝑖. All random noise

variables 𝜉1, . . . 𝜉𝑛−1 are i.i.d. with mean 0 and variance 𝜎2

The developer also provides 1) the transformation specification, which specifies the perfora-

tion strategy (e.g., interleaving), and perforation rate (e.g., skip half iteration). and 2) the

output specification, e.g., the bound on the variance of the pattern’s result, or the bound

on the probability of large deviations.

As a concrete example for swaptions loop, consider:

∙ Input Specification: All inputs (the prices of the swaptions) are modeled as i.i.d.

random variables in the interval [𝑎, 𝑏] = [0.0, 1.0]. The number of original iterations

of the loop is 𝑛 = 20000.

58

∙ Transformation Specification: The transformation is interleaving perforation with

perforation rate 𝑟 = 0.5.

∙ Output Specification: The outputs should have absolute output deviation smaller

than 𝐵𝑃 = 0.01 (one cent) with probability at least 0.95. This is equivalent to saying

that the outputs can have perforation noise greater than 𝐵𝑃 = 0.01 with probability

at most 𝜀 = 0.05, i.e., 𝑃 (|𝐷| ≥ 𝐵𝑃) ≤ 𝜀.

Analysis

For each input and output specification, the analysis computes the perforation noise bound

and compares it to the one provided by the developer. We show the derivation of the

expressions in Sections 3.3 to 3.6.

Given the developer’s specification, the analysis will first match input specification to the

dictionary of the analyzable input specifications. The analysis will then compute the ex-

pression that represents the upper bound of the quantity of interest (which may be variance,

mean, or perforation noise).

For the swaptions example, the analysis computes the maximum bound on the perforation

noise, 𝐵̄𝑃 , that satisfies the input specification (the random inputs within the interval

[𝑎, 𝑏]), transformation specification (perforation noise 𝑟, and the number of iterations of

perforated loop 𝑚 = ⌊𝑟 𝑛⌋), and the acceptable probability of large deviation from the

output specification, 𝜀.

The analysis calculates the bound 𝐵̄𝑃 using the following expression:

𝐵̄𝑃 =

⎯⎸⎸⎷1

2
ln

2

𝜀
·
𝑛∑︁
𝑖=1

(︁
𝑏*𝑖 − 𝑎*𝑖

)︁2
= (𝑏− 𝑎)

√︂
𝑛−𝑚

2𝑚𝑛
ln

2

𝜀

We present the derivation of expressions of this form in Sections 3.3.4 and 3.4.

The analysis uses the inputs from the developer’s specification to calculate 𝐵̄𝑃 = 0.0096.

Finally, the analysis compares this value to 𝐵𝑃 . Since 𝐵̄𝑃 = 0.0096 ≤ 0.01 = 𝐵𝑃 , the

perforated computations satisfies the developer’s output specification.

Comparison with Worst-Case Bound. Finally, we can compare this bound with the

worst-case bound. The maximum error bound is (Section 2.6) 𝐵𝑊 = 𝑛−𝑚
𝑚 (𝑏 − 𝑎) = 𝑏−𝑎

2 .

The worst-case bound is therefore equal to 0.5, compared to the 95% bound of 0.0096. If

we calculate the maximum noise bounds for some other probabilities, we get e.g., that 99%

bound is 0.012, 99.9% bound is 0.14, they help developer understand the behavior of the

59

perforated computation. Overall, the worst case bound 𝐵𝑊 is asymptotically
√
𝑛 times

larger than the probabilistic bound 𝐵𝑃 .

3.2 Preliminaries

In this section we present a formal definition of loop perforation that we will use in the

analysis and review several well-known probabilistic inequalities.

3.2.1 Pattern Components

In the rest of this chapter we present the analyses for the computational patterns. We

describe now the outline of each of the sections:

Pattern Example. For each pattern, we present an example of the original and the trans-

formed code. In the examples, we apply an interleaving perforation (with the n iterations)

of perforatable loops. We use the increment k, which is derived from the perforation rate

(see Section 3.2.2).

Pattern Structure. For each pattern, we identify its inputs and outputs, identify the

part of computation to perforate, and define random variables that model our uncertainty

about their values.

Input Specification and Analysis. In each pattern analysis section we first present the

input specifications that represent assumptions we make on the distribution of the inputs.

These assumptions characterize our uncertainty about the values of these inputs.

The analysis description presents the derivation of theq expressions for 1) the mean

perforation noise, 2) the variance of the perforation noise, and 3) bounds on the probability

of observing large absolute perforation noise. We present multiple analyses, for different

input specifications. We start each section with the most general set of assumptions and

subsequently present the additional specifications and (more precise) analysis results for

those specifications.

Output Specification and Checking. For the output specification, we assume that

a developer provides the upper bounds on the expected noise, variance of noise, and the

probability of observing output noise larger than a specified bound. The checking proce-

dure calculates the expressions from the analysis and ensures that the calculated quantities

are smaller than the developer-provided bounds. For example, if the analysis returns the

expected noise bound 𝐵̄𝐸 , the checker ensures that 𝐵̄𝐸 ≤ 𝐵𝐸 .

60

3.2.2 Definition of Loop Perforation

The original loop executes 𝑛 iterations, The perforated loop executes 𝑚, 𝑚 < 𝑛 iterations.

The perforation rate determines the number of iterations of the perforated loop. If the

perforation rate is 𝑟, then 𝑚 = ⌊𝑟 · 𝑛⌋.
A loop perforation strategy can be represented by a 𝑛 × 1 perforation vector 𝑃 , each

element of which corresponds to a single loop iteration. The number of non-zero elements

of 𝑃 is equal to 𝑚. The vector P is known before the execution of the loop. We will denote

the perforation vector with all-ones as A = (1, . . . , 1)′. The vector A represents the original

(non-perforated) computation.

We can define different perforation strategies using the notion of perforation vector:

∙ Interleaving perforation executes every 𝑘-th iteration, where 𝑘 = ⌊ 𝑛𝑚⌋. The cor-

responding perforation vector has elements 𝑃𝑘𝑖+1 = 1, where 𝑖 ∈ {0, ...𝑚 − 1}, and
𝑃𝑘𝑖+𝑗 = 0 for 𝑗 < 𝑘, 𝑗 ̸= 1.

∙ Truncation perforation executes 𝑚 iterations at the beginning of the loop; the

perforation vector has elements 𝑃𝑖 = 1 for 1 ≤ 𝑖 ≤ 𝑚, and 𝑃𝑖 = 0 otherwise.

∙ Randomized perforation selects a random subset of 𝑚 elements; the perforation

vector has elements 𝑃𝑖 = 1 for a random combination of indices {𝑖1, . . . , 𝑖𝑚} and 0 for

the remaining

Some transformations may further specialize the definition of the perforation vector. For

instance, the perforation transformation for the sum pattern changes the values of the

vector’s elements to define bias reduction. Specifically, it multiplies the vector P with a

value that can appropriately extrapolate the result of the sum computation.

3.2.3 Useful Probabilistic Inequalities

In this section we describe a few useful inequalities that can help us calculate the probability

of large perforation noise.

Markov’s inequality. For a random variable 𝑌 with finite mean, Markov’s inequality pro-

vides an upper bound on the probability of observing its absolute value exceed 𝑎. In

particular,

Pr
(︁
|𝑌 | ≥ 𝑎

)︁
≤ E

(︀
|𝑌 |

)︀
𝑎

. (3.1)

This inequality is non-trivial when 𝑎 > E(|𝑌 |).

61

Chebyshev’s inequality. For a random variable 𝑌 with finite mean and variance, Cheby-

shev’s inequality gives an upper bound on the probability of observing that an absolute

difference between 𝑌 and its mean, E(𝑌), is greater than some value 𝑎. In particular,

Pr
(︁
|𝑌 − E(𝑌)| ≥ 𝑎

)︁
≤ Var(𝑌)

𝑎2
. (3.2)

This inequality is non-trivial when 𝑎2 > Var(𝑌).

Hoeffding’s inequality. For a sum of random variables 𝑆𝑛 = 𝑋1 + . . . + 𝑋𝑛 where all

terms 𝑋𝑖 are independent and almost surely bounded, i.e., 𝑃 (𝑋𝑖 ∈ [𝑎𝑖, 𝑏𝑖]) = 1, Hoeffding’s

inequality gives an upper bound on the absolute difference between 𝑆𝑛 and its mean larger

than some constant 𝑡. In particular,

Pr
(︁⃒⃒⃒
𝑆𝑛 − E(𝑆𝑛)

⃒⃒⃒
≥ 𝑡

)︁
≤ 2 · exp

(︁
− 2 · 𝑡2

𝑛∑︀
𝑖=1

(𝑏𝑖 − 𝑎𝑖)2

)︁
. (3.3)

Because of the additional assumptions on the input random variables, Hoeffding’s inequality

often provides tighter bounds than Chebyshev’s or Markov’s inequality.

3.3 Sum Pattern

We present an example of the original and perforated code for the extrapolated sum pattern

in Figure 3.2. We first present a generalized analysis for the sum of correlated random

variables. We then present specializations of the analysis under additional assumptions.

Special cases that we analyze include independent and identically distributed (i.i.d.) inputs

and inputs generated by a random walk.

Original code Transformed Code

double sum = 0.0;

for (int i = 1; i <= n; i++) {

sum += f(i);

}

double sum = 0.0;

for (int i = 1; i <= n; i+=k) {

sum += f(i);

}

sum *= k;

Figure 3.2: Sum Pattern; Original and Transformed Code

62

Pattern Structure. The inputs of the pattern are the results of the function f(i). The

analysis represents these inputs as random variables 𝑋𝑖. The output of the pattern is the

variable sum. Since it is computed using the inputs 𝑋1, . . . , 𝑋𝑛, it is also a random variable.

Perforation noise 𝐷 is the difference between the values of the variable sum in the original

and perforated versions of the code.

The transformed pattern performs a systematic bias reduction, by multiplying the result

of the computation with the constant proportional to the number of skipped iterations.

3.3.1 General Inputs

Input Specifications. We first assume only that the terms of the sum have a common

finite mean 𝜇 and finite covariance, expressed with covariance matrix Σ.

Analysis. For 𝑖 = 1, . . . , 𝑛, let 𝑋𝑖 = f(𝑖) be the 𝑖-th term of the summation. The analysis

represents the uncertainty about the values 𝑋𝑖 by defining the vector X = (𝑋1, . . . , 𝑋𝑛)
′ as

a vector of 𝑛 random variables. Each random variable has the mean 𝜇 and covariance matrix

Σ with elements (Σ)𝑖𝑗 = cov(𝑋𝑖, 𝑋𝑗), which are obtained from the input specification.

Let A be the all-ones perforation vector defined in Section 3.2.2. Then A′X =
∑︀𝑛

𝑖=1𝑋𝑖.

Let P be a perforation vector with 𝑚 non-zero elements. Then P′X =
∑︀𝑛

𝑖=1 𝑃𝑖 ·𝑋𝑖 is the

result of the perforated computation.

The signed perforation noise is 𝐷 ≡ P′X−A′X = (P−A)′X. We can therefore imme-

diately compute the expected value and variance of noise,

E(𝐷) = 𝜇
𝑛∑︁
𝑖=1

(𝑃𝑖 − 1), (3.4)

Var(𝐷) =
∑︁
𝑖,𝑗

(𝑃𝑖 − 1) (𝑃𝑗 − 1)Σ𝑖,𝑗 . (3.5)

To avoid systematic bias, we need to choose P so that E(𝐷) = 0. In particular, it

follows from Equation 3.4 that an estimate is unbiased if and only if
∑︀𝑛

𝑖=1 𝑃𝑖 = 𝑛. One

extrapolation strategy equally extrapolates every non-zero element, choosing 𝑃𝑖 =
𝑛
𝑚 for

non-zero elements 𝑃𝑖.

If P satisfies E(𝐷) = 0, we can use Chebyshev’s inequality and Var(𝐷) to bound the

absolute perforation noise (for some bound 𝐵𝑃 and probability 𝜀 from the developer’s

63

output specification):

Pr
(︁
|𝐷 − E(𝐷)| ≥ 𝐵𝑃

)︁
≤ Var(𝑌)

𝐵2
𝑃

≤ 𝜀.

Therefore, with probability at least 1− 𝜀,

|𝐷| < 𝐵𝑃 =

√︂
Var(𝐷)

𝜀
(3.6)

This bound will be conservative in practice. Additional knowledge (e.g., independence

or a specific distribution of the variables 𝑋𝑖) can be used to derive tighter bounds. We

next study a number of special cases in which additional assumptions enable us to better

characterize the effect of perforation.

3.3.2 Independent Inputs

Input Specifications. We assume that the inputs 𝑋𝑖 = f(𝑖) of the summation are i.i.d.

random variables with finite mean 𝜇 and variance 𝜎2.

Analysis. From (3.4), we know that E(𝐷)=0 for any perforation 𝑃 such that
∑︀

𝑖 𝑃 = 𝑛.

From (3.5), and since the covariance matrix Σ of i.i.d. variables has non-zero values only

along its leading diagonal, it follows that Var(𝐷) = 𝜎2
∑︀

𝑖 (1− 𝑃𝑖)
2. It is straightforward

to show that this value is minimized by any perforation vector 𝑃 with 𝑛−𝑚 zeros and the

remaining elements taking the value 𝑛
𝑚 . In this case, the variance takes the value

Var(𝐷) =
𝜎2 𝑛 (𝑛−𝑚)

𝑚
. (3.7)

We can immediately bound the probability of observing large absolute perforation noise

using Chebyshev’s inequality (Equation 3.6).

3.3.3 Independent Gaussian Inputs

Input Specification. We assume that the variables 𝑋𝑖 are i.i.d. with Gaussian distribu-

tion, with finite mean 𝜇 and variance 𝜎2.

Analysis. In this case we can get potentially tighter bounds than in the previous analysis

for independent variables. Since each 𝑋𝑖 is normally distributed, 𝐷 will also be normally

distributed. Consequently, E(𝐷) = 0 and Var(𝐷) remains the same as in Equation 3.7.

64

The normality of 𝐷 allows us to obtain a tighter bound on the perforation noise. In

particular, with probability 1− 𝜀

|𝐷| ≤ 𝑧1− 𝜀
2

√︀
Var(𝐷) (3.8)

where 𝑧𝛼 is the quantile function of the standard normal distribution. As a comparison, for

𝜀 = 0.01 the bound (3.8) is 6.6 times smaller than the bound obtained from Chebyshev’s

inequality (3.6).

3.3.4 Independent Bounded Inputs

Input Specification. We assume that the variables 𝑋𝑖 are i.i.d. and all are bounded

within the interval [𝑎, 𝑏], i.e., ∀𝑖 . Pr(𝑋𝑖 ∈ [𝑎, 𝑏] = 1).

Analysis. In this case, we can compute the bound on large absolute perforation noise

|𝐷|. We present how we derive this bound using Hoeffding’s inequality (3.3).

Since the variables are bounded, their mean is also bounded. Therefore, to get the

unbiased result (E(𝐷) = 0), we can use the same argument as for the general analysis

in Section 3.3.1. Therefore, the perforation vector P has 𝑚 zero elements and all other

non-zero elements have the values 𝑃𝑖 =
𝑛
𝑚 .

We define 𝑋*
𝑖 = (𝑃𝑖−1)𝑋𝑖, and note that the variables 𝑋*

𝑖 are also mutually independent

and bounded. The range of 𝑋*
𝑖 is [𝑎*𝑖 , 𝑏

*
𝑖] =

[︀
(𝑃𝑖 − 1)𝑎, (𝑃𝑖 − 1)𝑏

]︀
. Then,

∑︀𝑛
𝑖=1(𝑏

*
𝑖 − 𝑎*𝑖)

2 =

(𝑏− 𝑎)2 · 𝑛 (𝑛−𝑚)
𝑚 .

We can replace the previous sum in the Hoeffding’s inequality, and therefore with prob-

ability at least 1− 𝜀,

|𝐷| <

⎯⎸⎸⎷1

2
ln

2

𝜀
·
𝑛∑︁
𝑖=1

(︁
𝑏*𝑖 − 𝑎*𝑖

)︁2
= (𝑏− 𝑎)

√︂
𝑛 (𝑛−𝑚)

2𝑚
ln

2

𝜀
. (3.9)

3.3.5 Random Walk

Input Specifications. We assume that the sequence 𝑋 of random variables is a random

walk with independent increments. Specifically, we assume that the sequence is a Markov

process, and that the differences between the values at adjacent time steps 𝜉𝑖 = 𝑋𝑖+1 −𝑋𝑖

are a sequence of i.i.d. random variables with mean 0 and variance 𝜎2. Let 𝑋0 = 𝜇 be a

constant.

65

Analysis. From the assumption E(𝜉𝑖) = 0, it follows by induction that the expected

value of every element is E(𝑋𝑖) = 𝜇. As a consequence, for any perforation vector that

satisfies
∑︀𝑛

𝑖=1 𝑃𝑖 = 𝑛, we have that E(𝐷) = 0.

For 𝑖 < 𝑗, the covariance between 𝑋𝑖 and 𝑋𝑗 satisfies 𝑐𝑜𝑣(𝑋𝑖, 𝑋𝑗) = 𝑖𝜎2. Therefore, the

covariance matrix Σ has entries (Σ)𝑖𝑗 = 𝜎2min{𝑖, 𝑗}, and the variance of the perforation

noise satisfies

Var(𝐷) = 𝜎2
∑︁
𝑖,𝑗

(1− 𝑃𝑖) (1− 𝑃𝑗)min{𝑖, 𝑗}. (3.10)

3.4 Mean Pattern

We present an example of the original and perforated code in Figure 3.3.

Original code Transformed Code

double sum = 0.0;

for (int i = 1; i <= n; i++) {

sum += f(i);

}

double mean = sum / n;

double sum = 0.0;

for (int i = 1; i <= n; i+=k) {

sum += f(i);

}

double mean = sum * k / n;

Figure 3.3: Mean Pattern; Original and Transformed Code

This pattern extends the sum pattern. Specifically, the difference is that the output of

the mean pattern, the variable mean divides the variable sum from the sum pattern by the

number of loop iterations n.

We can extend the analysis for the sum pattern (Section 3.3) because the result of the

mean computation is equal to the result of the sum computation divided by 𝑛. We denote the

perforation noise of the sum as 𝐷𝑆𝑢𝑚, the output produced by the original computation as
1
𝑛𝐴

′𝑋, and the output produced by the perforated computation as 1
𝑛𝑃

′𝑋. The perforation

noise of the mean 𝐷 in the general case with correlated variables is 𝐷 ≡ 1
𝑛

(︀
𝑃 ′𝑋 −𝐴′𝑋

)︀
=

1
𝑛𝐷𝑆𝑢𝑚. By the linearity of expectation, the perforation noise has expectation E(𝐷) =
1
𝑛E(𝐷𝑆𝑢𝑚) and variance

Var(𝐷) =
1

𝑛2
Var(𝐷𝑆𝑢𝑚). (3.11)

The derivation of the bounds for the more specific cases (i.i.d., normal, random walk inputs)

is analogous to the derivation discussed in Section 3.3.

66

3.5 Argmin-Sum Pattern

We present an example of the original and transformed code for the argmin-sum pat-

tern in Figure 3.4. We can apply the same analysis to the min-sum pattern, which re-

turns the value best instead of the index best index. It is also possible to slightly modify

this analysis to support the max-sum and argmax-sum patterns (by using the identity

max(𝑎, 𝑏) = −min(−𝑎,−𝑏)).

Original code Transformed Code

double best = MAX_DOUBLE;

int best_index = -1;

for (int i = 1; i <= L; i++) {

s[i] = 0;

for (int j = 1; j <= n; j++)

s[i] += f(i,j);

if (s[i] < best) {

best = s[i];

best_index = i;

}

}

return best_index;

double best = MAX_DOUBLE;

int best_index = -1;

for (int i = 1; i <= L; i++) {

s[i] = 0;

for (int j = 1; j <= n; j+=k)

s[i] += f(i,j);

if (s[i] < best) {

best = s[i];

best_index = i;

}

}

return best_index;

Figure 3.4: Argmin-Sum Pattern; Original and Transformed Code

Pattern Structure. The inputs of the pattern are the values produced by the function

f(i,j). The analysis represents each call to the function with the random variable 𝑋𝑖,𝑗 . The

outer loop (which cannot be perforated) executes for 𝐿 iterations, the inner loop (which can

be perforated) executes for 𝑛 iterations. The computation produces two outputs, the mini-

mum sum best and the index of the array element that corresponds to this sum best index.

The analysis characterizes the accuracy of the computation via the sum best, which

is used to rank the different elements. Since best is computed from the inputs that are

random, it is also a random variable, that we denote as 𝑀 . The rationale for choosing best

for quantifying the accuracy of the pattern is that the remaining computation is expected

produce a similar result if the element returned by the perforated computation is similar

to the element returned by the original computation, even though the indices can have

arbitrary distance.

67

Input Specifications. For each 𝑖 ∈ {1, . . . , 𝐿}, we assume that 𝑋𝑖,𝑗 = f(i, j) are

independent and identically distributed, with an finite mean 𝜇.

Analysis. The best score of element returned by the original computation is 𝑀𝑂 =

min
𝑖=1:𝐿

∑︀𝑛
𝑗=1𝑋𝑖,𝑗 . But, to facilitate the analysis, we will represent this expression equiv-

alently as

𝑀𝑂 =
∑︁𝑛

𝑗=1
𝑋𝜔,𝑗 with the index 𝜔 ≡ argmin

𝑖=1:𝐿

∑︁𝑛

𝑗=1
𝑋𝑖,𝑗 .

Analogously, the best score of the element returned by the perforated computation is

𝑀𝑃 =
∑︁𝑛

𝑗=1
𝑋𝛾,𝑗 with the index 𝛾 ≡ argmin

𝑖=1:𝐿

𝑚∑︁
𝑗=1

𝑋𝑖,𝑗 .

Note that the index 𝛾 is computed by iterating only over𝑚 elements in the perforated sum1.

However, 𝑀𝑃 is a sum of 𝑛 variables – this is the true score for the element, although the

perforated code does not compute this value explicitly.

The analysis computes the perforation noise 𝐷 ≡ 𝑀𝑃 −𝑀𝑂. The perforation noise 𝐷

is non-negative because 𝑀𝑂 is a minimum sum. To represent the noise as a function of

perforation, we define additional derived variables. Let 𝑌𝑖 ≡
∑︀𝑚

𝑗=1𝑋𝑖,𝑗 be the partial score

computed by the perforated inner loop and 𝑍𝑖 ≡ ∑︀𝑛
𝑗=𝑚+1𝑋𝑖,𝑗 be the remainder of the

score. Then, 𝑀𝑂 = 𝑌𝜔 + 𝑍𝜔 and 𝑀𝑃 = 𝑌𝛾 + 𝑍𝛾 .

Then the perforation noise satisfies

𝐷 = 𝑌𝛾 + 𝑍𝛾 − 𝑌𝜔 − 𝑍𝜔 (3.12)

≤ 𝑌𝛾 + 𝑍𝛾 − min
𝑖=1:𝐿

𝑌𝑖 − min
𝑖=1:𝐿

𝑍𝑖 (3.13)

≤ 𝑍𝛾 − min
𝑖=1:𝐿

𝑍𝑖. (3.14)

The inequality follows from the fact that 𝑀𝑂 = min
𝑖=1:𝐿

(𝑌𝑖 + 𝑍𝑖) ≥ min
𝑖=1:𝐿

𝑌𝑖 + min
𝑖=1:𝐿

𝑍𝑖. The

fact that 𝑌𝛾 = min
𝑖=1:𝐿

𝑌𝑖 follows from the definitions of 𝛾 and 𝑌𝑖.

Let 𝐷̄ ≡ 𝑍𝛾 −min𝑖 𝑍𝑖 denote this upper bound. We can obtain conservative estimates of

the perforation noise 𝐷 by studying 𝐷̄. Note that for this pattern, 𝐷̄ is always non-negative

(because 𝑍𝛾 ≥ min𝑖 𝑍𝑖).

Since the inputs 𝑋1,1, . . . , 𝑋𝐿,𝑛 are mutually independent, then so are the partial sums

𝑍1, . . . , 𝑍𝐿. Since, by definition, 𝑍𝛾 is one of these sums, then it is independent from

1The independence of the variables 𝑋𝑖,𝑗 implies that any perforation vector P that selects 𝑚 elements will

result in the same expected error and variance. We can therefore, without loss of generality, continue

the analysis with the strategy that executes the first 𝑚 iterations (as we defined above).

68

the remaining partial sums. Since each of them sums 𝑛 − 𝑚 elements, the expectation

E(𝑍𝑖) = (𝑛−𝑚) · 𝜇. The expectation of 𝐷̄ is therefore (from the linearity of expectation):

E(𝐷̄) = (𝑛−𝑚) · 𝜇− E(min
𝑖=1:𝐿

𝑍𝑖).

This expression provides a general upper bound on the noise 𝐷. Since 𝐷 is positive, we

can in principle use Chebyshev’s bound to limit the probability of large absolute perforation

noise. However, to provide an analytic expression for the expected value E(min
𝑖=1:𝐿

𝑍𝑖), we need

to make additional assumptions on the distribution of the inputs 𝑋𝑖,𝑗 or the distribution of

the remainder sums 𝑍𝑖.

3.5.1 Gaussian Inputs

Input Specification. We assume that the inputs 𝑋𝑖,𝑗 are i.i.d Gaussian variables, with

the mean 𝜇 and variance 𝜎2.

Analysis. Since 𝑋𝑖,𝑗 are i.i.d Gaussians, then so are their partial sums 𝑍𝑖 (but with mean

(𝑛−𝑚)𝜇 and variance (𝑛−𝑚)𝜎2. Therefore, E(min𝑖 𝑍𝑖) for 𝑖 ∈ {1, . . . , 𝐿} is the minimum

of the Gaussian variables.

We compute a lower bound of this expectation, by computing an upper bound of the

expectation E(max𝑖 𝑍
′
𝑖), where each 𝑍 ′

𝑖 = −𝑍𝑖 is a Gaussian variable with the mean

−(𝑛−𝑚)𝜇. We derive this bound as follows. Let 𝑉 = max𝑖 𝑍
′
𝑖. Then exp (E(𝑉)) ≤ E(exp(𝑉))

(from Jensen’s inequality). Also, exp(𝑉) = max𝑖 exp(𝑍
′
𝑖) and this is bounded from above

by
∑︀𝐿

𝑖=1 exp(𝑍
′
𝑖) (since the expressions under max are non-negative). Since we have that

𝑍 ′
𝑖 ∼ 𝑁(−(𝑛−𝑚)𝜇, (𝑛−𝑚)𝜎2), a random variable exp(𝑍 ′

𝑖) has a log-normal distribution,

and therefore its expected value is exp(−(𝑛−𝑚)𝜇+ (𝑛−𝑚)𝜎2/2). There are 𝐿 such inde-

pendent log-normal variables, which entails exp (E(𝑉)) ≤ 𝐿 exp(−(𝑛−𝑚)𝜇+ (𝑛−𝑚)𝜎2/2).

Finally, we can derive the bound E(𝑉) ≤ log(𝐿)− (𝑛−𝑚)𝜇+ (𝑛−𝑚) · 𝜎2/2. Therefore, we
have bound:

E(𝐷) ≤ log(𝐿) + (𝑛−𝑚) · 𝜎2/2.

Since 𝐷 is always positive (i.e., 𝐷 = |𝐷|), we can use Markov’s inequality to bound the

probability of large absolute perforation noise. However, for the Gaussian variables, variance

of the perforation noise does not have a closed form [7].

3.5.2 Analysis for Approximate Assumptions

Another way to proceed with the analysis is to directly make an assumption on the distri-

bution of the variables 𝑍1, . . . , 𝑍𝐿. In such cases, the analysis is likely to be approximate

69

in the sense that it will not provide guarantees for the input specification. However, these

analyses can be potentially applied if sensitivity profiling identifies that the empirical dis-

tribution of data is similar to one of these distributions. For example, we anticipate that

𝑍𝑖 will in practice rarely be uniform, however this assumption is in some sense conservative

if we choose the center and width to cover all but a tiny fraction of the mass of the true

distribution of 𝑍𝑖.

Uniform distribution of 𝑍’s. We make the assumption that all 𝑍𝑖 are i.i.d. and uni-

formly distributed on the interval 𝑎± 𝑤
2 of width 𝑤 > 0 and center 𝑎.

If 𝑊𝐿 = min𝑖≤𝐿 𝑍𝑖, then
1
𝑤 (𝑊𝐿 − 𝑎+ 𝑤

2) has a Beta(1, 𝐿) distribution, and so E(𝑊𝐿) =

𝑎+ 𝑤
𝐿+1 − 𝑤

2 and variance Var(𝑊𝐿) =
𝐿𝑤2

(𝐿+1)2(𝐿+2)
. From (3.15), we have E(𝐷̄) = 𝑤

2 − 𝑤
𝐿+1 .

Furthermore, as 𝛾 is independent of every 𝑍𝑖, it follows that 𝑍𝛾 is independent of 𝑊𝐿.

Therefore,

Var(𝐷) ≤ Var(𝐷̄) =
1

12
𝑤2 +

𝐿𝑤2

(𝐿+ 1)2(𝐿+ 2)
.

From this expression, we can bound the probability of large perforation noise using Cheby-

shev’s inequality.

Exponential distribution of 𝑍’s. We make the assumption that all 𝑍𝑖 are i.i.d. and

exponentially distributed with the rate parameter 𝜆. Then, the minimum of these variables

is also an exponential random variable, with the expected values E(min
𝑖=1:𝐿

(𝑍𝑖)) = (𝐿 · 𝜆)−1.

From this and the fact that E(𝑍𝑖) = 𝜆−1, the bound on the expected perforation noise (from

Equation 3.15) is

E(𝐷) ≤ 𝐿− 1

𝐿 · 𝜆 .

3.6 Ratio Pattern

We present an example of the original and transformed code in Figure 3.5.

Input Specifications. Let 𝑋𝑖 = x(𝑖) and 𝑌𝑖 = y(𝑖) denote random variables represent-

ing the values of the inner computations. We assume that the sequence of pairs (𝑋𝑖, 𝑌𝑖)

are i.i.d. copies of a pair of random variables (𝑋,𝑌), where 𝑌 > 0 almost surely (i.e.,

Pr(𝑌 > 0) = 1). Define 𝑍 = 𝑋/𝑌 and 𝑍𝑖 = 𝑋𝑖/𝑌𝑖. For some constants 𝜇 and 𝜎2𝑍 , we

assume that the conditional expectation of 𝑍 given 𝑌 is 𝜇, i.e., E(𝑍|𝑌) = 𝜇, and that the

conditional variance satisfies Var(𝑍|𝑌) =
𝜎2
𝑍
𝑌 .

70

Original code Transformed Code

double numer = 0.0;

double denom = 0.0;

for (int i = 1; i <= n; i++) {

numer += x(i);

denom += y(i);

}

return numer/denom;

double numer = 0.0;

double denom = 0.0;

for (int i = 1; i <= n; i+=k) {

numer += x(i);

denom += y(i);

}

return numer/denom;

Figure 3.5: Ratio Pattern; Original and Transformed Code

Analysis. The elements of the perforation vector P only take values from the set {0, 1}.
The independence of the pairs (𝑋𝑖, 𝑌𝑖) from different iterations implies that the perforation

strategy does not influence the final result. To simplify the derivation, but without loss

of generality, we use the perforation vector P in which the first 𝑚 elements are 1 and the

remaining elements 0.

Define 𝑌 𝑛
1 = 𝐴′𝑌 =

∑︀𝑛
𝑖=1 𝑌𝑖 and 𝑌

𝑚
1 = 𝑃 ′𝑌 =

∑︀𝑚
𝑖=1 𝑌𝑖 and define 𝑋𝑛

1 and 𝑋𝑚
1 analo-

gously. Then the value of the original computation is 𝑆𝑂 =
𝑋𝑛

1
𝑌 𝑛1

=
∑︀𝑛

𝑖=1
𝑌𝑖
𝑌 𝑛1
𝑍𝑖, while the

value of the perforated computation is given by 𝑆𝑃 =
∑︀𝑚

𝑖=1
𝑌𝑖
𝑌𝑚1

𝑍𝑖, where 𝑚 is the reduced

number of steps in the perforated sum. Note that in the previous equations, we used the

identity 𝑋𝑖 = 𝑌𝑖𝑍𝑖.

We begin by studying the (signed) perforation noise 𝐷 ≡ 𝑆𝑃 − 𝑆𝑂. The conditional

expectation of𝐷 given 𝑌1:𝑛 = {𝑌1, . . . , 𝑌𝑛} satisfies E(𝐷|𝑌1:𝑛) =
∑︀𝑛

𝑖=1
𝑌𝑖
𝑌 𝑛1
𝜇−∑︀𝑚

𝑖=1
𝑌𝑖
𝑌𝑚1

𝜇 = 0.

The conditional variance satisfies Var(𝐷|𝑌1:𝑛) = 𝜎2𝑍

(︁
1
𝑌𝑚1

− 1
𝑌 𝑛1

)︁
By the law of iterated

expectations E(𝐷) = E(E(𝐷|𝑌1:𝑛)) = 0.

3.6.1 Gamma Inputs

Input Specification To proceed with an analysis of the variance of the perforation noise

𝐷, we make a distributional assumption on 𝑌 . In particular, we assume that 𝑌 is gamma

distributed with shape 𝛼 > 1 and scale 𝜃 > 0.

Analysis. Therefore, the sum 𝑌 𝑚
1 also has a gamma distribution with parameters 𝛼′ =

𝑚𝛼, 𝜃′ = 𝜃, 1
𝑌𝑚1

has an inverse gamma distribution with mean (𝜃(𝑚𝛼− 1))−1, and so

Var(𝐷) =
𝜎2𝑍
𝜃

(︂
1

𝑚𝛼− 1
− 1

𝑛𝛼− 1

)︂
. (3.15)

Again, using Chebyshev’s inequality, we can bound the probability of large |𝐷|.

71

3.7 Discussion

Scope. This chapter presents probabilistic guarantees for the accuracy of perforated

computations. We expect that the basic framework of the probabilistic guarantees (algebraic

expressions for expected values, variances, and probabilistic bounds) will remain largely the

same for other transformations (the derivation of the expressions will of course differ). For

instance, the next chapter presents another set of probabilistic specifications for approximate

operations/variables and an automated analysis to check these specifications.

We note that even for loop perforation, we do not attempt to provide an exhaustive list

of the possible patterns and analyses. To provide a more complete set of statically analyz-

able patterns, we note that the statistical literature provides a comprehensive treatment of

operations on random variables [115] and order statistics of random variables [7]. The ba-

sic compositional properties of probability distributions under such operations can provide

the foundation for the analysis of computations which employ many of these operations.

In addition, sampling-based analysis techniques, such as [13, 107, 108] can help propagate

the transformation error through the subsequent computation (while verifying probabilistic

assertions with high confidence). However, a main limitation of all analyses that require a

developer to provide full distributional assumptions is that, in general, small changes in the

detailed assumptions may significantly change the analysis results.

Representation of Patterns. We represented the structural perforatable patterns as

snippets of imperative code written in a C-like language. We note that these patterns can

also be represented using different language constructs with the same semantics.

For instance, the sum pattern can be represented using the recursion. If the function that

computes each element is f(), then the pattern can be represented as

sum f 0 = f 0

sum f n = f n + sum f (n-1)

The pattern can also be represented using the functional language operators map and fold,

inputs = range(1, n)

sum = fold (0 (+) (map f inputs))

The other patterns can be similarly represented using different language constructs. Rep-

resentation of computation affects the transformation that will be applied, for each of these

code patterns we can define a transformation that has the same effect as loop perforation.

Composition of Transformations. In addition to randomness of inputs, we can also

successfully study the noise that comes from the computations. An example of such trans-

72

formation is random loop perforation, which corresponds to random sampling. We also ex-

plored other randomized transformations, such as randomized function substitution, which

selects one of multiple alternative function implementations. If the transformation is ran-

dom then, in principle, the analysis can describe the set of inputs using either a distribution

or some other deterministic representation (e.g.,intervals).

In our subsequent work, we presented a more general computational model and approxi-

mate computation pattern [125]. This model represents a computation as an abstract tree

of multiple map tasks (which apply a function on a list of input values) and reduction tasks

(which average or compute the minimum/maximum of a list of numbers). The model sup-

ports two accuracy-aware transformations: randomized function substitution for map tasks

and random sampling for reduction tasks. In addition, the developer provides the input

intervals and specifications of accuracy and performance for the alternative function imple-

mentations. The analysis then computes the error that emerges and propagates through the

model as a function of the probabilities of executing alternative function implementations

and probabilities of sampling elements from reduction operators.

In addition, this work formulates the optimization problem that searches for configura-

tions of randomized transformations that deliver profitable accuracy/performance tradeoffs

for the computations represented in this abstract computational model [125]. We can also

express the optimization problem for the computations we studied in this chapter.

From Analysis to Optimization. Finally, note that the analysis computed probabilistic

expressions of probabilistic noise based on a fixed perforation rate. We can instead formulate

a problem of selecting a perforation rate that satisfies the noise bound, while maximizing

performance. To set up the optimization problem, we need an objective function (that char-

acterizes the performance savings) and a constraint (that characterizes perforation noise).

Overall, for these loop patterns, the execution time monotonically decreases as we increase

perforation rate 𝑟. A linear energy estimate is reasonable (especially if different loop itera-

tions execute in approximately the same time). Therefore, we define the objective as max 𝑟.

We can obtain the constraint from the expressions that we presented in Sections 3.3-3.6, as

functions of the unknown perforation noise 𝑟. The unknown perforation rate can either be

a continuous value 𝑟 ∈ [0, 1], or a discrete value (e.g., 𝑟 ∈ {0.25, 0.5, 0.75}).
This optimization problem can be non-convex (because of potentially non-convex con-

straints. However, for individual loops it is always a univariate optimization problem, and

one can use an number of algorithms from numerical analysis (or even derive symbolic

expressions) to find the optimum perforation rate. The next three chapters extensively

describe how one can define such optimization problems.

73

4 Reliability-Aware and Accuracy-Aware

Optimization with Chisel

Emerging approximate hardware platforms provide operations that may produce less accu-

rate or incorrect results to reduce energy consumption (e.g., [42, 65, 66, 67, 85, 89, 105]).

The approximate applications that implement algorithms that are inherently tolerant to in-

accuracies in their data and where the majority of the computation is performed in several

approximate kernels are good candidates for executing on such hardware devices.

This and the subsequent two chapters presents Chisel, an optimization framework that

automatically selects approximate instructions and data that may be stored in approximate

memory, given the exact kernel computation and the associated reliability and/or accuracy

specification. Chisel can therefore reduce the effort required to develop efficient approximate

computations and enhance their portability.

Figure 4.1 presents an overview of Chisel. The developer provides the Chisel program

along with reliability and/or accuracy specifications for the approximate kernels. The hard-

ware designer provides a hardware specification, which specifies the reliability and accuracy

information for individual instructions and approximate memory.

Code Generator

Exact
Program

Typical
Inputs

Reliability/Accuracy
Specification

Reliability/Accuracy
Constraint Generator

(static analysis)

Energy Consumption
Objective Generator

(dynamic analysis)

Integer Linear Programming Solver

Hardware Designer

Approximate Hardware
Specification

Software Developer

Program with Approximate Kernels

Figure 4.1: Chisel Overview

74

Exact Program. A Chisel program consists of a kernel function written in the Rely

base language [19] (which is a simple imperative language with control-flow constructs and

arrays) and code written in an implementation language (such as C) that calls the kernel.

The kernel function can compute the return value, but may also write computed values

into array parameters passed by reference into the kernel from the outer C code. Chisel

transforms the kernel function according to the developer’s specification.

Kernel’s Reliability and Accuracy Specifications. Reliability specifications of the

form <r*R(x1, ..., xn)> are integrated into the type signature of the kernel. Here r spec-

ifies the probability that the kernel (in spite of unreliable hardware operations) computes

the value correctly. The term R(x1, ..., xn) is a joint reliability factor that specifies

the probability that x1,...,xn all have correct values at the start of the kernel. In the

following specification, for example:

int <.99 * R(x)> f(int[] <.98*R(x)> x);

the return value has reliability at least .99 times the reliability of the input x; when f

returns, the probability that all elements in the array x (passed by reference into f) have

the correct value is at least .98 times the reliability of x at the start of f.

Chisel also supports combined reliability and accuracy specifications of the following form

(these specifications are relational in that they specify the combined accuracy and reliability

with respect to the fully accurate exact computation):

<d, r*R(d1 >= D(x1), ..., dn >= D(xn))>

Here d is a maximum acceptable absolute difference between the approximate and exact

result values, r is the probability that the kernel computes a value within d of the exact

value, and the term R(d1 >= D(x1), ..., dn >= D(xn)) is a joint reliability factor that

specifies the probability that each xi is within distance di of the exact value at the start of

the computation. If r=1, then the specification is a pure accuracy specification; if d=0 and

all the di=0, then the specification is a pure reliability specification.

To support accuracy analysis, the developer can specify the intervals of the inputs using

annotations of the form @interval(x, a, b), where a and b are the lower and the upper

bounds of the range of the variable x.

Typical Program Inputs. A developer provides a set of typical inputs that Chisel

uses to estimate the energy savings of approximate computations. In addition, they can

75

help developers derive the accuracy and reliability specification through sensitivity profiling

(which we describe later in this section).

Approximate Hardware Specifications. Figure 4.2 presents the model of approximate

hardware, which consists of approximate ALU, main memory, and cache memory. Chisel

works with a hardware specification provided by the designers of the approximate hardware

platform [67, 105]. To automatically optimize the implementation of the computation, the

optimization algorithm requires a specification of approximate components.

Figure 4.2: Model of Approximate Hardware

The approximate hardware specification consists of:

∙ Operation and Memory Accuracy/Reliability. The hardware specification iden-

tifies 1) approximate arithmetic operations and 2) the approximate regions of the main

and cache memories. The specification contains the reliability and (optionally) the

accuracy loss of each arithmetic operation. It also contains the probability that read

and write operations to approximate main memory and cache complete successfully.

∙ Energy Model Parameters. To compute the savings associated with selecting

approximate arithmetic operation, the energy model specifies the expected energy

savings of executing an approximate version (as a percentage of the energy of the

exact version). To compute the savings associated with allocating data in approximate

memory, the energy model specifies the expected energy savings for memory cells.

To compute system energy savings, the energy model also provides 1) a specification

of the relative portion of the system energy consumed by the CPU versus memory,

2) the relative portion of the CPU energy consumed by the ALU, cache, and other

on-chip resources, and 3) the ratio of the average energy consumption of floating-point

instructions and other non-arithmetic instructions relative to integer instructions.

We present examples of approximate hardware specifications later in Chapter 6 (Table 6.1).

76

Reliability-Aware and Accuracy-Aware Optimization

Chisel’s optimization algorithm selects approximate instructions and variables allocated in

approximate memories. Chisel automatically navigates the tradeoff space and generates an

approximate computation that maximizes energy savings (according to an energy model for

the hardware platform) while satisfying its combined reliability and accuracy specification

and therefore bound the frequency and magnitude of errors introduced by approximation.

Chisel reduces this search to a numerical optimization problem, which has the following

general form:

Minimize: EnergyConsumption(Configuration)

Constraints: Reliability(Configuration) ≥ ReliabilityBound

AbsoluteError(Configuration) ≤ AccuracyBound

Variables: Configuration ∈ {0, 1}𝑛

For each instruction in the kernel, Chisel specifies a configuration, a zero-one valued vec-

tor that indicates whether each instruction should be exact (zero) or approximate (one).

Chisel’s optimization algorithm performs static analysis of reliability and accuracy to con-

struct the optimization constraints and dynamic analysis to estimate the energy savings of

approximate kernels.

We present Chisel’s optimization algorithm in Chapter 5. We show that the optimization

problem that the analysis generates is an instance of integer linear programming (ILP),

which is a standard problem in mathematical optimization. Chisel can then dispatch the

generated problem to an off-the-shelf integer optimization solver and uses the solver’s result

to generate approximate code that satisfies its reliability and accuracy specifications.

Sensitivity Profiling

To help the developer obtain appropriate reliability and accuracy specifications, Chisel

provides an optional sensitivity profiler. The profiler works with an end-to-end sensitivity

metric, which compares the end-to-end results of the exact and approximate executions of

the Chisel program to define the acceptability requirements for the outputs that the program

produces. Specifically, the difference between the exact and approximate executions must

be below a specified sensitivity bound. A sensitivity profiler (which performs function-level

77

noise injection to estimate the sensitivity of the program’s result to noise in the results that

the kernel computes) can help the developer identify specifications that produce acceptable

end-to-end results.

Sources. The previous version of the research presented in this and the next two chapters

appeared in [73]. Part of the Sections 4.2, 5.2, and 5.3 previously appeared in the accompanying

technical report [74].

4.1 Motivating Example

Figure 4.3 presents a (simplified) implementation of an algorithm that scales an image to a

larger size. It consists of the function scale and the function scale kernel.

The function scale takes as input the scaling factor f (which increases the image size in

both dimensions), along with integer arrays src, which contains the pixels of the image to

be scaled, and dest, which contains the pixels of the resulting scaled image. The algorithm

calculates the value of each pixel in the final result by mapping the pixel’s location back

to the original source image and then taking a weighted average of the neighboring pixels.

The code for scale implements the outer portion of the algorithm, which enumerates over

the pixels in the destination image.

The function scale kernel implements the core kernel of the scaling algorithm. The

algorithm computes the location in the array src of the pixel’s neighboring four pixels

(Lines 3-4), adjusts the locations at the image edges (Lines 6-13), and fetches the pixels

(Lines 15-18). To average the pixel values, the algorithm uses bilinear interpolation. Bilinear

interpolation takes the weighted average of the four neighboring pixel values. The weights

are computed as the distance from the source coordinates i and j to the location of each of

the pixels (Lines 20-23). In the last step, the algorithm extracts each RGB color component

of the pixel, computes the weighted average, and then returns the result (Lines 25-29).

4.1.1 Reliability Specification

We will use the following reliability specification for this kernel is:

int<0.995 * R(i, j, src, s_height, s_width)>

scale_kernel (float i, float j, int[] src, int s_height, int s_width);

78

i

1 int scale_kernel(float i, float j, int[] src , int s_height , int s_width)

2 {

3 int previ = floor(i), nexti = ceil(i);

4 int prevj = floor(j), nextj = ceil(j);

5

6 if (s_height <= nexti) {

7 previ = max(s_height -2, 0);

8 nexti = min(previ+1, s_height -1);

9 }

10 if (s_width <= nextj) {

11 prevj = max(s_width -2, 0);

12 nextj = min(prevj+1, s_width -1);

13 }

14

15 int ul = src[IDX(previ , prevj , s_width)];

16 int ur = src[IDX(nexti , prevj , s_width)];

17 int ll = src[IDX(previ , nextj , s_width)];

18 int lr = src[IDX(nexti , nextj , s_width)];

19

20 float ul_w = (nextj - j) * (nexti - i);

21 float ur_w = (nextj - j) * (i - previ);

22 float ll_w = (j - prevj) * (nexti - i);

23 float lr_w = (j - prevj) * (i - previ);

24

25 int r = (int) (ul_w * R(ul) + ur_w * R(ur) + lr_w * R(lr) + ll_w * R(ll));

26 int g = (int) (ul_w * G(ul) + ur_w * G(ur) + lr_w * G(lr) + ll_w * G(ll));

27 int b = (int) (ul_w * B(ul) + ur_w * B(ur) + lr_w * B(lr) + ll_w * B(ll));

28

29 return COMBINE(r, g, b);

30 }

31

32 void scale(float f, int[] src , int s_width , int s_height ,

33 int[] dest , int d_height , int d_width)

34 {

35 float si = 0, delta = 1 / f;

36

37 for (int i = 0; i < d_height; ++i) {

38 float sj = 0;

39 for (int j = 0; j < d_width; ++j) {

40 dest[IDX(i, j, d_width)] = scale_kernel(si, sj, src , s_height , s_width);

41 sj += delta;

42 }

43 si += delta;

44 }

45 }

Figure 4.3: Image Scaling Kernel

79

The reliability specification of scale kernel appears as part of the type signature of the

function. The additional reliability information 0.995 * R(i, j, src, s height, s width)

specifies the reliability of the return value:

∙ Input Dependencies. The reliability of the return value is a function of the relia-

bility of the function’s inputs. The term R(i, j, src, s height, s width) represents

the joint reliability of the inputs on entry to the function, which is the probability

that they all together contain the correct result.

∙ Reliability Degradation. The coefficient 0.995 expresses the reliability degradation

of the function. Specifically, the coefficient is the probability that the return value is

correct given that all input variables have the correct values on entry to the function.

We describe how to derive this coefficient in Section 4.1.2.

Since the specification does not explicitly state the acceptable absolute difference, it is

by default d = 0. Therefore, whenever the computation executes without errors, it should

produce an exact result.

Arrays. The Rely base language contains annotations on the array parameters that spec-

ify that it is allocated in approximate memory. For instance, the following signature of

scale kernel would state that the pixel array src is in an approximate memory region

named urel:

int<...> scale_kernel (..., int[] src in urel, ...);

To generate such annotations, Chisel explores the possibility that the array passed as a

src parameter may be allocated in the approximate memory. Specifically, Chisel’s optimiza-

tion problem encodes both alternatives, i.e., when src is allocated in an exact memory and

when it is allocated in an approximate memory. Chisel will report to the developer if this al-

ternative allocation strategy (which may save additional energy) still satisfies the reliability

specification. The developer can then annotate the array’s allocation statement to indicate

to the compiler or the runtime system to allocate the array in an approximate memory.

4.1.2 Obtaining Kernel’s Reliability Specification

To obtain a reliability specification for the kernel, a developer typically relates the reliability

of the kernel’s output to the program’s end-to-end sensitivity metric. We present two

general strategies for obtaining kernel’s reliability degradation, using sensitivity profiling

and analytic bound derivation.

80

(a) 0.20 (b) 0.40 (c) 0.60 (d) 0.80 (e) 0.90 (f) 0.99 (g) 0.999

Figure 4.4: Sensitivity Profiling for Image Scaling for Different Values of r

Sensitivity Profiling. Chisel’s sensitivity profiler assists the developer in deriving the

reliability specification of the kernel. It takes three inputs from the developer:

∙ Sensitivity Metric. A function that compares the outputs of the original and ap-

proximate executions. It produces a numerical value that characterizes the difference

between the two outputs. For computations that produce images, such as scale, a

typically used metric is Peak-Signal-to-Noise Ratio (PSNR).

∙ Sensitivity Goal. The value of the sensitivity metric that characterizes the accept-

able output quality of the approximate program.

∙ Sensitivity Testing Procedure. A developer can write fault injection wrappers

that inject noise into the computation. In general, the developer may use these wrap-

pers to explore the sensitivity of the program’s results to various coarse-grained error

models. For scale kernel, a developer can implement the following simple sensitivity

testing procedure, which returns a random value for each color component:

int scale_kernel_with_errors(float i, float j, int[] src, int s_height, int s_width) {

return COMBINE(rand()%256, rand()%256, rand()%256);

}

Chisel’s sensitivity profiler automatically explores the relation between the probability of

approximate execution and the quality of the resulting image for the set of representative

images. Conceptually, the profiler transforms the program to execute the correct imple-

mentation of scale kernel with probability r, which represents the target reliability. The

framework executes the faulty implementation scale kernel with errors with probability

1-r. The framework uses binary search to find the probability r that causes the noisy pro-

gram execution to produce results with acceptable PSNR. The profiler can also plot the

quality of the result as a function of r.

81

Figure 4.4 presents a visual depiction of the results of scaling for different values of r.

Note that implementations with low reliability (0.20-0.80) do not produce acceptable results.

However, as r reaches values in the range of 0.99 and above, the results become an acceptable

approximation of the result of the original (exact) implementation. For the remainder of

this section, we use 0.995 as scale kernel’s target reliability, which yields images with an

average PSNR of 30.9 dB.

Analytical Lower Bound on Sensitivity Metric. Starting with a reliability speci-

fication for our example kernel, it is also possible to obtain an analytic lower bound for

the sensitivity metric. Specifically, the PSNR for the exact image 𝑑 and the approximate

image 𝑑′ is

PSNR(𝑑, 𝑑′) = 20 · log10 (255)−

10 · log10

⎛⎝ 1

3ℎ𝑤

ℎ∑︁
𝑖=1

𝑤∑︁
𝑗=1

∑︁
𝑐∈{𝑅,𝐺,𝐵}

(𝑑𝑖𝑗𝑐 − 𝑑′𝑖𝑗𝑐)
2

⎞⎠ .

The constants ℎ and 𝑤 are the height and width of the image and 𝑅, 𝐺, and 𝐵 are the

color components of a pixel. Each color component is a value between 0 and 255.

The kernel computation computes the value of 𝑑′𝑖𝑗𝑐 for all three RGB components correctly

with probability 𝑟. In this case,
∑︀

𝑐∈{𝑅,𝐺,𝐵}(𝑑𝑖𝑗𝑐 − 𝑑′𝑖𝑗𝑐)
2 = 0. With probability 1 − 𝑟, the

kernel computation can compute the value of 𝑑′𝑖𝑗𝑐 incorrectly. The upper bound on the

expected error is then
∑︀

𝑐∈{𝑅,𝐺,𝐵}(𝑑𝑖𝑗𝑐 − 𝑑′𝑖𝑗𝑐)
2 ≤ 3 · 2552. Therefore, the lower bound on

the expected PSNR metric is

PSNR(𝑑, 𝑑′) ≥ −10 · log10 (1− 𝑟) .

For a reliability specification 𝑟 = 0.995, we can obtain that the expected PSNR is greater

than 23.01 dB for any image (and for the typical images used in profiling the average PSNR

is greater than 30.9 dB). If, on the other hand, a developer wants to obtain the expected

PSNR for any image, then he or she can compute using the previous formula that the

reliability degradation should be 0.999.

4.1.3 Optimization Results

Chisel generates expressions that characterize the energy savings and reliability of the func-

tion scale kernel. These expressions are parameterized by an unknown configuration of the

approximate kernel, which specifies which operations and array parameters may be approx-

imate or must be exact. This configuration is the solution to the optimization problem. For

82

the hardware platforms analyzed in Chapter 6, the optimization algorithm delivers 19.35%

energy savings, which is over 95% of the maximum possible energy savings for this com-

putation (which occurs when the reliability bound is zero, and therefore all operations and

the src and dest arrays can be approximate).

When the result of the function is assigned directly to an array variable, like in the

case of the dest array, the optimization treats this variable (unless specified otherwise by

the developer) as another array parameter of the kernel function that can be specified as

approximate. Chisel identifies both src and dest arrays as potentially approximate. Chisel

also identifies around 20% of the arithmetic operations as approximate. These operations

are in the part of the computation that performs bilinear interpolation. For instance, the

assignment to the variable lr w on line 23 uses the inexact multiplication operation “*.”.

Identifying the kernel’s array parameters as approximate informs the developer that the

kernel can satisfy its reliability specification with the array allocated in approximate mem-

ory. Given this information, the developer can use a predefined API call at the array

allocation site to allocate the array in approximate memory across the entire application.

Final Sensitivity Validation. Using the specified sensitivity bound and metric, the

framework can evaluate the generated approximate kernel computation on a set of (previ-

ously unseen) production inputs. For our example benchmark, the average PSNR on a set

of production inputs is 32.31 dB.

4.2 Approximate Hardware Specification and Semantics

The code of scale in Section 4.1 illustrates the syntax of the Rely base language, which is

a pointer-less C-like language with first-class one-dimensional arrays and reliability specifi-

cations. In this section, we present a hardware model and a compilation model for Chisel

that captures the basic properties of approximate hardware.

4.2.1 Hardware Specification

We consider a single-CPU architecture model that exposes an ISA with approximation

extensions and an approximate memory hierarchy.

Machine Language Syntax

Figure 4.5 presents the abbreviated syntax of the assembly language of the architecture.

83

𝑟 ∈ 𝑅 ∪ {pc, bp} 𝑛 ∈ IntN

𝑎 ∈ 𝐴 ⊆ IntN 𝜅 ∈ 𝐾 = {0, 1}

op ∈ Op ::= add | fadd | mul | fmul | cmp | fcmp | . . .

{𝑡𝑒𝑥𝑡𝑡𝑡𝑖 ∈ I ::= 𝑟 = op𝜅 𝑟oper1 𝑟oper2 | jmp 𝑟condition 𝑟addr | return 𝑟value |
𝑟value = init 𝑛 | 𝑟value = load 𝑟addr | store 𝑟addr 𝑟value |
𝑟value = loada 𝑟addr 𝑟idx | storea 𝑟addr 𝑟idx 𝑟value

Figure 4.5: Assembly Language Syntax

Operands. Each operand is either a register 𝑟 ∈ 𝑅 or a fixed N-bit (e.g., 32-bit or

64-bit) integer 𝑛 ∈ IntN. Floating point numbers are integers coded with the IEEE 754

representation.

Instructions. Each instruction i ∈ I is either an ALU/FPU arithmetic operation (such

as add, multiply and compare), a conditional branch to an address (jmp), or a load/store

from memory for scalars (load and store), and for arrays (loada and storea).

Each arithmetic instruction also has a kind 𝜅 ∈ 𝐾 = {0, 1}, such as 𝑟 = add𝜅 𝑟1 𝑟2, that

indicates that the instruction is either exact (𝜅 = 0) – and always produces the correct result

– or approximate (𝜅 = 1) – and may produce an incorrect result with some probability.

Components of Hardware Specification

The reliability portion of the hardware specification 𝜓 ∈ (Op → R)× (R×R)× (R×R) is a
triple of structures that specify the reliability of instructions, the approximate memory re-

gion, and the approximate cache region, respectively. In Sections 5.3.1 and 5.4.1, we extend

the hardware specification to include the hardware’s accuracy and energy parameters.

Instructions. The projection 𝜋op selects the first element of the hardware specification,

which is a finite map from operations to reliabilities. The reliability of an operation is the

probability that the operation executes correctly.

Memories. The hardware exposes an exact main memory region and an approximate

memory region. The projection 𝜋mem selects the second element of the hardware specifica-

84

tion, which is a pair (𝑟ld, 𝑟st) that denote the reliabilities of loading and storing a value in

the approximate main memory.

Caches. The hardware exposes an exact cache and an approximate cache. The projection

𝜋$ selects the third element of the hardware specification, which is a pair (𝑟ld, 𝑟st) that denote

the reliabilities of loading and storing a value in the approximate cache.

4.2.2 Hardware Semantics

Register Files, Memories, Memory Configurations, Programs, and Environ-

ments. A register file 𝜎 ∈ Σ = 𝑅 → IntN is a finite map from registers to machine

integers. A memory 𝑚 ∈ 𝑀 = 𝐴 → IntN is a finite map from addresses to machine in-

tegers. A memory configuration 𝜉 ∈ Ξ = 𝐴 → 𝐾, maps an address 𝑎 to a kind 𝜅 that

designates whether the memory at 𝑎 is configured as exact (𝜅 = 0) or approximate (𝜅 = 1).

A program 𝛾 ∈ Γ = 𝐴 → 𝐼 is a finite map from addresses to instructions. An environment

𝜀 ∈ E = Σ×𝑀 is a register file and memory pair.

Ready Instructions and Configurations. A ready instruction 𝑖̂ ∈ 𝐼 := 𝑖𝑛𝑠𝑡𝑟 | · is
either an instruction 𝑖𝑛𝑠𝑡𝑟 ∈ 𝐼 or the distinguished element “·” that indicates that the

next instruction needs to be fetched from memory (as determined by the pc register). A

configuration ⟨̂𝑖, 𝜀⟩ is a ready instruction and environment pair.

Errant Result Distributions. The discrete probability distribution 𝑃𝑓 (𝑛𝑓 | op, 𝑛1, 𝑛2)
models the manifestation of an error during an incorrect execution of an operation. Specif-

ically, it gives the probability that an incorrect execution of an operation op on operands

𝑛1 and 𝑛2 produces a value 𝑛𝑓 different from the correct result of the operation.

Arithmetic Instructions. Figure 4.6 presents the inference rules for arithmetic opera-

tions. The small-step judgment ⟨̂𝑖, 𝜀⟩ 𝜆,𝑝−→
𝛾,𝜓,𝜉

⟨̂𝑖′, 𝜀′⟩ denotes that execution of the program 𝛾

from the configuration ⟨̂𝑖, 𝜀⟩ under a hardware model 𝜓 and a memory configuration 𝜉 takes

a transition with label 𝜆 with probability 𝑝, yielding a configuration ⟨̂𝑖′, 𝜀′⟩.
A transition label 𝜆 ∈ {C, ⟨F, 𝑛⟩} characterizes whether the transition executed correctly

(C) or experienced a fault (⟨F, 𝑛⟩). The value 𝑛 in a faulty transition records the value

that the fault inserted into the semantics of the program. The semantics of an arithmetic

operation 𝑟 = op𝜅 𝑟1 𝑟2 takes one of two possibilities:

85

ALU/FPU-C

𝑝 = 𝜓(op)𝜅

⟨𝑟 = op𝜅 𝑟1 𝑟2, ⟨𝜎,𝑚⟩⟩ 𝐶,𝑝−→
𝛾,𝜓,𝜉

⟨ · , ⟨𝜎[𝑟 ↦→ op(𝜎(𝑟1), 𝜎(𝑟2))],𝑚⟩⟩

ALU/FPU-F

𝑝 = (1− 𝜋op(𝜓)(op)) · 𝑃𝑓 (𝑛 | op, 𝜎(𝑟1), 𝜎(𝑟2))

⟨𝑟 = op1 𝑟1 𝑟2, ⟨𝜎,𝑚⟩⟩ ⟨F,𝑛⟩,𝑝−→
𝛾,𝜓,𝜉

⟨ · , ⟨𝜎[𝑟 ↦→ 𝑛],𝑚⟩⟩

Figure 4.6: Machine Semantics of Arithmetic Operations

∙ Correct execution [ALU/FPU-C]. An operation executes correctly with proba-

bility (𝜋op(𝜓)(op))
𝜅. We use here the algebraic property that a numerical constant

raised to the power zero is equal to 1, and a numerical constant raised to the power one

is equal to itself. Therefore, if the operation is exact (𝜅 = 0) it executes correctly with

probability 1. If it is approximate (𝜅 = 1), then it executes correctly with probability

𝜋op(𝜓)(op).

A correct execution proceeds with the rule [ALU/FPU-C] wherein the instruction

reads registers 𝑟1 and 𝑟2 from the register file, performs the operation, and then

stores the result back in register 𝑟.

∙ Faulty execution [ALU/FPU-F]. An operation with a kind 𝜅 = 1 experiences a

fault with probability 1 − 𝜋op(𝜓)(op). A faulty execution stores into the destination

register 𝑟 a value 𝑛 that is given by the errant result distribution for the operation,

𝑃𝑓 . Note that while the instruction may experience a fault, its faulty execution does

not modify any state besides the destination register.

Control Flow. Figure 4.7 presents the semantics of control-flow instructions. These

instructions execute reliably. For instance, fetching and decoding instructions is always

correct – the machine identifies the instruction and updates the program counter, which is

also stored in a fully reliable register.

Control flow transfer instructions, such as jmp, always correctly transfer control to the

destination address. Preserving the reliability of control flow transfers guarantees that

an approximate program always takes paths that exist in the static control flow graph

86

of the program. We note that while control flow transfers themselves execute correctly,

the argument to a control transfer instruction (e.g., the test condition of a jmp, which the

previous computation stored in the register 𝑟cond) may depend on approximate computation.

Therefore, an approximate program may, in principle, take a path that differs from that of

the original (exact) program.

Fetch
𝑖 = 𝛾(𝜎(pc)) 𝜎′ = 𝜎[pc ↦→ 𝜎(pc) + 1]

⟨ · , ⟨𝜎,𝑚⟩⟩ 𝐶,1−→
𝛾,𝜓,𝜉

⟨𝑖, ⟨𝜎′,𝑚⟩⟩

Jmp-True
𝜎(𝑟cond) ̸= 0

⟨jmp 𝑟cond 𝑟offset, ⟨𝜎,𝑚⟩⟩ 𝐶,1−→
𝛾,𝜓,𝜉

⟨ · , ⟨𝜎[pc ↦→ 𝜎(𝑟offset)],𝑚⟩⟩

Jmp-False
𝜎(𝑟cond) = 0

⟨jmp 𝑟cond 𝑟offset, ⟨𝜎,𝑚⟩⟩ 𝐶,1−→
𝛾,𝜓,𝜉

⟨ · , ⟨𝜎,𝑚⟩⟩

Figure 4.7: Machine Semantics of Control Flow Instructions

Initialization. Initializing a register with a constant value is always an exact instruction.

Therefore, ⟨𝑟 = init 𝑛, ⟨𝜎,𝑚⟩⟩ 𝐶,1−→
𝛾,𝜓,𝜉

⟨ · , ⟨𝜎[𝑟 ↦→ 𝑛],𝑚⟩⟩.

Loads and Stores. Figure 4.8 presents the semantics of the scalar load and store oper-

ations. The semantics of loads and stores are similar to arithmetic operation semantics in

that each operation can either execute correctly or encounter a fault. The memory con-

figuration 𝜉 determines if an accessed address’s memory region that contains the address

𝑎 is exact (all operations on the region execute correctly) or approximate (operations may

encounter a fault).

The function memrel(𝜓, 𝑎, op, 𝜉) computes the probability that the operation executed

correctly, given the approximate hardware model 𝜓, address, the operation op, and the

memory configuration 𝜉. When 𝜉 = 0 (exact), then memrel(𝜓, 𝑎, op, 𝜉) = 1 (fully reliable).

When 𝜉 = 1 (approximate), memrel returns a probability that is less than 1, and depends

on the reliability of the main memory and the cache memory. We discuss how to compute

memrel below, when discussing handling of caches.

87

Load-C
𝑎 = 𝜎(bp) + 𝜎(𝑟addr) 𝑝 = memrel(𝜓, 𝑎, ld, 𝜉)

⟨𝑟value = load 𝑟addr, ⟨𝜎,𝑚⟩⟩ 𝐶,𝑝−→
𝛾,𝜓,𝜉

⟨ · , ⟨𝜎[𝑟value ↦→ 𝑚(𝑎)],𝑚⟩⟩

Load-F
𝑎 = 𝜎(bp) + 𝜎(𝑟addr) 𝑝 = (1−memrel(𝜓, 𝑎, ld, 𝜉)) · 𝑃𝑓 (𝑛 | ld, 𝑎,𝑚(𝑎))

⟨𝑟value = load 𝑟addr, ⟨𝜎,𝑚⟩⟩ ⟨F,𝑛⟩,𝑝−→
𝛾,𝜓,𝜉

⟨ · , ⟨𝜎[𝑟value ↦→ 𝑛],𝑚⟩⟩

Store-C
𝑎 = 𝜎(bp) + 𝜎(𝑟addr) 𝑝 = memrel(𝜓, 𝑎, st, 𝜉)

⟨store 𝑟addr 𝑟value, ⟨𝜎,𝑚⟩⟩ 𝐶,𝑝−→
𝛾,𝜓

⟨ · , ⟨𝜎,𝑚[𝑎 ↦→ 𝜎(𝑟𝑣𝑎𝑙𝑢𝑒)]⟩⟩

Store-F
𝑎 = 𝜎(bp) + 𝜎(𝑟addr) 𝑝 = (1−memrel(𝜓, 𝑎, st, 𝜉)) · 𝑃𝑓 (𝑛 | st, 𝑎,𝑚(𝑎), 𝜎(𝑟))

⟨store 𝑟addr 𝑟value, ⟨𝜎,𝑚⟩⟩ ⟨F,𝑛⟩,𝑝−→
𝛾,𝜓,𝜉

⟨ · , ⟨𝜎,𝑚[𝑎 ↦→ 𝑛]⟩⟩

Figure 4.8: Machine Semantics of Loads and Stores

As with the destination register of arithmetic operations, if a load or store instruction

encounters a fault, then only the contents of the destination register or memory address are

modified. The addresses of offsets (located in the base pointer register bp) for the load and

store instructions are performed exactly.

Array Loads/Stores. Figure 4.9 presents the semantics of array load and store oper-

ations. The semantics of loads and stores of arrays is failure oblivious [97] in that an

out-of-bounds array access never forces the program to halt. These checks are implemented

differently for loads and stores.

∙ Loads. Array loads do not include an explicit bounds check. The rule [Load-

Arr1] uses the pointer to the array’s data 𝜎(𝑟arr) and the index value passed in as

an index (𝑟idx) to compute the address of the data (𝑎). If that address is a valid

memory location (𝑎 ∈ dom(𝑚)) then the rule loads the value of the address with

probability memrel(𝜓, 𝑎, ld, 𝜉). Note that this location can still be outside the array

bounds (if the previous approximate execution computed the index inexactly). The

rule [Load-Arr2] states that in case when 𝑎 is not a valid memory address (𝑎 ̸∈
dom(𝑚)), the semantics is free to place any value 𝑛 into the destination register

𝑟. This semantic approach minimizes the overhead incurred on array reads by only

requiring an implementation to check if the address is valid.

88

Load-Arr1
𝑎 = 𝜎(𝑟arr) + 𝜎(𝑟idx) 𝑎 ∈ dom(𝑚) 𝑝 = memrel(𝜓, 𝑎, ld, 𝜉)

⟨𝑟value = loada 𝑟arr 𝑟idx, ⟨𝜎,𝑚⟩⟩ 𝐶,𝑝−→
𝛾,𝜓,𝜉

⟨ · , ⟨𝜎[𝑟value ↦→ 𝑚(𝑎)],𝑚⟩⟩

Load-Arr2
𝑎 = 𝜎(𝑟arr) + 𝜎(𝑟idx) 𝑎 ̸∈ dom(𝑚) 𝑛 ∈ IntN

⟨𝑟value = loada 𝑟arr 𝑟idx, ⟨𝜎,𝑚⟩⟩ ⟨F,𝑛⟩,1−→
𝛾,𝜓,𝜉

⟨ · , ⟨𝜎[𝑟value ↦→ 𝑛],𝑚⟩⟩

Load-ArrF
𝑎 = 𝜎(𝑟arr) + 𝜎(𝑟idx) 𝑎 ∈ dom(𝑚) 𝑝 = (1−memrel(𝜓, 𝑎, ld, 𝜉)) · 𝑃𝑓 (𝑛 | ld, 𝑎,𝑚(𝑎))

⟨𝑟value = loada 𝑟addr 𝑟idx, ⟨𝜎,𝑚⟩⟩ ⟨F,𝑛⟩,𝑝−→
𝛾,𝜓,𝜉

⟨ · , ⟨𝜎[𝑟value ↦→ 𝑛],𝑚⟩⟩

Store-Arr1
𝑙 = len(𝜎(𝑟arr),𝑚) 0 ≤ 𝜎(𝑟idx) < 𝑙 𝑎 = 𝜎(𝑟arr) + 𝜎(𝑟idx) 𝑝 = memrel(𝜓, 𝑎, st, 𝜉)

⟨storea 𝑟arr 𝑟idx 𝑟value, ⟨𝜎,𝑚⟩⟩ 𝐶,𝑝−→
𝛾,𝜓,𝜉

⟨ · , ⟨𝜎,𝑚[𝑎 ↦→ 𝜎(𝑟)]⟩⟩

Store-Arr2
𝑙 = len(𝜎(𝑟arr),𝑚) ¬(0 ≤ 𝜎(𝑟idx) < 𝑙) 𝑛 = 𝑚(𝜎(𝑟arr) + 𝜎(𝑟idx))

⟨storea 𝑟arr 𝑟idx 𝑟value, ⟨𝜎,𝑚⟩⟩ ⟨F,𝑛⟩,1−→
𝛾,𝜓,𝜉

⟨ · , ⟨𝜎,𝑚⟩⟩

Store-ArrF
𝑙 = len(𝜎(𝑟arr),𝑚) 0 ≤ 𝜎(𝑟idx) < 𝑙 𝑎 = 𝑚(𝜎(𝑟arr)) + 𝑟idx

𝑝 = (1−memrel(𝜓, 𝑎, st, 𝜉)) · 𝑃𝑓 (𝑛 | st, 𝑎,𝑚(𝑎), 𝜎(𝑟))

⟨storea 𝑟addr 𝑟value 𝑟idx, ⟨𝜎,𝑚⟩⟩ ⟨F,𝑛⟩,𝑝−→
𝛾,𝜓,𝜉

⟨ · , ⟨𝜎,𝑚[𝑎 ↦→ 𝑛]⟩⟩

Figure 4.9: Machine Semantics of Array Loads and Stores

∙ Stores. Array stores require an array bounds check so that our analysis can perform

modular reasoning in the presence of errant array indices. Specifically, the semantics

of the store operations prohibits writing to locations outside of the array boundaries

(rule [Store-Arr-1]). The function len obtains the length of an array (we discuss

the representation of arrays later in this section). If the instruction attempts to store

a value to an out-of-bound address, such updates are ignored (rule Store-Arr2).

The rules for the cases when the read from memory and write to memory fail are analogous

to the rules for the loads and stores of scalar variables.

Arrays and Caches. To precisely assign the reliabilities of memory operations, Chisel

treats the cache memory as an additional buffer between the CPU and the main memory

89

in the approximate hardware model. While the semantics does not represent the cache

memory explicitly, it accounts for the cache by assigning the reliability of the transitions.

Below, we describe how to assign those transition probabilities.

When reading data using the load instruction, the processor checks whether the cache

contains the data’s address. If it does, then the processor reads the data from the cache. The

reliability in this case is bounded by the probability that 1) the initial read of the data from

the main memory and write to the cache were successful and 2) the read of the data from the

cache was successful. If the data is not in the cache, the processor reads the data from the

main memory. The reliability of read is then also bounded by the probability that 1) reading

the from the main memory, and 2) writing and reading the data from the cache succeeded.

The reliability of load is then the minimum of the two cases. Therefore, if 𝜉(𝑎) = 1 (data

is in approximate memory), then memrel(𝜓, 𝑎, 𝑙𝑑, 𝜉) = 𝜋1(𝜋mem(𝜓)) · 𝜋1(𝜋$(𝜓)) · 𝜋2(𝜋$(𝜓)).
When writing data using the store instruction, the processor implements a write-through

policy – if the write-to address is already in the cache, the data is written both to the cache

and the main memory. The reliability of the write operation in this case is the probability

that 1) writing the data to the cache was successful and 2) writing the data to the main

memory was successful. However, note that the probability of writing to the cache matters

only if the data is subsequently read from the cache (instead of the main memory). But since

the conservative analysis of the reliability of load already assumes that the data is not in

the cache when assigning reliability for the subsequent reads, we can drop this term. If the

write-to address was not in the cache, then the cache implements the no-write-allocate policy

– the processor writes the data directly to the main memory. The reliability in this case is

equal to the probability that the write to memory succeeded. The reliability of store is then

equal to the probability of successfully writing the data to the main memory. Therefore, if

𝜉(𝑎) = 1 (data is in approximate memory), then memrel(𝜓, 𝑎, 𝑙𝑑, 𝜉) = 𝜋2(𝜋mem(𝜓)).

4.2.3 Compilation and Runtime Model

Data Allocation. The compilation and runtime system allocates the data in memory as

follows. The program’s instructions and the stack are stored in the exact memory region.

The system represents arrays with a header and a separately allocated chunk of memory

that contains the array’s data. The header contains the length of the array’s data and

the address of the array’s data in memory. The system allocates the header in exact main

memory and allocates the data chunk in either exact or approximate memory based upon

Chisel’s optimization results. This allocation strategy enables the system to separate the

reliability of the array’s metadata from the reliability of the data stored in the array.

90

To support our formalization of reliability, we define a variable allocation 𝜐 ∈ 𝑉 → 𝒫(𝐴)

as a finite map from a program variable 𝑣 ∈ 𝑉 to the address (or set of addresses in the

case of an array) in memory at which the variable has been allocated by the compilation

and runtime system.

Data and Cache Memory. During the execution, the system stores data allocated in the

exact region of the main memory in the exact cache. The system can store data allocated

in the approximate main memory in either the exact or approximate cache. If the data is

initialized in the outer implementation language (and used in possibly multiple kernels), a

developer can, based on the result of Chisel’s optimization, annotate the allocation site of

the array variable in the code written in the implementation language.

Calling Convention. We adopt the standard C calling convention for the function with

the Chisel instructions. The kernel function has only a single return statement.

4.2.4 Big-step Semantics

We use the following big-step semantics to define a program’s reliability and accuracy.

Definition 1 (Big-step Trace Semantics).

⟨·, 𝜀⟩ =⇒
𝛾,𝜓,𝜉

(𝜀′, 𝜏, 𝑝) ≡ ⟨·, 𝜀⟩ 𝜆1, 𝑝1−→
𝛾,𝜓,𝜉

. . .
𝜆𝑛, 𝑝𝑛−→
𝛾,𝜓,𝜉

⟨·, 𝜀′⟩

where 𝜏 = 𝜆1, . . . , 𝜆𝑛, 𝑝 =
𝑛
Π
𝑖=1

𝑝𝑖 and final(⟨·, 𝜀′⟩, 𝛾)

The big-step trace semantics is a reflexive transitive closure of the small-step execution

relation that records a trace of the program’s execution. A trace 𝜏 ∈ T ::= · | 𝜆 :: T is

a sequence of small-step transition labels. The probability of a trace, 𝑝, is the product of

the probabilities of each transition. The predicate final ⊆ (I × E) × Γ indicates that the

program cannot make a transition from the configuration.

Definition 2 (Big-step Aggregate Semantics).

⟨·, 𝜀⟩ =⇒*
𝛾,𝜓,𝜉

(𝜀′, 𝑝) where 𝑝 =
∑︀
𝜏∈T

𝑝𝜏 such that ⟨·, 𝜀⟩ =⇒
𝛾,𝜓,𝜉

(𝜀′, 𝜏, 𝑝𝜏)

The big-step aggregate semantics enumerates over the set of all finite length traces and

sums the aggregate probability that a program 𝛾 starts in an environment 𝜀 and terminates

in an environment 𝜀′ given a hardware specification 𝜓 and memory configuration 𝜉.

91

5 Chisel Optimization Algorithm

This chapter presents Chisel’s optimization algorithm, which uses program analysis to re-

duce the problem of selecting approximate operations and variables to an integer linear

optimization problem. We first outline the main components of the algorithm.

Integer Linear Programming (ILP). A general ILP problem has the form:

Minimize:
𝑛∑︀
𝑖=1

𝑐𝑖 · 𝑥𝑖

Constraints:
𝑛∑︀
𝑖=1

𝑎1,𝑖 · 𝑥𝑖 ≤ 𝑏1

. . .
𝑛∑︀
𝑖=1

𝑎𝑚,𝑖 · 𝑥𝑖 ≤ 𝑏𝑚

Variables: 𝑥1, . . . , 𝑥𝑛 ∈ {0, 1}

The variables 𝑥1, . . . , 𝑥𝑛 are called decision variables. Each of these variables can take

a value of 0 or 1. The coefficients 𝑎1,1, . . . , 𝑎𝑚,𝑛, 𝑏1, . . . , 𝑏𝑚, and 𝑐1, . . . , 𝑐𝑛 are real-valued

numerical constants. The function that is being minimized is called the optimization ob-

jective. The optimization constraints are the inequalities that bound the sums of decision

variables. The objective and the constraints are linear functions of the decision variables.

Solving integer linear optimization problems is a well-studied problem in many areas of

science, mathematics, and engineering. An ILP solver takes as input a problem with the

exposed objective, constraints, and the decision variables. The solver finds the assignment

of the variables 𝑥1, . . . , 𝑥𝑛 that minimizes the objective, while satisfying all constraints.

Although solving ILP problems is in general computationally hard, modern solvers (such

as Gurobi [48]) can find the optimal solution even of large ILP problems or a good approx-

imation, which satisfies the constraints but does not necessarily minimize the objective.

To reduce the placement of approximate operations and storing data in approximate

memory to an integer linear problem, Chisel performs the following tasks:

92

Specify Decision Variables. Chisel represents the choice whether to approximate each

arithmetic operation or a variable in a kernel as one decision variable. Recall that the

instructions in Chisel’s language have a kind (which specifies that an instruction can be

either exact or approximate). Each such kind is a decision variable in the optimization

problem. To support this formalization, Section 5.1 presents the notion of labels that

uniquely identify instructions and variables, and the kind configuration, which maps the

labels to the kinds of instructions or variables.

Compute Reliability and Accuracy Constraints. Chisel generates reliability and

accuracy constraints via a static precondition generator analysis. In general, a precondition

generator C𝜓 operates backward and is often used in program verification, and recently in

program synthesis [116]. It takes as input a predicate 𝑄𝑝𝑜𝑠𝑡 and the program statements

⟨𝑆1, . . . , 𝑆𝑛⟩. It produces a predicate 𝑄𝑝𝑟𝑒 = C𝜓(⟨𝑆1, . . . , 𝑆𝑛⟩, 𝑄𝑝𝑜𝑠𝑡), such that if 𝑄𝑝𝑟𝑒 is

valid before the execution of the kernel, then 𝑄𝑝𝑜𝑠𝑡 will be valid at the end of the execution.

The predicates 𝑄𝑝𝑜𝑠𝑡 for the kernel come from the function specifications, which can state

that, e.g., the reliability of the kernel’s result should be greater than 0.99*R(x). The analysis

starts by constructing the corresponding predicate 𝑄𝑝𝑜𝑠𝑡 := 0.99*R(x) ≤ R(result). The

analysis transforms each such predicate, operating backward to produce 𝑄𝑝𝑟𝑒 by analyzing

the statements from 𝑆𝑛 to 𝑆1 recursively, i.e., 𝑄𝑝𝑟𝑒 := C𝜓(⟨𝑆1, . . . , 𝑆𝑛−1⟩,C𝜓(⟨𝑆𝑛⟩, 𝑄𝑝𝑜𝑠𝑡)).
Sections 5.2 and 5.3 present Chisel’s reliability and accuracy constraint generators. The

analysis produces predicates 𝑄𝑝𝑟𝑒, which are parameterized by the instruction and variable

labels. For any particular set of labels, the predicates 𝑄𝑝𝑟𝑒 are valid for all inputs specified

in the kernel’s input specification.

To find the assignments of labels that maximize savings, Chisel’s optimization algorithm

first solves the part of the predicates that does not depend on the labels. Chisel then

transforms the remaining terms of the predicates into the ILP optimization constraints, by

substituting the labels with the corresponding instruction/variable kinds (ILP problem’s

decision variables) and transforming the predicates to be linear functions of the kinds.

Compute Energy Savings Objective. Chisel generates the energy savings objective

using a dynamic program analysis. Section 5.4 presents how Chisel constructs an estimate

of the savings (as the function of the decision variables) from the traces of the kernel when

executed on representative inputs.

Generate Optimized Kernel. Chisel dispatches the generated ILP problem to an off-

the-shelf solver, which returns the kinds of instructions and variables that maximize savings.

Chisel uses these kinds to generate the kernel with approximate and exact operations.

93

5.1 Configurable Approximate Programs

To enable optimization with approximate instructions and data, we augment our program

representation to create an intermediate representation that includes labels, where each

label ℓ ∈ ℒ is uniquely associated with an instruction or a program variable. Labels enable

Chisel to separately mark each instruction and variable as either exact or approximate.

5.1.1 Labeled Instructions and Variables

Instructions. We augment each arithmetic instruction to have a label instead of a kind:

𝑖 ∈ 𝐼 ::= 𝑟 = opℓ 𝑟 𝑟

Program Variables. We define the finite map 𝜒 ∈ 𝑉 → ℒ that maps each variable in

the program to a unique label.

Kind Configurations. We define a kind configuration 𝜃 ∈ Θ = ℒ → 𝐾 as a finite map

from labels to kinds that denotes a selection of the kind (i.e., exact or precise) of each of the

program’s instructions and variables. The set of kind configurations denotes that set of all

possible optimized programs that Chisel can generate. Any element of this set represents

one approximate version of the program. We also make the following auxiliary definitions:

∙ Approximated program 𝛾[𝜃]. Substitution 𝛾[𝜃] represents the program generated

by substituting each label ℓ in the program 𝛾 by the corresponding kind 𝜃(ℓ).

∙ Kinded memory configuration map 𝜉𝜃. For each variable 𝑣 ∈ 𝑉 in the program

𝛾, it labels all addresses 𝑎 ∈ 𝜐(𝑣) with the variable’s kind, i.e., 𝜉(𝑎) = 𝜃(𝜒(𝑣)).

5.1.2 Intermediate Language for Analysis

Chisel translates the statements from Rely to an intermediate language which maintains

information about structured control flow. Figure 5.1 presents the syntax of the expressions

and statements in the analyzable part of the Rely source language. It operates on numerical

or boolean data. It supports scalar integer and floating point scalar variables and multidi-

mensional arrays. The variables can be stored in the exact or approximate memories. The

control flow includes conditional branching and finite loops.

Figure 5.2 presents the syntax of the intermediate language. A statement in this language

can be a labeled assembly instruction (except a jmp instruction), a sequence of statements,

94

𝑛 ∈ IntN

𝑥 ∈ Var

𝑎 ∈ ArrVar

𝑒 ∈ Exp ::= 𝑛 | 𝑥 | 𝑎[Exp+] | (Exp) | Exp iop Exp | Exp fop Exp

𝑏 ∈ BExp ::= true | false | Exp cmp Exp | (BExp) |
BExp lop BExp | !BExp

Kernel ::= 𝐷𝑒𝑐𝑙*; Stmt; return Exp

Decl ::= [int | float | int[𝑛+] | float[𝑛+]] 𝑥
Stmt ::= skip | 𝑥 = Exp | 𝑎[Exp+] = Exp | Stmt ; Stmt |

if BExp Stmt Stmt | while BExp : 𝑛 Stmt

Figure 5.1: Syntax of the Analyzable Part of the Rely Language [19]

𝑠 ∈ 𝑆 := 𝑖 | 𝑠;𝑠 | if 𝑟𝑐𝑜𝑛𝑑 𝑠then 𝑠else

Figure 5.2: Chisel’s Intermediate Language

or an intermediate conditional statement, which, based on the result of the register 𝑟𝑐𝑜𝑛𝑑,

continues the execution of the statements in the then or else branches.

The translation of the statements from Rely to the intermediate language is straight-

forward. Rely’s assignment statements are translated to the sequence of arithmetic and

memory assembly instructions. The translation assumes a compilation model with un-

bounded number of pseudo-registers, where the destination and operand registers do not

alias. Translation of conditionals stores the result of the condition expression to the register

𝑟𝑐𝑜𝑛𝑑. Translation of bounded while loops (that execute up to 𝑛 iterations) unrolls the loop

to a sequence of conditionals. Chisel’s analysis does not support unbounded while loops.

This translation therefore ensures that the intermediate language has only a structured

control-flow and no stray jmp instructions. The intermediate representation of the kernel

allows a compiler to perform a number of standard instruction-level optimizations (e.g.,

peephole optimizations, dead code elimination, or invariant code motion) before running

the reliability and accuracy analyses. At the same time, it allows an easier presentation of

the analysis.

The translation from the intermediate language to the assembly language (Figure 4.5)

is also straightforward. The conditionals are implemented using jump instructions. The

pseudo-registers are translated to the machine registers using standard mapping algorithms.

This translation does not affect the reliability and accuracy analyses, because all registers

and the stack memory are exact and jump instructions also execute fully reliably.

95

5.2 Reliability Constraint Construction

In this section, we adapt the reliability definitions from [19] for Chisel’s configurable as-

sembly language kernels. Later, in Section 5.3, we extend the definitions of predicates to

represent combined accuracy and reliability constraints.

5.2.1 Reliability Predicates

Chisel’s generated preconditions are reliability predicates that characterize the reliability of

an approximate program. A reliability predicate 𝑃 has the following form:

𝑃 := 𝑅𝑓 ≤ 𝑅𝑓 | 𝑃 ∧ 𝑃 | True | False

𝑅𝑓 := 𝜌 | 𝜌ℓ | ℛ(𝑂) | 𝑅𝑓 ·𝑅𝑓

Specifically, a predicate is either a conjunction of predicates or a comparison between

reliability factors, 𝑅𝑓 . A reliability factor has multiple forms:

∙ Constant. A real number, 𝜌 ∈ [0, 1], represents the probability that an approximate

instruction produces a correct result. The analyses will calculate the constants 𝜌 using

the elements of the approximate hardware specification 𝜓.

∙ Kinded reliability. A term 𝜌ℓ, represents the reliability of an 𝜆-labeled instruction

that can be either exact or approximate.

The label ℓ encodes the choice between the exact and approximate version of an

instruction: if 𝜃(ℓ) = 0 (exact), this term will have the value 1 (instructions always

produce a correct result); if 𝜃(ℓ) = 1 (approximate), the term will have the value 𝜌.

We remark the intentional notational similarity of 𝜌ℓ with numerical exponentiation.

∙ Joint Reliability Factor. A term ℛ(𝑂) represents probability that all registers and

variables in the set 𝑂 ⊆ 𝑅∪ 𝑉 have the same value in the exact and the approximate

executions. This term abstracts the probability that the approximate execution’s

environment has exact values of the operands from which the remaining execution

can produce the exact result.

∙ Product of Reliability Factors. This term combines the probability that the

instructions produce correct results and the initial program environments have the

exact value of the operands.

96

This definition of reliability predicates is sufficient for expressing properties about error

frequency. We will demonstrate their use in this section. We will present the extension of the

predicates to support reasoning about both frequency and magnitude of error in Section 5.3.

Before we present the formal semantics of the predicates, we present examples that illus-

trate the intuition behind how we intend to use these predicates in the analysis:

Example 1 (Kinded Reliability Factor). Consider the predicate 0.9 ≤ 0.99ℓ with kinded reliability

factor. Given a kind configuration 𝜃, we can represent this predicate as 0.9 ≤ 1 (if 𝜃(ℓ) = 0) or

0.9 ≤ 0.99 (if 𝜃(ℓ) = 1). We can succinctly rewrite these two predicates over reals as 0.9 ≤ 0.99𝜃(ℓ).

Example 2 (Joint Reliability Factor). A predicate 0.9 ≤ ℛ({𝑥}) bounds the probability that the

variable 𝑥 in the approximate execution has the same value as in the exact execution (at the same

program point). Chisel’s analysis calculates a lower bound on this probability, which is much easier

to compute instead of the exact probability ℛ({𝑥}).

5.2.2 Semantics of Reliability Predicates

Approximate Environment Distribution 𝜙. An approximate environment distribu-

tion 𝜙 ∈ Φ = E → R is a probability mass function over possible approximate environments.

Specifically, for each approximate environment 𝜀𝑎, the value 𝜙(𝜀𝑎) is the probability that

the program’s execution is in 𝜀𝑎. This distribution helps formalize the predicate semantics.

Computing the approximate environment distribution is, in general, intractable and the

analyses presented in this dissertation will not explicitly compute this distribution. How-

ever, a key idea behind the analysis is to compute a lower bound on the probability that

the approximate execution is in the same environment as the exact distribution.

Semantics of Reliability Predicates. The denotation of a reliability predicate, 𝑃 ,

J𝑃 K ∈ 𝒫(E× Φ×Θ×ϒ) is the set of quadruples (exact environment, approximate environ-

ment distribution, kind configuration, and variable allocation) that satisfy the predicate.

The denotation of a reliability factor J𝑅𝑓 K is the real-valued reliability that results from

evaluating the factor for a given quadruple. Figure 5.3 presents the semantics of the relia-

bility factors. Note that the denotation of the kinded reliability factors, 𝜌ℓ, instantiates the

value of the label ℓ’s kind, 𝜃(ℓ) ∈ {0, 1}. Therefore, it follows from the semantics that if

𝜃(ℓ) = 0, then J𝜌ℓK(𝜀, 𝜙, 𝜃, 𝜐) = 𝜌0 = 1, and if 𝜃(ℓ) = 1, then J𝜌ℓK(𝜀, 𝜙, 𝜃, 𝜐) = 𝜌1 = 𝜌. This

semantics is analogous to the semantics of arithmetic operations (Figure 2).

97

J𝑅𝑓 K ∈ E× Φ×Θ×ϒ → R

J𝜌K(𝜀, 𝜙, 𝜃, 𝜐) = 𝜌 J𝜌ℓK(𝜀, 𝜙, 𝜃, 𝜐) = 𝜌𝜃(ℓ)

J𝑅𝑓1 ·𝑅𝑓2K(𝜀, 𝜙, 𝜃, 𝜐) = J𝑅𝑓1K(𝜀, 𝜙, 𝜃, 𝜐) · J𝑅𝑓2K(𝜀, 𝜙, 𝜃, 𝜐)

Figure 5.3: Semantics of Reliability Factors (See Definition 3 for Semantics of Joint Relia-

bility Factors)

The denotation of ℛ(𝑂) is the probability that an approximate environment 𝜀𝑎 sampled

from 𝜙 has the same value for all operands 𝑜 ∈ 𝑂 as the exact environment 𝜀.

Definition 3 (Joint Reliability Factor).

Jℛ(𝑂)K(𝜀, 𝜙, 𝜃, 𝜐) =
∑︁

𝜀𝑎∈ℰ(𝜀,𝑂,𝜐)

𝜙(𝜀𝑎),

where 𝜀 ≡ (𝜎,𝑚) and 𝜀𝑎 ≡ (𝜎𝑎,𝑚𝑎)

and ℰ(𝜀,𝑂, 𝜐) = {(𝜎𝑎,𝑚𝑎) | (𝜎𝑎,𝑚𝑎) ∈ E ∧
∀𝑜 ∈ 𝑂. 𝑜 ∈ 𝑅⇒ 𝜎𝑎(𝑜) = 𝜎(𝑜) ∧

𝑜 ∈ 𝑉 ⇒ ∀𝑎 ∈ 𝜐(𝑜). 𝑚𝑎(𝑎) = 𝑚(𝑎)}.

The result of the function ℰ(𝜀,𝑂, 𝜐) is the set of approximate environments 𝜀𝑎 ≡ (𝜎𝑎,𝑚𝑎)

in which all operands 𝑜 ∈ 𝑂 have the same values as in 𝜀 ≡ (𝜎,𝑚). Specifically, if the

operand 𝑜 is a register location (𝑜 ∈ 𝑅), then it compares the values in the register files

(𝜎𝑎(𝑜) and 𝜎(𝑜)). If the operand 𝑜 is a variable in memory (𝑜 ∈ 𝑉), then it compares

the values in memories (𝑚𝑎 and 𝑚) for all addresses 𝜐(𝑜) allocated for this variable. As a

special case, Jℛ(∅)K(𝜀, 𝜙, 𝜃, 𝜐) = 1.

5.2.3 Paired Execution Semantics

Given the semantics of reliability predicates, we define the approximate program reliability

with a Hoare-triple-like axiomatic semantics for the program’s paired execution semantics:

98

Definition 4 (Paired Execution Semantics).

⟨ · , ⟨𝜀, 𝜙⟩⟩ ⇓𝜃,𝜒,𝜐𝛾,𝜓 ⟨𝜀′, 𝜙′⟩ such that ⟨ · , 𝜀⟩ =⇒
𝛾[0𝜃],𝜓,0𝜉

(𝜀′, 𝜏, 1)

and 𝜙′(𝜀′𝑎) =
∑︁
𝜀𝑎∈E

𝜙(𝜀𝑎) · 𝑝𝑎

where ⟨ · , 𝜀𝑎⟩ =⇒*
𝛾[𝜃],𝜓,𝜉𝜃

(𝜀′𝑎, 𝑝𝑎)

and ∀𝑣 ∈ 𝑉 . ∀𝑎 ∈ 𝜐(𝑣) . 𝜉𝜃(𝑎) = 𝜃(𝜒(𝑣)).

The paired execution semantics relates a program’s exact execution with its approximate

executions via the tuple ⟨𝜀, 𝜙⟩. Here, 𝜀 denotes the environment of the program in the exact

execution and 𝜙(·) is the distribution of approximate environments that correspond to 𝜀.

Likewise, 𝜙′(·) is the distribution of approximate environments that correspond to 𝜀′. The

kind configuration map (𝜃), a map from variable names to allocation sites (𝜐), a map from

variable names to labels (𝜒), and the memory configuration map (𝜉) are parameters known

at the beginning of the execution of 𝛾.

We will now focus on the parts of this formalization:

∙ Exact Execution. The semantics specifies the program’s exact execution via a big-

step semantics (Definition 1) that starts from the environment 𝜀 and ends in 𝜀′. It

uses the exact kind and memory configurations 0𝜃 and 0𝜉 that specify that all registers

and memory locations are reliable.

∙ Approximate Execution. Because approximate operations can produce different

results with some probability, the natural representation for the environments of a

program’s approximate execution is a probability distribution that specifies the prob-

ability that the execution is in a particular environment. The semantics specifies the

distributions 𝜙 and 𝜙′ of the approximate execution’s initial and final environments

𝜀𝑎 and 𝜀′𝑎, respectively.

Also note that the approximate program and memory 𝛾[𝜃] and 𝜉𝜃 are parameterized

by the approximate kind configuration 𝜃. Specifically, the program 𝛾[𝜃] is obtained

by substituting the kind labels with the constants in 𝜃 and memory configuration 𝜉𝜃

contains the appropriate label from 𝜃 for each address (see Section 5.1).

∙ Approximate Environment Distributions. The relationship between the two

distributions 𝜙 and 𝜙′ is given by a summation over the approximate traces (see

99

Definition 2). Specifically, for a final approximate environment 𝜀′𝑎, the probability

𝜙′(𝜀′𝑎) is equal to the sum of terms where each represents the transition from some

initial state 𝜀𝑎 (with probability 𝜙(𝜀𝑎)) to the environment 𝜀′𝑎 (the transitions have

the cumulative probability 𝑝𝑎).

Reliability Transformer. Reliability predicates and the semantics of approximate pro-

grams are connected through the view of a program as a reliability transformer. This

definition also extends the original definition from [19]. The definition is similar to the

standard Hoare triple relation1 [38]. It states that if an environment and distribution pair

⟨𝜀, 𝜙⟩ satisfy a reliability predicate 𝑃 , then the program’s paired execution transforms the

pair to a new pair ⟨𝜀′, 𝜙′⟩ that satisfy a predicate 𝑄:

Definition 5 (Reliability Transformer Relation).

𝜓, 𝜃, 𝜒 |= {𝑃} 𝛾 {𝑄} ≡ ∀𝜀, 𝜙, 𝜐. (𝜀, 𝜙, 𝜃, 𝜐) ∈ J𝑃 K ⇒
∀𝜀′, 𝜙′. ⟨ · , ⟨𝜀, 𝜙⟩⟩ ⇓𝜃,𝜒,𝜐𝛾,𝜓 ⟨𝜀′, 𝜙′⟩ ⇒
(𝜀′, 𝜙′, 𝜃, 𝜐) ∈ J𝑄K

5.2.4 Reliability Precondition Generator

Chisel’s reliability constraint generator operates as a precondition generator. Given a post-

condition predicate, Chisel’s reliability precondition generator produces a precondition that,

when true before the execution of the program, ensures that the postcondition is true after.

In other words, the precondition, program, and postcondition satisfy the reliability trans-

former relation we defined in the previous section. The reliability precondition generator

is a function 𝐶 ∈ 𝑆 × 𝑃 → 𝑃 that takes as inputs an instruction and a postcondition and

produces a precondition as output.

Initial Postcondition

The analysis starts from the return instruction (the last instruction in the Chisel’s ker-

nel). Recall that the specification of reliability of the function’s output has the form

int <rspec*R(v1,...,vn)> f(int v1, ..., int vn), where rspec is the numerical constant

1The standard Hoare triple relation {𝑃} 𝛾 {𝑄} states that if the program’s environment satisfies the logical

predicate 𝑃 before executing the program 𝛾, then the environment that is obtained by executing the

program 𝛾 will satisfy the logical predicate 𝑄.

100

and v1,...,vn are the function’s parameters. The analysis represents this specification as

the reliability factor 𝜌spec · ℛ(𝑉spec), where 𝑉spec ⊆ {𝑣1, . . . , 𝑣𝑛} is the set that contains the

function inputs in the specification’s reliability factor.

The analysis of the return instruction starts from the default initial postcondition𝑄0 = True

and constructs the following precondition:

C𝜓(return 𝑟𝑟𝑒𝑡, 𝑄0) = 𝜌spec · ℛ(𝑉spec) ≤ ℛ({𝑟𝑟𝑒𝑡}) ∧ 𝑄0

This predicate states that the probability that the return register 𝑟𝑟𝑒𝑡 contains the correct

output at the end of the kernel function is greater than the probability that the inputs of

the function had correct values at the beginning of the kernel execution, multiplied by the

constant 𝜌spec (which represents the reliability degradation).

If the function has additional output reliability specifications for the array parameters,

such as f(...,int[] <ri*R(v1,...,vn)> vi, ...), then the analysis of the return state-

ments starts with the initial postcondition 𝑄0 that is the conjunction of the predicates of

the form 𝜌spec,i · ℛ(𝑉spec,i) ≤ ℛ({𝑣𝑖}) for each array parameter 𝑣𝑖 that has output specifi-

cation. This postcondition states that all input array variables have the reliability at least

that specified in the function’s definition.

Example 3 (Analysis of a Function Returning Constant). We will analyze the function returning a

constant written in the Rely language: int<0.99> three() { return 3; } The compiler generates

the two assembly instructions r0 = init 3; return r0;.

The analysis constructs the following precondition for the return instruction: 0.99 · ℛ(∅) ≤ ℛ({𝑟0}).
The left side of the inequality comes from the function specification (and ∅ indicates an empty set,

i.e., no variables in the specifications). The right-hand side of the inequality is the result of the rule

C𝜓(return 𝑟0, True).

Precondition Generator for Statements

Initialization and Sequence. The following equations present the rules for initializing

a register with a constant and a sequence of instructions:

C𝜓(𝑟 = init 𝑛, 𝑄) = 𝑄 [ℛ(𝑋)/ℛ({𝑟} ∪𝑋)]

C𝜓(inst1; inst2, 𝑄) = C𝜓(inst1, C𝜓(inst2, 𝑄))

The initialization rule removes the occurrence of the register 𝑟 in the joint reliability

factor because its previous value is not relevant for the reliability of the kernel’s outputs.

101

Specifically, the substitution 𝑄 [ℛ(𝑋)/ℛ({𝑟} ∪𝑋)] matches all occurrences of the desti-

nation register 𝑟 in a reliability term that occur in the predicate 𝑄 and removes them (by

leaving only the remainder set 𝑋).

The sequence rule first computes the precondition for the second instruction (inst2) and

passes it as the postcondition to the analysis of the first instruction (inst1).

Example 4 (Analysis of a Function Returning Constant). We return to the function from Example 3

and analyze the the instruction r1 = init 3; and the postcondition 0.99 · ℛ(∅) ≤ ℛ({𝑟1}) (that

the analysis of the return instruction produced). Then, the precondition generator uses the rules for

sequence and initialization to generate the function precondition 0.99 · ℛ(∅) ≤ ℛ(∅).

ALU/FPU. The following equation presents the generator rule for ALU/FPU operations:

C𝜓(𝑟 = opℓ 𝑟1 𝑟2, 𝑄) = 𝑄 [𝜌ℓop · ℛ({𝑟1, 𝑟2} ∪𝑋))/ℛ({𝑟} ∪𝑋)]

The rule works by substituting the reliability of the destination register 𝑟 with the

reliability of its operands and the reliability of the operation itself. The substitution

𝑄[ℛ({𝑟1, 𝑟2} ∪𝑋)/ℛ({𝑟} ∪𝑋)] matches all occurrences of the destination register 𝑟 in a

reliability factor inside the predicate 𝑄 and replaces them with the input registers, 𝑟1 and

𝑟2. The substitution also multiplies in the factor 𝜌ℓop, which is the reliability of the operation

𝑜𝑝 as a function of its label’s kind configuration, where 𝜌op = 𝜋op(𝜓)(op).

Example 5 (Analysis of Addition). We analyze the statement 𝑟 = addℓ𝑟1, 𝑟2, with the postcondition

𝑄 := 0.99 ≤ ℛ({𝑟, 𝑧}) and the hardware configuration 𝜓.

First, the analysis obtains the reliability of the addition operator 𝜌 = 𝜋op(𝜓)(add). Second, the

analysis uses the instruction’s label ℓ to represent reliability choice, 𝜌ℓ. Third, the analysis generates

the new reliability factor ℛ({𝑟1, 𝑟2, 𝑧}) by substituting 𝑟 with {𝑟1, 𝑟2}. Finally, the analysis substitutes
ℛ({𝑟, 𝑧}) with 𝜌ℓ · ℛ({𝑟1, 𝑟2, 𝑧}) in 𝑄 to produce the new precondition 0.99 ≤ 𝜌ℓ · ℛ({𝑟1, 𝑟2, 𝑧}).

Scalar Load/Store. The following equations present the rules for loads and stores from

potentially approximate memory:

C𝜓(𝑟1 = load 𝑟2, 𝑄) = 𝑄 [𝜌
𝜒(𝜂(𝑟2))
ld · ℛ({𝜂(𝑟2)} ∪𝑋)/ℛ({𝑟1} ∪𝑋)]

C𝜓(store 𝑟1 𝑟2, 𝑄) = 𝑄 [𝜌
𝜒(𝜂(𝑟1))
st · ℛ({𝑟2} ∪𝑋)/ℛ({𝜂(𝑟1)} ∪𝑋)]

These rules for load and store define the semantics of strong updates for scalar pro-

gram variables. The rules use the auxiliary register mapping generated by the compiler

102

(𝜂 ∈ 𝑅→ 𝑉) that maps the address operand register to the program variable that is read

or written. The minimum reliability of a load from a potentially approximate variable, 𝜌𝑙𝑑,

is equal to the probability that the read from memory, the write to a cache location, and the

read from that cache location all execute correctly, 𝜋1(𝜋mem(𝜓)) ·𝜋1(𝜋$(𝜓)) ·𝜋2(𝜋$(𝜓)). The
reliability of a store to a potentially approximate variable, 𝜌𝑠𝑡, assuming a write-through

cache, is equal to the reliability of a memory store, 𝜋2(𝜋mem(𝜓)).

Example 6 (Analysis of Scalar Store). We analyze the statement store 𝑟1, 𝑟2 with the postcon-

dition 𝑄 := 0.99 ≤ ℛ({𝑥}) and the hardware configuration 𝜓. The statement stores the value of the

register 𝑟2 to the location in memory referred by the register 𝑟1. We consider the case when 𝑟1 holds

the location of the variable 𝑥, i.e., 𝜂(𝑟1) = 𝑥.

First, the analysis computes the constant 𝜌 from 𝜓. Second, the analysis identifies that the register

𝑟1 holds the address of 𝑥 (using the map 𝜂) and finds the label ℓ that corresponds to the variable

𝑥 (using the map 𝜒). Third, the analysis generates the new reliability factor ℛ({𝑟2}) by substitut-

ing 𝑥 with 𝑟2. Finally, it substitutes ℛ({𝑥}) with 𝜌ℓ · ℛ({𝑟2}) in 𝑄 to produce the precondition

0.99 ≤ 𝜌ℓ · ℛ({𝑟2}).

Array Load/Store. The reliability constraint generation rule for stores to scalar vari-

ables provides a semantics for strong updates to memory. Updates to arrays, however,

are weak in that a variable refers to multiple memory locations. The following reliability

constraint generation rule defines the analysis for arrays:

C𝜓(𝑟𝑣𝑎𝑙 = loada 𝑟𝑎𝑟𝑟 𝑟𝑖𝑑𝑥, 𝑄) = 𝑄 [𝜌
𝜒(𝜂(𝑟𝑎𝑟𝑟))
ld · ℛ({𝜂(𝑟𝑎𝑟𝑟), 𝑟𝑖𝑑𝑥} ∪𝑋)/ℛ({𝑟𝑣𝑎𝑙} ∪𝑋)]

C𝜓(storea 𝑟𝑎𝑟𝑟 𝑟𝑖𝑑𝑥 𝑟𝑣𝑎𝑙, 𝑄) = 𝑄 [𝜌
𝜒(𝜂(𝑟𝑎𝑟𝑟))
st · ℛ({𝑟𝑖𝑑𝑥, 𝑟𝑣𝑎𝑙} ∪ {𝜂(𝑟𝑎𝑟𝑟)} ∪𝑋) /

ℛ({𝜂(𝑟𝑎𝑟𝑟))} ∪𝑋)]

The primary difference between this rule and that for strong updates is that the reliability

of the array variable is included in the resulting reliability term (after substitution). Since

the function 𝜂(𝑟1) points to the same variable name for all elements of the array, this rule

effectively treats updates to the potentially different array elements as an update to the

single (scalar) variable.

Example 7 (Analysis of Array Store). We analyze the same statement as in Example 6, but instead

consider the case when 𝑥 is an array variable.

The analysis differs from the analysis for the scalar variables in the third step – the construction of

the new reliability factor ℛ({𝑟2, 𝑥}). The generated precondition is therefore 0.99 ≤ 𝜌ℓ · ℛ({𝑟2, 𝑥}),
which states that the update to the array 𝑥 does not necessarily overwrite the previous updates (to a

different or the same array element).

103

Conditionals. The analysis of conditionals relies on the fact that the Rely base language

has structured control flow and therefore the intermediate language keeps the conditional

structure. The following reliability constraint generation rule implements the analysis for

conditionals:

C𝜓(if 𝑟𝑐 𝑖𝑛𝑠𝑡
′ 𝑖𝑛𝑠𝑡′′, 𝑄) =

let {𝑜1, . . . , 𝑜𝑘} = modified(𝑖𝑛𝑠𝑡′) ∪modified(𝑖𝑛𝑠𝑡′)

and 𝑄* = 𝑄 [ℛ({𝑟𝑐, 𝑜1} ∪𝑋)/ℛ({𝑜1} ∪𝑋)] . . . [ℛ({𝑟𝑐, 𝑜𝑘} ∪𝑋)/ℛ({𝑜𝑘} ∪𝑋) in

C𝜓(𝑖𝑛𝑠𝑡
′, 𝑄*) ∧ C𝜓(𝑖𝑛𝑠𝑡

′′, 𝑄*)

This rule uses the helper function modified ∈ Instr → 𝑂, which denotes the set of operands

(variables and registers) that are modified within a loop branch. To encode the probability

that an incorrectly computed conditional may cause an incorrect value in each such operand,

it adds the reliability of the conditional expression (𝑟𝑐) to the joint reliability term containing

the operand in the predicate 𝑄. The final predicate is the conjunction of the predicates

computed for each of the branches.

Example 8 (Analysis of Conditionals). Consider if 𝑟𝑐 {𝑟3 = addℓ1 𝑟1 1} {𝑟3 = subℓ2 𝑟2 1} and

the postcondition 𝑄 := 0.9 ≤ ℛ({𝑟3}). The analysis first finds that 𝑟3 is the only operand modified

in the loop. Computing the predicate for the then branch yields 𝑄𝑡ℎ𝑒𝑛 := 0.9 ≤ 𝜌ℓ1+ · ℛ({𝑟𝑐, 𝑟1}) and
for the else branch yields 𝑄𝑒𝑙𝑠𝑒 := 0.9 ≤ 𝜌ℓ2− · ℛ({𝑟𝑐, 𝑟2}). The final predicate is then 𝑄𝑡ℎ𝑒𝑛 ∧𝑄𝑒𝑙𝑠𝑒.

Example 9 (Analysis of Conditionals). Consider if 𝑟𝑐 {𝑟2 = addℓ1 𝑟1 1} {𝑟3 = subℓ2 𝑟1 1} and

the postcondition 𝑄 := 0.9 ≤ ℛ({𝑟2, 𝑟3}). The analysis first finds that 𝑟2 and 𝑟3 are the operands

modified in the loop. The predicate for the then branch is 𝑄𝑡ℎ𝑒𝑛 := 0.9 ≤ 𝜌ℓ1+ · ℛ({𝑟𝑐, 𝑟1, 𝑟3}) and for

the else branch is 𝑄𝑒𝑙𝑠𝑒 := 0.9 ≤ 𝜌ℓ2− · ℛ({𝑟𝑐, 𝑟1, 𝑟2}). The final predicate is then 𝑄𝑡ℎ𝑒𝑛 ∧𝑄𝑒𝑙𝑠𝑒.

Bounded Loops. Bounded loops are translated to the intermediate language as a se-

quence of conditional statements. Then, the analysis uses the rule for conditionals that we

previously presented to compute the reliability. Chisel does not handle Rely programs with

unbounded loops.

Final Precondition

For a given kernel, our analysis computes a precondition that is a conjunction of predicates

of the form

𝜌𝑠𝑝𝑒𝑐 · ℛ(𝑉𝑠𝑝𝑒𝑐) ≤ 𝑟(ℓ1, . . . , ℓ𝑛) · ℛ(𝑉),

104

where 𝜌𝑠𝑝𝑒𝑐 · ℛ(𝑉𝑠𝑝𝑒𝑐) is a reliability factor for a developer-provided specification of an

output and 𝑟(ℓ1, . . . , ℓ𝑛) ·ℛ(𝑉) is a lower bound on the output’s reliability computed by the

analysis, parameterized by the labels ℓ1, . . . , ℓ𝑛 of the candidate approximate operations.

Each 𝜌𝑠𝑝𝑒𝑐 is a real-valued constant and each 𝑟 is, syntactically, a product of a real-valued

constant and kinded reliabilities, i.e.,

𝑟(ℓ1, . . . , ℓ𝑛) = 𝜌 ·Π𝑘 𝜌ℓ𝑘𝑘 . (5.1)

The product operator iterates over the sequences of instructions that the analysis traversed.

If this precondition is valid for a given kind configuration 𝜃(·), then that kind configuration

satisfies the developer-provided reliability specification.

Example 10 (Analysis of a Function). We consider a simple function written in the Rely language,

int<0.99*R(x)> f(int x) { return x+3; } for which the compiler generates these assembly in-

structions: r0 = init ⟨x⟩; r1 = load r0; r2 = init 3; r3 = addℓ+ r1 r2; return r3; (the

operator ⟨x⟩ denotes the stack offset of the variable x).

The kind configuration 𝜃 has two elements: ℓ+ for the arithmetic operator and ℓ𝑥 for the parameter

𝑥 (which can be stored in exact or approximate memory). The analysis constructs the following

preconditions for the instructions:

𝑄1 = C𝜓(return 𝑟3, True) := 0.99 · ℛ({𝑥}) ≤ ℛ({𝑟3})
𝑄2 = C𝜓(add 𝑟1 𝑟2, 𝑄1) := 0.99 · ℛ({𝑥}) ≤ 𝜌

ℓ+
𝑎𝑑𝑑 · ℛ({𝑟1, 𝑟2})

𝑄3 = C𝜓(𝑟2 = init 3, 𝑄2) := 0.99 · ℛ({𝑥}) ≤ 𝜌
ℓ+
𝑎𝑑𝑑 · 𝜌ℓ𝑥ld · ℛ({𝑟1})

𝑄4 = C𝜓(𝑟1 = load 𝑟0, 𝑄3) := 0.99 · ℛ({𝑥}) ≤ 𝜌
ℓ+
𝑎𝑑𝑑 · 𝜌ℓ𝑥ld · ℛ({𝑥})

𝑄5 = C𝜓(𝑟0 = init ⟨𝑥⟩, 𝑄4) := 0.99 · ℛ({𝑥}) ≤ 𝜌
ℓ+
𝑎𝑑𝑑 · 𝜌ℓ𝑥ld · ℛ({𝑥})

𝑄5 is the final precondition for the function. This derivation combines the rules for the instructions

we previously described. We note that the analysis of load statement immediately inserts the variable

𝑥 in the joint reliability factor (because of the mapping 𝜂(𝑟0) = 𝑥), and therefore the subsequent

analysis of the instruction 𝑟0 = init ⟨𝑥⟩ does not modify the predicate.

Soundness. The reliability analysis is sound with the respect to the paired execution

semantics of the approximate computation. The soundness argument follows from the

soundness of Rely [19]. It is also a special case of the soundness of the analysis we present

in Section 5.3. When the kind configuration 𝜃(·) for the instructions is known, the analysis

can substitute each 𝜃(ℓ) and check whether the final precondition is correct, using the same

approach as in Rely.

105

Simplification

The number of constraints that the generator produces can, in principle, grow exponentially

in the number of conditional statements in the program. However, in practice, the number

of constraints can be significantly decreased by using a simplification of the constraints after

each step of the algorithm [19]. Chisel extends Rely’s simplification procedure, which uses

the ordering property of the joint reliability factors and the subsumption property of the

reliability predicates.

Ordering Of Joint Reliability Factors. Ordering enables comparing two joint reli-

ability factors by comparing their sets of variables [19, Proposition 1]. Specifically, this

proposition states that for the two sets of variables 𝑉 and 𝑉𝑠𝑝𝑒𝑐,

𝑉 ⊆ 𝑉𝑠𝑝𝑒𝑐 ⇒ ℛ(𝑉𝑠𝑝𝑒𝑐) ≤ ℛ(𝑉). (5.2)

Therefore, the reliability of any subset of a set of variables is greater than or equal to

the reliability of the set as a whole. This property immediately extends from the sets of

variables to the sets of operands (registers and variables).

Ordering of Labeled Reliabilities. Chisel operates on products of labeled reliabilities,

which can also be ordered. Specifically, 𝜌ℓ11 ·. . .·𝜌ℓ𝑛𝑛 ≤ 𝜌ℓ11 ·. . .·𝜌ℓ𝑚𝑚 if {ℓ1, . . . , ℓ𝑚} ⊆ {ℓ1, . . . , ℓ𝑛}
and for each ℓ𝑖 ∈ {ℓ1, . . . , ℓ𝑛}, either 𝜌𝑖 ≤ 𝜌𝑖 or 𝜌𝑖 does not show up in the product on the

right-hand side (in which case the reliability is by default equal to one).

Subsumption. This property defines the condition under which a predicate is trivially

satisfied, given another more general predicate [19, Proposition 2]. Specifically, this propo-

sition states that a predicate 𝜌1 · ℛ(𝑉1) ≤ 𝜌2 · ℛ(𝑉2) subsumes (i.e., soundly replaces) a

predicate 𝑟′1 · ℛ(𝑋 ′
1) ≤ 𝜌′2 · ℛ(𝑉 ′

2) if 𝜌′1 · ℛ(𝑉 ′
1) ≤ 𝜌1 · ℛ(𝑉1) and 𝜌2 · ℛ(𝑉2) ≤ 𝜌′2 · ℛ(𝑉 ′

2).

In Chisel, this proposition follows immediately from the ordering of joint reliability factors

and the ordering of labeled reliabilities.

5.2.5 Optimization Constraint Construction

When the kind configuration 𝜃(·) is unknown, the final precondition that Chisel’s genera-

tor produces represents a constraint that lists all approximation choices represented by 𝜃.

Then, each 𝜃(ℓ) is a variable that can be either 0 (reliable) or 1 (unreliable). The precon-

dition parameterized by 𝜃(·) therefore represents all approximate versions of the program

106

that satisfy the developer’s reliability specification. To generate the constraint for the opti-

mization problem, Chisel analyzes separately the reliability degradation and joint reliability

factors in each conjunct: 1) 𝜌𝑠𝑝𝑒𝑐 ≤ 𝑟(ℓ1, . . . , ℓ𝑛) and 2) ℛ(𝑉𝑠𝑝𝑒𝑐) ≤ ℛ(𝑉).

Validity Checking. To check the validity of this precondition, we use the ordering prop-

erty, from Equation 5.2. Therefore, Chisel can soundly ensure the validity of each inequality

in the precondition by verifying that 1) 𝜌𝑠𝑝𝑒𝑐 ≤ 𝑟(ℓ1, . . . , ℓ𝑛) and 2) 𝑉 ⊆ 𝑉𝑠𝑝𝑒𝑐. Since 𝑉 and

𝑉𝑠𝑝𝑒𝑐 are not parameterized by the labels ℓ, Chisel can immediately check if these set inclu-

sion constraints are satisfied.

Constraint Construction. After checking the validity of the reliability factors, Chisel

is left with the inequality

𝜌𝑠𝑝𝑒𝑐 ≤ 𝑟(ℓ1, . . . , ℓ𝑛). (5.3)

The denotation of the reliability expression 𝑟 is 𝜌 · Π𝑘 𝜌𝜃(ℓ𝑘)𝑘 . Recall that, given the kind

configuration 𝜃, the denotation of each 𝜌ℓ from Equation 5.1 is 𝜌𝜃(ℓ).

Chisel therefore produces a final optimization constraint by taking the logarithm of both

sides of Inequality 5.3:

log(𝜌𝑠𝑝𝑒𝑐)− log(𝜌) ≤
∑︁
𝑘

𝜃(ℓ𝑘) · log(𝜌𝑘). (5.4)

The expression on the right side is linear with respect to all labels’ kinds 𝜃(ℓ𝑘). The

reliabilities 𝜌 are constants and their logarithms can be immediately computed. Each label’s

kind is an (unknown) integer variable that can take a value 0 or 1.

5.3 Accuracy Constraint Construction

To exploit the capabilities of architectures that have variable-precision floating point

units [40, 56, 120, 121], we now present Chisel’s analysis that unifies reasoning about re-

liability and accuracy. Specifically, we extend reliability predicates with the ability to

characterize the difference in a the values of variables between the kernel’s exact and ap-

proximate executions. Then, our constraint generator produces linear expressions of kind

configurations that characterize how the numerical error emerges and propagates through

the kernel.

107

5.3.1 Accuracy Specification

Approximate Hardware Specification. For each approximate floating point operation

op, we extend the definition of the hardware specification 𝜓 from Section 4.2.1 to also

include the accuracy specification of the variable-accuracy instructions. The specification

of a variable-accuracy instruction consists of 1) the reliability 𝑟 and 2) the number of

mantissa bits that are computed fully accurately 𝑐, which determines the maximum absolute

numerical error of the operation.

The approximate instructions have the following semantics. With probability at least 𝑟,

an approximate arithmetic instruction produces a result that has a numerical error with

bounded magnitude (determined by 𝑐). With probability at most 1− 𝑟, the operation can

produce an arbitrarily inaccurate result.

Therefore, this specification combines the magnitude and the frequency of error. The

source of the bounded error with small-magnitude is typically a simplified design of FPUs

that requires less gates to build. The source of the unbounded errors occurring with small

frequency is typically (like for the ALUs) the timing variation in the gates.

Function Specification. We extend the syntax of reliability specifications from the Rely

base language to include a specification of acceptable accuracy loss. The extended specifi-

cation has the following form:

float <d, r * R(d1 >= D(x1), ..., dn >= D(xn))> f(...)

The constant d specifies the maximum acceptable difference between the results of the

exact and approximate executions. The constant r specifies the probability with which

the approximate execution will produce a result within distance d of the exact result. The

constraints di >= D(xi) specify that the non-negative value di is the maximum absolute

difference between the values of the function’s parameter xi at the beginning of the exact

and approximate kernel executions.

Interval Specification. We extend function specifications to enable developers to specify

the intervals of values of a function’s parameters. Because the accuracy analysis relies

on an internal interval analysis, the precision of the results of this analysis depends on

the precision of the intervals specified for the inputs to the function. To specify the

parameter interval, a developer precedes a function’s declaration with an annotation of the

form @interval(p,a,b), denoting that the parameter p is within the interval [𝑎, 𝑏].

108

5.3.2 Accuracy Predicates

We present the syntax and semantics of the predicates generated by the accuracy analysis:

𝑄𝐴 := 𝑑 ≥ 𝐴𝑒 | 𝑄𝐴 ∧𝑄𝐴 | True | False

𝐴𝑒 := 𝑑 | 𝑑 · ℓ | 𝑑 ·Δ(𝑜) | 𝐴𝑒 +𝐴𝑒

An accuracy predicate𝑄𝐴 is a conjunction of accuracy predicates or a comparison between

a numerical constant 𝑑 and an accuracy expression 𝐴𝑒, which has one of four forms:

∙ Constant. A term 𝑑 ∈ R+
0 ∪ {∞} represents an approximate operation’s numerical

error, which propagates to the computation’s output. It is a non-negative number

or a special constant ∞, which represents the maximum error. For the use in our

analysis, we define that J0 · ∞K = 0 and for any 𝑑 > 0, J𝑑 · ∞K = ∞.

∙ Product of Constant and Label. A term 𝑑 · ℓ represents a numerical error of an

operation that can be either exact or approximate. The label ℓ encodes the choice

between the exact and approximate version of an instruction: if 𝜃(ℓ) = 0 (exact), then

𝑑 · ℓ is zero; if 𝜃(ℓ) = 1 (approximate), then 𝑑 · ℓ is equal to 𝑑.

∙ Product of Constant and Distance. A term 𝑑 ·Δ(𝑜) represents a numerical error

of an operand 𝑜 (which is a register 𝑟 or a variable 𝑣). Specifically, a distance operator

Δ(𝑜) relates the values of the operand 𝑜 in an exact and an approximate execution.

∙ Sum of Accuracy Expressions. A term 𝐴𝑒1 + 𝐴𝑒2 represents a sum of accuracy

expressions 𝐴𝑒1 and 𝐴𝑒2.

Figure 5.4 presents the denotational semantics of accuracy expressions and predicates.

Accuracy expressions and predicates have a similar semantics to that of standard logical

predicates over numerical expressions. The main point of departure is the semantics of the

distance operator, which is the absolute difference between the value of a variable in an

exact environment 𝜀 and its corresponding value in an approximate environment 𝜀𝑎.

For notational purposes, we define implication as: 𝑄𝐴1 ⇒ 𝑄𝐴2 ≡ J𝑄𝐴1K ⊆ J𝑄𝐴2K.

5.3.3 Extended Reliability Predicates

To specify Chisel’s extended reliability precondition generator, we embed accuracy predi-

cates within the reliability predicates that we presented in Section 5.2.1. Specifically, we add

a generalized joint reliability factor, ℛ*(𝑄𝐴). Figure 5.5 presents that this factor denotes

the probability that the exact environment 𝜀 and an approximate environment 𝜀𝑎 sampled

from 𝜙 together satisfy the accuracy predicate 𝑄𝐴.

109

J𝐴𝑒K ∈ E× E×Θ×ϒ → R+
0 ∪ {∞} J𝑑 · ℓK(𝜀, 𝜀𝑎, 𝜃, 𝜐) = 𝑑 · 𝜃(ℓ)

J𝑑 ·Δ(𝑟)K(𝜀, 𝜀𝑎, 𝜃, 𝜐) = 𝑑 · |𝜎𝑎(𝑟)− 𝜎(𝑟)| where 𝜀 = (𝜎,𝑚) and 𝜀𝑎 = (𝜎𝑎,𝑚𝑎)

J𝑑 ·Δ(𝑣)K(𝜀, 𝜀𝑎, 𝜃, 𝜐) = 𝑑 · max
𝑎∈𝜐(𝑣)

|𝑚𝑎(𝑎)−𝑚(𝑎)| where 𝜀 = (𝜎,𝑚) and 𝜀𝑎 = (𝜎𝑎,𝑚𝑎)

J𝐴𝑒1 +𝐴𝑒2K(𝜀, 𝜀𝑎, 𝜃, 𝜐) = J𝐴𝑒1K(𝜀, 𝜀𝑎, 𝜃, 𝜐) + J𝐴𝑒2K(𝜀, 𝜀𝑎, 𝜃, 𝜐)

J𝑄𝐴K ∈ 𝒫(E× E×Θ×ϒ) J𝑑 ≥ 𝐴𝑒K = {(𝜀, 𝜀𝑎, 𝜃, 𝜐) | J𝑑K ≥ J𝐴𝑒K(𝜀, 𝜀𝑎, 𝜃, 𝜐)}

J𝑄𝐴1 ∧𝑄𝐴2K = J𝑄𝐴1K ∩ J𝑄𝐴2K JTrueK = E× E×Θ×ϒ JFalseK = ∅

Figure 5.4: Semantics of Accuracy Predicates

Jℛ*(𝑄𝐴)K(𝜀, 𝜙, 𝜃, 𝜐) =
∑︁

𝜀𝑎∈ℰ(𝜀,𝜃,𝜐,𝑄𝐴)

𝜙(𝜀𝑎),

where ℰ(𝜀, 𝜃, 𝜐,𝑄𝐴) = { 𝜀𝑎 | (𝜀, 𝜀𝑎, 𝜃, 𝜐) ∈ J𝑄𝐴K }.

Figure 5.5: Generalized Joint Reliability Factor

The syntax of the extended reliability factors (𝑅𝑓) and predicates (𝑃 ′) extends the defi-

nitions of reliability factors (𝑅𝑓) and predicates from Section 5.2.1:

𝑅′
𝑓 := 𝑅𝑓 | ℛ*(𝑄𝐴)

𝑃 ′ := 𝑅′
𝑓 ≤ 𝑅′

𝑓 | 𝑃 ′ ∧ 𝑃 ′.

This definition of joint reliability factors subsumes the definition of the standard joint

reliability factors ℛ(𝑂) (Section 5.2.1, Definition 3). Specifically, the set of variables that

have the same value in the exact and approximate program executions can be represented

using accuracy predicates that bound the absolute difference of each variable by zero:

Jℛ(𝑂)K(𝜀, 𝜙, 𝜃, 𝜐) = Jℛ*(
⋀︁
𝑜∈𝑂

0 ≥ Δ(𝑜))K(𝜀, 𝜙, 𝜃, 𝜐).

Alternatively, we can also represent the joint reliability factor ℛ(𝑂) with the accuracy

predicate that bounds the sum of the absolute differences of all variables by zero:

Jℛ(𝑂)K(𝜀, 𝜙, 𝜃, 𝜐) = Jℛ*(0 ≥
∑︁
𝑜∈𝑂

Δ(𝑜))K(𝜀, 𝜙, 𝜃, 𝜐).

110

5.3.4 Extended Reliability Precondition Generator

We now present the precondition generator of extended reliability predicates at the level

of the statements in the intermediate language. This analysis is applicable to kernel com-

putations with conditionals and bounded loops. The combined accuracy and reliability

precondition generator takes as input a statement 𝑠 and an extended reliability postcondi-

tion 𝑃 and generates a precondition 𝑃 ′, such that if 𝑃 ′ holds before the paired execution of

the statement 𝑠, then 𝑃 holds after the paired execution of 𝑠. Below we present the three

main components of the precondition generator.

Interval Analysis. Before running the precondition generator, the analysis runs an auxil-

iary interval analysis (Section 5.3.5). The interval analysis computes the intervals of instruc-

tion results under the assumption that all instructions in the kernel have reduced precision.

This way, this analysis can conservatively capture how the error propagates through the

computation, even if the subsequent analysis selects that some of the instructions should

eventually be exact.

Analysis of Arithmetic Expressions. For each arithmetic operator, the analysis com-

putes an accuracy predicate that quantifies 1) the error that emerges as a result of imprecise

instruction and 2) the error that propagates from the instruction’s operands, which were

computed by the previous approximate computation (Section 5.3.6).

The accuracy predicate separates the error in the emerged error and propagated error,

which enables the analysis to quantify the effect of each potentially approximate operation

on the kernel’s output. The emerged error term is a function of the operation’s label ℓ and

the maximum sensitivity of the output to the error introduced by instruction approximation.

Sensitivity is a multiplicative constant, consisting of the maximum error of the operation

and the terms that are upper bound on how subsequent instructions amplify this error. In

principle, sensitivity is affected by the result of other potentially approximate operations,

and as such would be a function of these instructions’ labels, ℓ1, . . . , ℓ𝑘. However, multipli-

cation of labels would make the optimization problem non-linear. Therefore, the accuracy

analysis computes the maximum sensitivity, which is a constant computed under the as-

sumption that all operations are approximate (i.e., 𝜃(ℓ1) = 1, . . . , 𝜃(ℓ𝑘) = 1). This constant

can be computed directly from the auxiliary interval analysis (which operates under the

same assumption that all operations are approximate).

By computing this sensitivity constant, the analysis linearizes the accuracy predicate. By

assigning the labels to the errors emerging from specific instructions, the accuracy predicates

111

can identify those instructions that (in the worst-case) produce unacceptable absolute error.

The solver can then select that such operations should execute exactly.

Reliability and Accuracy Analysis. In the third step, the precondition generator com-

bines the accuracy predicate with a reliability degradation expression (which we presented

in Section 5.2). Specifically, Section 5.3.7 presents how the analysis uses the generalized

joint reliability factor to embed the accuracy predicate to specify a more relaxed model of

reliability. In this reliability model, any computation that satisfies the accuracy predicate

is considered reliable, even if it is not exact.

5.3.5 Auxiliary Interval Analysis

To compute the absolute error induced by variable-accuracy arithmetic operations (given the

number of accurately computed mantissa bits), an accuracy analysis requires the intervals

of the operation’s inputs. Therefore, we define an auxiliary interval analysis that computes

the intervals of arithmetic instructions computed within the kernel. These intervals include

the maximum absolute errors induced by the variable-accuracy floating point operations.

The analysis produces a mapping ℐ : ℒ → (Float×Float) +Unbounded, which yields the

interval of values to which each instruction operand (identified by its label ℓ ∈ ℒ) evaluates.
The set Float contains all floating point numbers that the target platform can represent. A

special symbol Unbounded indicates that the interval is unbounded (due to e.g., a possible

overflow or divide by zero).

The analysis operates in a forward fashion, using the standard rules of interval arithmetic.

To provide a conservative estimate of the error that the approximate execution may produce,

for every arithmetic operation 𝑟 = opℓ 𝑟1 𝑟2 the interval analysis extends the computed

interval of the result of the exact operation [𝑎, 𝑏] with an error term 𝛿 (which depends on

the operation), which represents the maximum absolute error of the approximate operation.

The resulting interval is therefore ℐ(ℓ) = [𝑎 − 𝛿, 𝑏 + 𝛿]. The computation of conservative

intervals is inspired by the analysis presented in [31].

To compute the error term for an arithmetic operation, the analysis uses the function

maxerrop,𝜓,ℐ(𝑟1, 𝑟2), which returns the maximum error of the operation op when it operates

on only a fraction of the inputs’ mantissa bits and the intervals of the operands are ℐ(loc(𝑟1))
and ℐ(loc(𝑟2)). The function loc returns the label corresponding to the register use. If any

operand interval is unbounded, then the result interval is also unbounded. The analysis

computes the intervals for computations in which the approximate execution does not cause

control-flow divergence from the original execution.

112

We compute the maximum error as follows. If a floating point instruction computes a

result with 𝑐 exact mantissa bits, then machine epsilon (the distance between the value 1.0

and the next adjacent value) is 2−(𝑐−1). If the interval of the output computed for intervals

ℐ(loc(𝑟1)) and ℐ(loc(𝑟2)) is [𝑎𝑟, 𝑏𝑟], and max(|𝑎𝑟|, |𝑏𝑟|) ≤ 2𝑤 (where 𝑤 is the minimal such

exponent), then the maximum error is lower than or equal to 0.5 · 2𝑤−(𝑐−1), where the

constant 0.5 comes from the rounding-to-the-nearest semantics of floating point instructions.

5.3.6 Analysis of Arithmetic Instructions

The function AE𝜓,ℐ ∈ 𝑆 → 𝐴𝑒 produces an expression that bounds the absolute error of an

arithmetic instruction:

AE𝜓,ℐ(𝑟 = opℓ 𝑟1 𝑟2) = 𝜋1(propagationop,ℐ(𝑟1, 𝑟2)) ·Δ(𝑟1)+

𝜋2(propagationop,ℐ(𝑟1, 𝑟2)) ·Δ(𝑟2)+

ℓ ·maxerrop,𝜓,ℐ(𝑟1, 𝑟2)

Error Propagation. The function propagation𝑜𝑝,ℐ(𝑟1, 𝑟2) returns a pair of real-valued

error propagation coefficients (𝑘1, 𝑘2) that specify how sensitive the result of the operation

is to the changes of the first and the second operand, respectively.

To compute the coefficients for each operation, we use the observation that for a differ-

entiable function 𝑓(𝑥, 𝑦) defined on a bounded interval and inputs with errors 𝑥̂ = 𝑥 + 𝛿𝑥

and 𝑦 = 𝑦 + 𝛿𝑦, one can show that |𝑓(𝑥, 𝑦) − 𝑓(𝑥̂, 𝑦)| ≤ 𝑘1 · |𝛿𝑥| + 𝑘2 · |𝛿𝑦|. The constants

𝑘1 = max𝑥,𝑦

⃒⃒⃒
𝜕𝑓(𝑥,𝑦)
𝜕𝑥

⃒⃒⃒
and 𝑘2 = max𝑥,𝑦

⃒⃒⃒
𝜕𝑓(𝑥,𝑦)
𝜕𝑦

⃒⃒⃒
can be computed from the input intervals

when the partial derivatives of 𝑓 are bounded. Note that the input intervals include the

bounds for the errors 𝛿𝑥 and 𝛿𝑦.

We can use this observation to specify the error propagation functions for the four arith-

metic operations:

propagation+,ℐ(𝑟1, 𝑟2) = (1, 1)

propagation−,ℐ(𝑟1, 𝑟2) = (1, 1)

propagation * ,ℐ(𝑟1, 𝑟2) = (max
𝑦∈ℐ𝑟2

|𝑦|, max
𝑥∈ℐ𝑟1

|𝑥|)

propagation÷,ℐ(𝑟1, 𝑟2) = (max
𝑦∈ℐ𝑟2

|1/𝑦|, max
𝑥∈ℐ𝑟1 ,𝑦∈ℐ𝑟2

|𝑥/𝑦2|) when 0 ̸∈ ℐ𝑟2 .

Recall that the conservative interval analysis incorporates the maximum error that can

propagate from the operands. Therefore, the intervals of the operands ℐ𝑟1 = ℐ(loc(𝑟1))
and ℐ𝑟2 = ℐ(loc(𝑟2)) incorporate the upper bounds for the errors in the operands. If either

113

interval is unbounded or the divisor’s interval includes 0, then the corresponding coefficient

will be infinity (∞), indicating that the operand’s value is critical, i.e., the kernel’s result

is highly sensitive to its change.

Example 11 (Error of Multiplication). We analyze the instruction 𝑟 = mul 𝑟1 𝑟2, given the in-

tervals ℐ𝑟1 = ℐ(loc(𝑟1)) = [−2, 1] and ℐ𝑟2 = ℐ(loc(𝑟2)) = [0, 8] and the exact operator mul.

The function propagation returns the pair (8, 2), meaning that the error that propagates through 𝑟1

can be amplified by a factor of 8 (maximum absolute value of 𝑟2) and the error that propagates

through 𝑟2 can be amplified by a factor of 2 (maximum absolute value of 𝑟1). The analysis therefore

produces the accuracy expression 8 ·Δ(𝑟1) + 2 ·Δ(𝑟2).

Error Induced by Approximation. The analysis uses the function maxerrop,𝜓,ℐ(𝑟1, 𝑟2)

to compute the maximum error induced by the approximate arithmetic instruction when

the inputs are in ℐ(loc(𝑟1)) and ℐ(loc(𝑟2)). If either of the intervals is unbounded, then the

function returns ∞.

The propagation and approximation-induced errors are additive because for two continu-

ous functions 𝑓 and 𝑓 , we have |𝑓(𝑥, 𝑦)− 𝑓(𝑥̂, 𝑦)| ≤ |𝑓(𝑥, 𝑦)− 𝑓(𝑥̂, 𝑦)|+ |𝑓(𝑥̂, 𝑦)− 𝑓(𝑥̂, 𝑦)|
from the triangle inequality. Therefore, the total absolute error is bounded by the sum of the

error propagating through the operands, characterized by the propagation coefficients from

propagationop,ℐ(·), and the induced error, maxerrop,𝜓,ℐ(·). To control whether to approxi-

mate the operation, the generator multiplies the induced error with the operation’s label.

Example 12 (Error of Multiplication). We analyze the expression 𝑟 = mul 𝑟1 𝑟2 introduced in

Example 11. This operator computes the result with 𝑐 = 8 exact mantissa bits.

The interval of the result of the multiplication is [−16, 16]. The maximum absolute error on this

interval is 0.0625. Therefore, the accuracy generator produces an expression 0.0625+8·Δ(𝑎)+2·Δ(𝑏).

5.3.7 Generalized Reliability and Accuracy Analysis

This section presents the rules for the precondition generator for intermediate-language

statements, C *
𝜓,ℐ ∈ 𝑆 × 𝑃 ′ → 𝑃 ′. The precondition generator for statements operates

backwards, from the end to the beginning of the kernel function. The analysis rules for

instructions are analogous to those from the reliability analysis in Section 5.2. The main

difference between the two analyses is in the propagation of the accuracy predicate 𝑄𝐴

within the generalized reliability factors, as opposed to propagating sets of variables.

114

Initial Postcondition

Just like the reliability generator (Section 5.2), it transforms the extended reliability pred-

icate 𝑄𝑅, starting from the predicate that is the conjunction of the terms

𝑄0 :=
⋀︁
𝑖

𝜌spec,i · ℛ*(𝑄𝑠𝑝𝑒𝑐,𝑖) ≤ ℛ*(𝑑𝑠𝑝𝑒𝑐,𝑖 ≥ Δ(𝑣𝑖))

for each kernel’s array parameter 𝑣𝑖 or 𝑄0 := True if there are none. The analysis begins

from the return statement.

Return. The following equation presents the rule for the return instruction:

C *
𝜓,ℐ(return 𝑟𝑟𝑒𝑡, 𝑄0) = let 𝑄𝐴 = 𝑑spec ≥ Δ(𝑟𝑟𝑒𝑡) in

𝜌spec · ℛ(𝑉spec) ≤ ℛ*(𝑄𝐴) ∧ 𝑄0

The analysis of the return statement first generates a new accuracy predicate 𝑄𝐴, which

states that the absolute difference between the values of 𝑟𝑟𝑒𝑡 in the exact and approximate

executions should be less than the accuracy specification Γ𝐴(ret) = 𝑑spec. The analysis then

generates a reliability predicate by relating the kernel’s acceptable reliability Γ𝑅(ret) =

(𝜌spec, 𝑉spec) with the probability that the predicate 𝑄𝐴 is correct.

Example 13. We analyze the function with specification int <0.1, 0.99*R(0.2>=D(x))> and

the return instruction return 𝑟1.

For the return statement, the analysis produces 0.99 · ℛ*(0.2 ≥ Δ(𝑟1)) ≤ ℛ*(0.1 ≥ Δ(𝑟1)). The left-

hand side comes from the specification. The right-hand side is generated for the return statement’s

expression.

Precondition Generator for Instructions

We use the conditional substitution rule of the following form:

let 𝑄′
𝐴 = 𝑄𝐴 [𝐴/𝐵] incond 𝑄𝑅 [𝜌 · ℛ*(𝑄′

𝐴) /ℛ*(𝑄𝐴)].

If the accuracy predicate 𝑄𝐴 contains a sequence of symbols 𝐵, the first substitution

replaces 𝐵 with a sequence 𝐴 to produce 𝑄′
𝐴,. The rule then, since 𝑄

′
𝐴 ̸= 𝑄𝐴, performs the

second substitution to replace ℛ*(𝑄𝐴) with ℛ*(𝑄′
𝐴), optionally multiplied by a constant

factor 𝜌. If, on the other hand 𝑄𝐴 does not contain 𝐵, then 𝑄′
𝐴 = 𝑄𝐴, and the rule does

not apply the second substitution (in 𝑄𝑅).

115

Initialization and Sequence. The following equations present the rules for initializing

a register with a constant and a sequence of instructions:

C *
𝜓,ℐ(𝑟 = init 𝑛, 𝑄) = let 𝑄′

𝐴 = 𝑄𝐴[0/Δ𝑟] incond 𝑄 [ℛ*(𝑄′
𝐴)/ℛ*(𝑄𝐴)]

C *
𝜓,ℐ(inst1; inst2, 𝑄) = C *

𝜓,ℐ(inst1, C
*
𝜓,ℐ(inst2, 𝑄))

The initialization rule removes the occurrence of the register 𝑟 in the accuracy predicate

because the constant is always passed to a register exactly. The sequence rule operates

backward – it first analyzes the second instruction, and passes its computed precondition

as the postcondition of the previous instruction.

ALU/FPU. The following equation presents the generator rule for ALU/FPU operations:

C *
𝜓,ℐ(𝑟 = opℓ 𝑟1 𝑟2, 𝑄) = let 𝑄′

𝐴 = 𝑄𝐴[AE𝜓,ℐ(𝑟 = opℓ 𝑟1𝑟2) /Δ(𝑟)] incond

𝑄 [𝜌ℓop · ℛ*(𝑄′
𝐴)/ℛ*(𝑄𝐴)]

This rule substitutes the expression for the accuracy of the arithmetic operation, which is

a function of the distances of the input registers and the label ℓ, instead of the distance of the

output register 𝑟. In addition to the changes in the accuracy predicate 𝑄𝐴, the rule updates

the generalized reliability predicate with the factor 𝜌ℓop, which denotes the probability that

the operation executed correctly (same as in the reliability analysis in Section 5.2.4).

Example 14. We analyze the instruction r = mul ℓ 𝑟1 𝑟2 and the corresponding postcondition

𝑄 := 0.99 ≤ ℛ*(0.5 ≥ 2 ·Δ(𝑟)). The intervals of 𝑟1 and 𝑟2 are the same as in Example 11.

First, the accuracy predicate generator calls the function AE𝜓,ℐ which produces the expression

0.0625·ℓ+8·Δ(𝑟1)+2·Δ(𝑟2) (according to Example 12). To produce the accuracy predicate, the anal-

ysis substitutes the term Δ(𝑟) with the generated expression in the accuracy predicate 0.5 ≥ 2 ·Δ(𝑟).

The generated accuracy predicate is therefore 0.5 ≥ 0.125 ·ℓ+16 ·Δ(𝑟1)+4 ·Δ(𝑟2). The multiplication

0.125 · ℓ encodes the choice of approximating the operator mulℓ.

To produce the new combined predicate, the analysis computes the reliability expression for the in-

struction that stores the result in 𝑟. This reliability is 𝜌ℓ𝑚𝑢𝑙. Finally, the analysis performs the

substitution to construct the final precondition 0.99 ≤ 𝜌ℓ𝑚𝑢𝑙 ·ℛ*(0.5 ≥ 0.125 ·ℓ+16 ·Δ(𝑟1)+4 ·Δ(𝑟2)).

116

Scalar Load/Store. The following equations present the rules for loads and stores from

potentially approximate scalars:

C *
𝜓,ℐ(𝑟𝑣𝑎𝑙 = load 𝑟𝑎𝑑𝑑𝑟, 𝑄) = let 𝑄′

𝐴 = 𝑄𝐴[Δ(𝜂(𝑟𝑎𝑑𝑑𝑟)) / 𝑟𝑣𝑎𝑙] ∧ 0≥Δ(𝑟𝑎𝑑𝑑𝑟) incond

𝑄 [𝜌
𝜒(𝜂(𝑟𝑎𝑑𝑑𝑟))
ld · ℛ*(𝑄′

𝐴)/ℛ*(𝑄𝐴)]

C *
𝜓,ℐ(store 𝑟𝑎𝑑𝑑𝑟 𝑟𝑣𝑎𝑙, 𝑄) = let 𝑄′

𝐴 = 𝑄𝐴[Δ(𝜂(𝑟𝑎𝑑𝑑𝑟)) /Δ(𝑟𝑣𝑎𝑙)] ∧ 0≥Δ(𝑟𝑎𝑑𝑑𝑟) incond

𝑄 [𝜌
𝜒(𝜂(𝑟𝑎𝑑𝑑𝑟))
st · ℛ*(𝑄′

𝐴)/ℛ*(𝑄𝐴)]

This rule is analogous to the rule in the reliability analysis. They replace the element

referring to the memory operation’s destination location with the source location. Specifi-

cally, the load instruction replaces the distance of the register 𝑟𝑣𝑎𝑙 with the variable 𝜂(𝑟𝑎𝑑𝑑𝑟)

referred to by the address stored in the register 𝑟𝑎𝑑𝑑𝑟. The store instruction replaces the

distance of the variable 𝜂(𝑟𝑎𝑑𝑑𝑟) with the distance of the register 𝑟𝑣𝑎𝑙.

Array Load/Store. The following equations present the rules for loads and stores from

potentially approximate arrays:

C *
𝜓,ℐ(𝑟𝑣𝑎𝑙 = loada 𝑟𝑎𝑟𝑟 𝑟𝑖𝑑𝑥, 𝑄) =

let 𝑄′
𝐴 = 𝑄𝐴[Δ(𝜂(𝑟𝑎𝑟𝑟)) /Δ(𝑟𝑣𝑎𝑙)] ∧ 0 ≥ Δ(𝑟𝑎𝑟𝑟) + Δ(𝑟𝑖𝑑𝑥) incond

𝑄 [𝜌
𝜒(𝜂(𝑟𝑎𝑟𝑟))
ld · ℛ*(𝑄′

𝐴)/ℛ*(𝑄𝐴)]

C *
𝜓,ℐ(storea 𝑟𝑎𝑟𝑟 𝑟𝑖𝑑𝑥 𝑟𝑣𝑎𝑙, 𝑄) =

let 𝑄′
𝐴 = 𝑄𝐴[Δ(𝑟𝑣𝑎𝑙) + Δ(𝜂(𝑟𝑎𝑟𝑟)) /Δ(𝜂(𝑟𝑎𝑟𝑟))] ∧ 0≥Δ(𝑟𝑎𝑟𝑟) + Δ(𝑟𝑖𝑑𝑥) incond

𝑄 [𝜌
𝜒(𝜂(𝑟𝑎𝑟𝑟))
st · ℛ*(𝑄′

𝐴) / ℛ*(𝑄𝐴)]

The rule for load ensures that both the address and the index are computed numerically

precisely, by bounding the sum of non-negative Δ(𝑟𝑎𝑟𝑟) and Δ(𝑟𝑖𝑑𝑥) by zero. The rule for

store, in addition, performs a weak update by replacing Δ(𝜂(𝑟𝑎𝑟𝑟)) with Δ(𝑟𝑣𝑎𝑙)+Δ(𝜂(𝑟𝑎𝑟𝑟)).

Conditional. The following equation presents the rule for the conditional intermediate

statement:

117

C *
𝜓,ℐ(if 𝑟𝑐 𝑖𝑛𝑠𝑡

′ 𝑖𝑛𝑠𝑡′′, 𝑄) =

let {𝑜1, . . . , 𝑜𝑘} = modified(𝑖𝑛𝑠𝑡′) ∪modified(𝑖𝑛𝑠𝑡′)

and if contains one(𝑄𝐴, {Δ(𝑜1), . . . ,Δ(𝑜𝑘)}) then

let 𝑄′
𝐴 = 𝑄𝐴 ∧ 0 ≥ Δ(𝑟𝑐) incond

C *
𝜓,ℐ(𝑖𝑛𝑠𝑡

′, 𝑄[ℛ*(𝑄′
𝐴)/ℛ*(𝑄𝐴)]) ∧ C *

𝜓,ℐ(𝑖𝑛𝑠𝑡
′′, 𝑄[ℛ*(𝑄′

𝐴)/ℛ*(𝑄𝐴)])

This rule appends the accuracy predicate 0 ≥ Δ(𝑟𝑐) to every accuracy predicate that

references at least one of the operand distance Δ(𝑜1), . . . ,Δ(𝑜𝑘). This additional predicates

ensures that the instructions that compute the condition are not approximated and cause

an approximate execution to follow a different branch of the execution.

Example 15 (Analysis of Conditionals). Consider if (𝑟𝑐) 𝑟1 = init 1; else 𝑟2 = init 3;

with the postcondition 𝑄 := 0.99 ≤ ℛ*(0.1 ≥ Δ(𝑟1) + Δ(𝑟2)).

The analysis considers each of the branches independently. The analysis of the then-branch 1)

ensures that the approximation in 𝑟𝑐 does not change the execution path and 2) substitutes Δ(𝑟1)

with 0. Therefore, 𝑄𝑝𝑟𝑒𝑡ℎ𝑒𝑛 := 0.99 ≤ ℛ*(0.1 ≥ Δ(𝑟2) ∧ 0 ≥ Δ(𝑟𝑐)). Analogously, the analysis of the

else-branch yields 𝑄𝑝𝑟𝑒𝑒𝑙𝑠𝑒 := 0.99 ≤ ℛ*(0.1 ≥ Δ(𝑟1) ∧ 0 ≥ Δ(𝑟𝑐)). The condition 0 ≥ Δ(𝑟𝑐), then it

would be possible for the approximate execution to switch between the then and else branches (when

the distance for each changed register would be 2.0 instead of 0.0). Finally, 𝑄𝑝𝑟𝑒 := 𝑄𝑝𝑟𝑒𝑡ℎ𝑒𝑛 ∧𝑄𝑝𝑟𝑒𝑒𝑙𝑠𝑒.

Final Precondition

The generator produces a precondition that is a conjunction of terms of the form:

𝜌𝑠𝑝𝑒𝑐 · ℛ*(𝑄𝑠𝑝𝑒𝑐) ≤ 𝑟(ℓ1, . . . , ℓ𝑛) · ℛ*(𝑄𝐴(ℓ1, . . . , ℓ𝑛)).

The predicate 𝑄𝑠𝑝𝑒𝑐 (given by the specification) is a conjunction of terms of the form

𝑑 ≥ Δ(𝑣), (5.5)

where each 𝑑 is a constant and each 𝑣 is a function parameter.

The accuracy predicate 𝑄𝐴 (produced by the precondition generator) is a conjunction of

terms of the form

𝑑𝑠𝑝𝑒𝑐 ≥
∑︁
𝑗

Δ(𝑣𝑗) ·
∏︁
𝑙

𝑑𝑗,𝑙 +
∑︁
𝑘

ℓ𝑘 ·
∏︁
𝑙

𝑑𝑘,𝑙 . (5.6)

118

The constant 𝑑𝑠𝑝𝑒𝑐 comes from the specification and the analysis computes coefficients

𝑑𝑗,𝑙 and 𝑑𝑘,𝑙. The first sum on the right side of the inequality represents how the error in

the parameters propagates to the output and the second sum represents the error caused

by the approximate execution of the arithmetic operators.

5.3.8 Optimization Constraint Construction

If the final precondition generated by the analysis is valid, then the program satisfies its

accuracy specification. The validity problem for a precondition leads to a natural method

for generating an optimization constraint that limits the set of possible kind configurations

of the program to only those that satisfy the program’s accuracy specification.

Predicate Validity. Similar to the procedure in Section 5.2.5, we demonstrate the

validity of each of the final precondition’s conjuncts,

𝜌𝑠𝑝𝑒𝑐 · ℛ*(𝑄𝑠𝑝𝑒𝑐) ≤ 𝑟(ℓ1, . . . , ℓ𝑛) · ℛ*(𝑄𝑝𝑜𝑠𝑡𝐴 (ℓ1, . . . , ℓ𝑛)),

by showing that 1) the reliability coefficient on the right side of the inequality is bounded

from below by that on the left side, specifically that 𝜌𝑠𝑝𝑒𝑐 ≤ 𝑟(ℓ1, . . . , ℓ𝑛), and 2) the

generalized joint reliability factor on the left side of the inequality is bounded above by that

on the right side, specifically that ℛ*(𝑄𝑠𝑝𝑒𝑐) ≤ ℛ*(𝑄𝐴)(ℓ1, . . . , ℓ𝑛).

Bounding the reliability coefficients (and generating appropriate optimization constraints)

is the same as in Section 5.2.5. To bound the generalized reliability factors, we generalize

the ordering property for joint reliability factors (Equation 5.2) as follows:

Proposition 1 (Generalized Reliability Factor Ordering).

If 𝑄𝐴1 ⇒ 𝑄𝐴2 then ℛ*(𝑄𝐴1) ≤ ℛ*(𝑄𝐴2).

This property follows from the fact that, if 𝑄𝐴1 implies 𝑄𝐴2, then the set of approxi-

mate program environments that satisfy the predicate 𝑄𝐴1 is a subset of the environments

that satisfy the predicate 𝑄𝐴2. Therefore, ℛ*(𝑄𝐴1), the probability of the environments

satisfying 𝑄𝐴1, must be less than or equal to ℛ*(𝑄𝐴2), the probability of the environ-

ments satisfying 𝑄𝐴2. Given this ordering property, the analysis can also use the same

simplification procedure from Section 5.2.4.

Constraint Construction. Given the generalized reliability factor ordering, Chisel’s goal

is to generate an optimization constraint that ensures that 𝑄𝑠𝑝𝑒𝑐 ⇒ 𝑄𝐴 (which therefore

119

ensures that the corresponding conjunct in the precondition is valid). Chisel constructs

this constraint via the observation that 𝑄𝑠𝑝𝑒𝑐 has the form
⋀︀
𝑗 𝑑𝑗 ≥ Δ(𝑣𝑗) (Section 5.3.7,

Equation 5.5). Therefore, it is sound to replace each occurrence of Δ(𝑣𝑗) in 𝑄𝐴 with the

corresponding 𝑑𝑗 , yielding a predicate of the form:

𝑑𝑠𝑝𝑒𝑐 ≥
∑︁
𝑗

𝑑𝑗 ·
∏︁
𝑙

𝑑𝑗,𝑙 +
∑︁
𝑘

ℓ𝑘 ·
∏︁
𝑙

𝑑𝑘,𝑙. (5.7)

The constraint generator takes this accuracy predicate and constructs the optimization

constraint. First, it rearranges terms and simplifies numerical constants (𝑑* =
∑︀

𝑗 𝑑𝑗 ·
∏︀
𝑙 𝑑𝑗,𝑙

and 𝑑*𝑘 =
∏︀
𝑙 𝑑𝑘,𝑙). Since 𝑑*𝑘 · ℓ𝑘 denotes the multiplication of the constant 𝑑*𝑘 and the kind

configuration 𝜃(ℓ𝑘), for each conjunct, the generator produces the constraint:

𝑑spec − 𝑑* ≥
∑︁
𝑘

𝑑*𝑘 · 𝜃(ℓ𝑘). (5.8)

Identifying Critical Operations. As it generates the optimization constraint, the con-

straint generator identifies all accuracy expressions in which the coefficient 𝑑*𝑘 has the value

∞ (Section 5.3.6). Such expressions indicate that small deviations in the result of an inter-

mediate operation or a variable value may cause a large deviation of the kernel’s output.

The constraint generator sets the corresponding kind configuration 𝜃(ℓ𝑘) to 0 (exact) and

removes all terms with such assigned configurations from the final accuracy constraints.

5.3.9 Soundness

Chisel’s extended reliability precondition generator is sound with respect to the paired exe-

cution semantics. This generator contains both reliability and accuracy predicates, related

through the generalized joint reliability factor ℛ*(𝑄𝑝𝑜𝑠𝑡𝐴). Below, we present the main steps

of the proof for the soundness of the generator.

Theorem 1 (Soundness). If postcondition 𝑃𝑝𝑜𝑠𝑡 is an extended reliability predicate and the

precondition 𝑃𝑝𝑟𝑒 = C *
𝜓,ℐ(𝑠, 𝑃𝑝𝑜𝑠𝑡), then for all inputs that belong to intervals in ℐ,

𝜓, 𝜃, 𝜒, 𝜐, ℐ |= {𝑃𝑝𝑟𝑒} 𝑠 {𝑃𝑝𝑜𝑠𝑡}

The theorem states that if the pair ⟨𝜀, 𝜙⟩ satisfies the precondition generated by the

analysis, then the paired execution of the statement 𝑠 produces the final pair ⟨𝜀′, 𝜙′⟩, which
satisfies the postcondition.

120

As a reminder, a paired execution starts from the pair ⟨𝜀, 𝜙⟩, where 𝜀 is the initial envi-

ronment of the exact execution and 𝜙 is a distribution of approximate environments. Every

environment 𝜀𝑎 such that 𝜙(𝜀𝑎) > 0 is the initial environment of the approximate execution.

The paired execution ends in the pair ⟨𝜀′, 𝜙′⟩, where 𝜀′ is the final environment of the exact

execution and 𝜙′ is the distributionn of the final approximate environments. Every 𝜀′𝑎 such

that 𝜙′(𝜀′𝑎) > 0 is the reachable final environment of an approximate execution.

Previously, Carbin showed that the Rely precondition generator, that contains ordinary

joint reliability factors of the form ℛ(𝑋) is sound [15]. The proof in this section shows the

soundness of the predicates with generalized joint reliability factors ℛ*(𝑄𝐴) containing an

accuracy predicate 𝑄𝐴. To present the reasoning about the extended reliability analysis,

we focus on the analysis of arithmetic instructions.

Lemma 2 (Soundness of Accuracy Expression). Let the registers 𝑟1 and 𝑟2 have the val-

ues in the ranges specified by the interval analysis ℐ and let AE𝜓,ℐ(𝑟 = addℓ 𝑟1 𝑟2) = Δ(𝑟1)+

Δ(𝑟2)+ℓ·maxerr(𝑟1, 𝑟2). Then, after executing the instruction, AE𝜓,ℐ(𝑟 = addℓ 𝑟1 𝑟2) ≥ Δ(𝑟).

Proof. After the execution of the instruction, for all 𝜀′𝑎 that satisfy input intervals, specifi-

cally, JΔ(𝑟1)K(𝜀′, 𝜀′𝑎, 𝜃, 𝜐) = |𝜋1(𝜀′)(𝑟1)− 𝜋1(𝜀
′
𝑎)(𝑟1)| and JΔ(𝑟2)K(𝜀′, 𝜀′𝑎, 𝜃, 𝜐) = |𝜋1(𝜀′)(𝑟2)−

𝜋1(𝜀
′
𝑎)(𝑟2)|. Likewise, JΔ(𝑟)K(𝜀′, 𝜀′𝑎, 𝜃, 𝜐) = |𝜋1(𝜀′)(𝑟)− 𝜋1(𝜀

′
𝑎)(𝑟)|. First, let us consider the

case when the operator addℓ is exact. Then,

|𝜋2(𝜀′)(𝑟)− 𝜋2(𝜀
′
𝑎)(𝑟)| = |𝜋1(𝜀′)(𝑟1) + 𝜋1(𝜀

′)(𝑟2)−
(︀
𝜋1(𝜀

′
𝑎)(𝑟1) + 𝜋1(𝜀

′
𝑎)(𝑟2)

)︀
|

≤ |𝜋1(𝜀′)(𝑟1)− 𝜋1(𝜀
′
𝑎)(𝑟1)|+ |𝜋1(𝜀′)(𝑟2)− 𝜋1(𝜀

′
𝑎)(𝑟2)|.

and, therefore, it follows that Δ(𝑟) ≤ Δ(𝑟1) + Δ(𝑟2).

We now consider the error induced by the approximate execution of the operator addℓ. In

this case, Δ(𝑟) ≤ Δ(𝑟1)+Δ(𝑟2)+𝑚, where the absolute error bound is 𝑚 = maxerr(𝑟1, 𝑟2).

The error of the inputs on the input intervals (that include possible noise coming from the

inputs 𝑟1 and 𝑟2) is bounded by 𝑚, whose construction we discussed in Section 5.3.5.

Finally, the analysis returns the term ℓ · 𝑚 to capture the error induced in both the

exact and approximate executions. If the instruction executes exactly (i.e., 𝜃(ℓ) = 0), then

Jℓ · 𝑚K = 0. Similarly, if the instruction executes approximately (i.e., 𝜃(ℓ) = 1), then

Jℓ ·𝑚K = 𝑚. The analysis for the other arithmetic operators proceeds similarly, using the

discussion from Section 5.3.6.

121

Lemma 3 (Soundness of Addition with Accuracy Predicates). If the analysis computes

the precondition 𝑄𝑝𝑟𝑒𝐴 = 𝑄𝑝𝑜𝑠𝑡𝐴 [AE𝜓,ℐ(𝑟 = add 𝑟1 𝑟2)/Δ(𝑟)] then

𝜓, 𝜃, 𝜒, 𝜐, ℐ |= {𝐴 ≤ 𝜌ℓadd · ℛ*(𝑄𝑝𝑟𝑒𝐴)}
𝑟 = add 𝑟1 𝑟2;

{𝐴 ≤ ℛ*(𝑄𝑝𝑜𝑠𝑡𝐴)}
To express the proof, we first define several auxiliary sets, using the same names as in [15]:

∙ Approximate input environments: For the starting environment 𝜀,

ins(𝜀) = {𝜀𝑎 | (𝜀, 𝜀𝑎, 𝜃, 𝜐) ∈ J𝑄𝑝𝑟𝑒𝐴 K}. Then, the reliability factor for the precondi-

tion is Jℛ*(𝑄𝑝𝑟𝑒𝐴)K(𝜀, 𝜙, 𝜃, 𝜐) =
∑︀

𝜀𝑎∈ins(𝜀)
𝜙(𝜀𝑎).

∙ Approximate output environments: For the instructions 𝑠 and environment

𝜀, outs(𝜀) = {𝜀′𝑎 | ⟨ 𝑠 , 𝜀⟩ =⇒
0𝛾 ,𝜓,0𝜉

(𝜀′, 𝜏, 1) ∧ (𝜀′, 𝜀′𝑎, 𝜃, 𝜐) ∈ J𝑄𝑝𝑜𝑠𝑡𝐴 K}. Then, the

postcondition’s reliability factor is Jℛ*(𝑄𝑝𝑜𝑠𝑡𝐴)K(𝜀′, 𝜙′, 𝜃, 𝜐) =
∑︀

𝜀′𝑎∈outs(𝜀)
𝜙(𝜀′𝑎).

∙ Fully reliable execution summaries: For the instructions 𝑠 and environment 𝜀,

ces(𝜀) = {(𝜀𝑎, 𝜀′𝑎) | (𝜀, 𝜀𝑎, 𝜃, 𝜐) ∈ J𝑄𝑝𝑟𝑒𝐴 K ∧ ⟨ 𝑠 , 𝜀𝑎⟩ =⇒
𝛾[𝜃],𝜓,𝜉[𝜃]

(𝜀′𝑎, 𝜏, 𝑝𝑎) ∧ correct(𝜏)},
contains the corresponding starting and final approximate environments, 𝜀𝑎 and 𝜀′𝑎,

respectively, for the approximate execution in which all operations executed correctly,

denoted with the predicate correct on the trace 𝜏 .

Proof of Lemma 3. We divide the proof in several steps:

Step 1 (Initial Reliability): From the definition of reliability factors:

J𝜌ℓadd · ℛ*(𝑄𝑝𝑟𝑒𝐴)K(𝜀, 𝜙, 𝜃, 𝜐) = 𝜌
𝜃(ℓ)
add ·

∑︁
𝜀𝑎∈ins(𝜀)

𝜙(𝜀𝑎)

We can represent the sum on the right-hand side with the elements from the set ces(𝜀). In

particular, the first projection of the set ces(𝜀) is the set of initial approximate environments

that correspond to 𝜀. Note that this set is equal to ins(𝜀).

Since add is a single instruction, then the probability 𝑝𝑎 of the transition (𝜀𝑎, 𝑝𝑎, 𝜀
′
𝑎) ∈

ces(𝜀) is equal to 1 if the instruction is exact (i.e., 𝜃(ℓ) = 0) or 𝜌add if the instruction is

approximate (i.e., 𝜃(ℓ) = 1). Moreover, from the definition of the paired execution, this

product is equal to 𝜙′(𝜀′𝑎). Therefore, we can represent the previous sum equivalently as:

𝜌
𝜃(ℓ)
add ·

∑︁
𝜀𝑎∈ins

𝜙(𝜀𝑎) =
∑︁

𝜖∈ces(𝜀)

𝜙(𝜋1(𝜖)) · 𝜌𝜃(ℓ)add =
∑︁

𝜀′𝑎∈𝜋2(ces(𝜀))

𝜙′(𝜀′𝑎)

122

Step 2 (Relation Between Reliability Factors): We relate the previous equality that fol-

lows from the precondition 𝑄𝑝𝑟𝑒𝐴 and the execution with the postcondition 𝑄𝑝𝑜𝑠𝑡𝐴 via the

inequality on the generalized joint reliability factors∑︁
𝜀′𝑎∈𝜋2(ces(𝜀))

𝜙′(𝜀′𝑎) ≤
∑︁

𝜀′𝑎∈outs(𝜀)

𝜙′(𝜀′𝑎) = Jℛ*(𝑄𝑝𝑜𝑠𝑡𝐴)K(𝜀′, 𝜙′, 𝜃, 𝜐) (5.9)

where, in the case of 𝑟 = add 𝑟1 𝑟2, the projection of ces is:

𝜋2(ces(𝜀)) = {𝜀′𝑎 | (𝜀, 𝜀𝑎, 𝜃, 𝜐) ∈ J𝑄𝑝𝑟𝑒𝐴 K ∧ ⟨𝑟 = add 𝑟1 𝑟2, 𝜀𝑎⟩ 𝐶,𝑝−→
𝛾[𝜃],𝜓,𝜉[𝜃]

⟨ · , 𝜀′𝑎⟩},

Since the set ces(𝜀) contains the executions in which the addition executes correctly, for

each starting approximate environment 𝜀𝑎 corresponding to 𝜀, the computation produces

a unique resulting environment 𝜀′𝑎.

The only part of the environment that is modified by this execution is the value of the

register 𝑟 (and the values of the registers 𝑟1, 𝑟2 and the rest of the program state remains

the same). However, the predicate 𝑄𝑝𝑟𝑒𝐴 does not reference the register 𝑟 (because of the

substitution AE𝜓,ℐ(𝑟 = add 𝑟1 𝑟2)/Δ(𝑟) and because the translation in Section 5.1.2 does

not alias 𝑟 with 𝑟1 or 𝑟2). Therefore 𝑄
𝑝𝑟𝑒
𝐴 is also valid after the execution of the instruction.

Based on this discussion, we have an equality:

𝜋2(ces(𝜀)) = {𝜀′𝑎 | ⟨𝑟 = add 𝑟1 𝑟2, 𝜀⟩ 𝐶,1−→
0𝛾 ,𝜓,0𝜉

⟨ · , 𝜀′⟩ ∧

⟨𝑟 = add 𝑟1 𝑟2, 𝜀𝑎⟩ 𝐶,𝑝−→
𝛾[𝜃],𝜓,𝜉[𝜃]

⟨ · , 𝜀′𝑎⟩ ∧ (𝜀′, 𝜀′𝑎, 𝜃, 𝜐) ∈ J𝑄𝑝𝑟𝑒𝐴 K}.

For the add instruction, the set outs is equal to

outs(𝜀) = {𝜀′𝑎 | ⟨𝑟 = add 𝑟1 𝑟2, 𝜀⟩ 𝐶,1−→
0𝛾 ,𝜓,0𝜉

⟨ · , 𝜀′⟩ ∧ (𝜀′, 𝜀′𝑎, 𝜃, 𝜐) ∈ J𝑄𝑝𝑜𝑠𝑡𝐴 K}.

To show that Inequality 5.9 holds, it is therefore sufficient to show that 𝜋2(ces(𝜀)) ⊆ outs(𝜀).

By comparing the two sets, this condition is satisfied if J𝑄𝑝𝑟𝑒𝐴 K ⊆ J𝑄𝑝𝑜𝑠𝑡𝐴 K, or in the different

notation, 𝑄𝑝𝑟𝑒𝐴 ⇒ 𝑄𝑝𝑜𝑠𝑡𝐴 .

Step 3 (Compare Accuracy Precondition and Postcondition): To demonstrate this set

inclusion, recall that from Proposition 2 we know that Δ(𝑟) ≤ AE𝜓,ℐ(𝑟 = add 𝑟1 𝑟2) =

Δ(𝑟1) + Δ(𝑟2) + ℓ · 𝑚 for the arithmetic instruction with reduced precision (𝑚 is the

maximum error from Section 5.3.6). Recall that 𝑄𝑝𝑟𝑒𝐴 and 𝑄𝑝𝑜𝑠𝑡𝐴 have the form

𝑄𝑝𝑟𝑒𝐴 = 𝑑 ≥ 𝑑𝑥 ·Δ(𝑟1) + Δ(𝑟2) + ℓ ·𝑚+𝑅′ and

𝑄𝑝𝑜𝑠𝑡𝐴 = 𝑑 ≥ 𝑑𝑥 ·Δ(𝑟) +𝑅′,

123

where 𝑅′ is the remaining reliability factor term that does not reference the register 𝑟.

Therefore, we can conclude that every time Δ(𝑟1) + Δ(𝑟2) + ℓ ·𝑚 ≥ Δ(𝑟), and since 𝑑𝑥

and 𝑅′ are the same in both predicates, if 𝑄𝑝𝑟𝑒𝐴 is valid, so is 𝑄𝑝𝑜𝑠𝑡𝐴 (i.e., 𝑄𝑝𝑟𝑒𝐴 ⇒ 𝑄𝑝𝑜𝑠𝑡𝐴).

Note that the opposite does not need to be true, i.e., if 𝑄𝑝𝑜𝑠𝑡𝐴 satisfied, i.e. the function

of Δ(𝑟) respects the bound, it is possible that 𝑄𝑝𝑟𝑒𝐴 is not satisfied, i.e. the function of

Δ(𝑟1) + Δ(𝑟2) + ℓ ·𝑚 is greater than the maximum value that satisfies the predicate.

Below, we outline the steps for proving the soundness of the remaining statements in the

intermediate language:

Other Arithmetic and Memory Instructions. We can use the same reasoning to

prove the rule for the remaining arithmetic operations. The main difference in the proof is

in Step 3, where for each operation we can use the discussion in Section 5.3.6. Likewise, we

can apply this reasoning to the operations that move data between registers and memory.

Sequence of Instructions. To show that {C *
𝜓,ℐ(𝑠1,C

*
𝜓,ℐ(𝑠2, 𝑄))} s1; s2 {𝑄}, we start

from an inductive hypothesis that, for arbitrary postconditions 𝑄′ and 𝑄′′, the triples

{C *
𝜓,ℐ(𝑠1, 𝑄

′))} s1 {𝑄′} and {C *
𝜓,ℐ(𝑠2, 𝑄)} s2 {𝑄′′} are valid. Then, the statement follows

from the fact that the precondition of the second statement and the postcondition of the

first statement refer to the same program point, i.e., 𝑄′ := C *
𝜓,ℐ(𝑠2, 𝑄).

Conditionals. To show that {C *
𝜓,ℐ(𝑠1, 𝑄

*) ∧ C *
𝜓,ℐ(𝑠2, 𝑄

)} if 𝑟𝑐 𝑠1 𝑠2 {𝐴 ≤ ℛ(𝑄𝐴)},
where 𝑄* := 𝐴 ≤ ℛ*(𝑄𝐴 ∧ 0 ≥ Δ(𝑟𝑐)), we note that 1) the reliability of the operands

updated inside the conditional depends on the probability that the execution takes the same

path and 2) the interval analysis rests on the fact that the approximation does not change

the control flow of the computation. The accuracy predicate 0 ≥ Δ(𝑟𝑐) ensures that the

approximation does not change the control-flow in the conditional. Because of the additional

accuracy predicate, 𝑄* ⇒ 𝑄, and therefore, the generated precondition is also valid for the

original postcondition 𝑄. Since the register 𝑟𝑐 is not assigned to within the branches, the

analysis of the branches does not change the predicate. From the inductive hypothesis, the

analysis of each branch generates a sound precondition, and their conjunction (given the

postcondition 𝑄*) ensures that the precondition for the conditional statement satisfies the

precondition of the branches.

124

5.4 Energy Objective Construction

The objective of the optimization is to minimize the energy consumption of the unreli-

able computation, as a function of the configuration 𝜃. To approximate this optimization

objective, we consider a set of traces of the original program. We now define a set of func-

tions that operate on these traces and give an estimate of the energy consumption of the

unreliable program executions.

The approximate hardware model presents relative savings of operations and memories

(e.g., approximate instruction has saves 20% of the energy of the exact operation), instead

of unknown absolute savings (e.g., approximate instruction consumes 8 pJ instead of 10

pJ). Therefore, this section presents how to express the system energy consumption as a

function of the relative operation and memory savings. We show how the analysis computes

the expression for the relative energy consumption, which we denote as R𝜓(𝜃).

5.4.1 Absolute Energy Model

Energy Model Specification. We extend the hardware specification from Section 4.2.1

with the relative energy savings for each approximate arithmetic operation (for simplicity we

use 𝛼𝑖𝑛𝑡 for all integer and 𝛼fp for all floating point instructions) and approximate memory

and cache regions (𝛼𝑚𝑒𝑚 and 𝛼𝑐𝑎𝑐ℎ𝑒). The specification also contains the relative energy

consumption of the system’s components (𝜇CPU, 𝜇ALU, and 𝜇cache) and relative instruction

class energy rates (𝑤fp and 𝑤oi).

Energy of System. We model the energy consumed by the system (𝐸sys) when executing

a program under configuration 𝜃 with the combined energy used by the CPU and memory:

𝐸sys(𝜃) = 𝐸CPU(𝜃) + 𝐸mem(𝜃).

Energy of CPU. We model the energy consumption of the CPU as the combined energy

consumed by the ALU, cache, and the other on-chip components:

𝐸CPU(𝜃) = 𝐸ALU(𝜃) + 𝐸cache(𝜃) + 𝐸other.

Energy of ALU. Each instruction in the hardware specification may have a different

energy consumption associated with it. However, for the purposes of our model, we let ℰint,
ℰfp, ℰ𝑜𝑖 be the average energy consumption (over a set of traces) of an ALU instruction, a

FPU instruction, and other non-arithmetic instructions, respectively.

125

Using the instructions from the traces that represent kernel execution on representative

inputs, we derive the following sets: IntInst is the set of labels of integer arithmetic in-

structions and FPInst is the set of labels of floating-point arithmetic instructions. For each

instruction with a label ℓ, we also let 𝑛ℓ denote the number of times the instruction exe-

cutes for the set of inputs. Finally, let 𝛼int and 𝛼fp be the average savings (i.e., percentage

reduction in energy consumption) from executing integer and floating-point instructions

approximately, respectively. Then, the ALU’s energy consumption is:

𝐸int(𝜃) =
∑︁

ℓ∈IntInst
𝑛ℓ · (1− 𝜃(ℓ) · 𝛼int) · ℰint

𝐸fp(𝜃) =
∑︁

ℓ∈FPInst
𝑛ℓ · (1− 𝜃(ℓ) · 𝛼fp) · ℰfp

𝐸ALU(𝜃) = 𝐸int(𝜃) + 𝐸fp(𝜃) + 𝑛𝑜𝑖 · ℰ𝑜𝑖.

This model assumes that the instruction count in the approximate execution is approxi-

mately equal to the instruction count in the exact execution.

Memory Energy. Wemodel the energy consumption of the system memory (i.e., DRAM)

using an estimate of the average energy per second per byte of memory, ℰmem. Given the

execution time of all kernel invocations, 𝑡, the savings associated with allocating data in

approximate memory, 𝛼mem, the size of allocated arrays, 𝑆ℓ, and the configurations of array

variables in the exact and approximate memories, 𝜃(ℓ), we model the energy consumption

of the memory as follows:

𝐸mem(𝜃) = 𝑡 · ℰmem ·
∑︁

ℓ∈ArrParams

𝑆ℓ · (1− 𝜃(ℓ) · 𝛼mem).

Cache Memory Energy. We model the energy consumption of cache cell, ℰcache, simi-

larly. Let 𝑆𝑐 be the size of the cache, 𝛼cache the savings of approximate caches. In addition,

we need to specify the strategy for determining the size of approximate caches. We analyze

the strategy that scales the size of approximate caches proportional to the percentage of

the size of the arrays allocated in the approximate main memory. If 𝑐𝑢 is the maximum

fraction of the approximate cache lines, the energy consumption of the cache is

𝐸cache(𝜃) = 𝑡 · ℰcache · 𝑆𝑐 · (1− 𝑐𝑢 ·
∑︀

ℓ 𝑆ℓ𝜃(ℓ)∑︀
ℓ 𝑆ℓ

· 𝛼cache).

126

5.4.2 Relative Energy Model

While the energy model equations from Section 5.4.1 capture basic properties of energy

consumption, the models rely on several hardware design specific parameters, such as the

average energy of instructions.

However, we can use these equations to derive a numerical optimization problem that

instead uses cross-design parameters (such as the relative energy between instruction classes

and the average savings for each instruction) to optimize the energy consumption of the

program relative to an exact configuration of the program, 0𝜃 (Section 4.2.4). For each

energy consumption modeling function in the previous section we introduce a corresponding

function that implicitly takes 0𝜃 as its parameter. For example, for the energy consumption

of the system, we let 𝐸sys ≡ 𝐸sys(0𝜃).

System Relative Energy. The energy model contains a parameter that specifies the rel-

ative portion of energy consumed by the CPU versus memory, 𝜇CPU. Using this parameter,

we derive the relative system energy consumption as follows:

R𝜓(𝜃) =
𝐸sys(𝜃)

𝐸sys
=
𝐸CPU(𝜃) + 𝐸𝑚𝑒𝑚(𝜃)

𝐸CPU + 𝐸𝑚𝑒𝑚
=

=
𝐸CPU

𝐸CPU
· 𝐸CPU(𝜃)

𝐸CPU + 𝐸𝑚𝑒𝑚
+
𝐸𝑚𝑒𝑚
𝐸𝑚𝑒𝑚

· 𝐸𝑚𝑒𝑚(𝜃)

𝐸CPU + 𝐸𝑚𝑒𝑚
=

=
𝐸CPU

𝐸CPU + 𝐸𝑚𝑒𝑚
· 𝐸CPU(𝜃)

𝐸CPU
+
𝐸𝑚𝑒𝑚
𝐸𝑚𝑒𝑚

· 𝐸𝑚𝑒𝑚
𝐸CPU + 𝐸𝑚𝑒𝑚

=

= 𝜇CPU · 𝐸CPU(𝜃)

𝐸CPU
+ (1− 𝜇CPU) ·

𝐸mem(𝜃)

𝐸mem
.

CPU Relative Energy. The energy model contains a parameter that specifies the rel-

ative portion of energy consumed by the ALU, 𝜇ALU, cache, 𝜇cache, and other components

𝜇𝑜𝑡ℎ𝑒𝑟 = 1− 𝜇ALU − 𝜇cache. We can then derive the relative CPU energy consumption sim-

ilarly to that for the whole system:

𝐸𝐶𝑃𝑈 (𝜃)

𝐸𝐶𝑃𝑈
= 𝜇ALU · 𝐸ALU(𝜃)

𝐸ALU
+ 𝜇cache ·

𝐸cache(𝜃)

𝐸cache
+ 𝜇𝑜𝑡ℎ𝑒𝑟.

127

ALU Relative Energy. We apply similar reasoning to derive the relative energy con-

sumption of the ALU:

𝐸ALU(𝜃)

𝐸ALU
= 𝜇int ·

𝐸int(𝜃)

𝐸int
+ 𝜇fp ·

𝐸fp(𝜃)

𝐸fp
+ 𝜇oi.

The coefficients 𝜇int, 𝜇fp, and 𝜇oi are computed from the execution counts of each in-

struction class (𝑛int, 𝑛fp, and 𝑛oi) and the relative energy consumption rates of each class

with respect to that of integer instructions (𝑤fp and 𝑤oi). For example, if we let 𝑤fp be

the ratio of energy consumption between floating point instructions and integer instructions

(i.e, 𝑤fp =
ℰfp
ℰint), then 𝜇fp =

𝑤fp·𝑛fp

𝑛int+𝑤fp·𝑛fp+𝑤oi·𝑛𝑜𝑖 .

Memory And Cache Relative Energy. Applying similar reasoning to the memory

subsystem yields the following:

𝐸mem(𝜃)

𝐸mem
=

1

𝐻
· 𝑡

′

𝑡
·

∑︁
ℓ∈ArrParams

𝑆ℓ · (1− 𝜃(ℓ) · 𝛼mem)

𝐸cache(𝜃)

𝐸cache
=

1

𝐻
· 𝑡

′

𝑡
·

∑︁
ℓ∈ArrParams

𝑆ℓ · (1− 𝑐𝑢 · 𝜃(ℓ) · 𝛼cache) ,

where 𝐻 =
∑︀

ℓ 𝑆ℓ is the total size of heap data. The execution time ratio 𝑡′/𝑡 denotes

possibly different execution time of the approximate program. One can use the results of

reliability profiling to estimate this ratio.

Relative Energy for Multiple Inputs. The relative energy consumption for multiple

inputs are the average of the relative energy consumption 𝐸sys(𝜃)/𝐸sys for each input.

Since this quantity is a sum of relative energy consumption of the components (CPU, ALU

operations, and memories), the analysis computes and assigns these average relative energy

consumption to each operation and variable label.

128

5.5 Final Optimization Problem Statement

We now state the optimization problem for a kernel computation:

Minimize: R𝜓(𝜃)

Constraints: log(𝜌𝑠𝑝𝑒𝑐,𝑖)− log(𝜌𝑖) ≤
∑︀
𝑘

𝜃(ℓ𝑘𝑖) · log(𝜌𝑘𝑖)

𝑑𝑠𝑝𝑒𝑐,𝑖 − 𝑑*𝑖 ≥
∑︀
𝑘

𝑑𝑘𝑖 · 𝜃(ℓ𝑘𝑖) ∀𝑖

Variables: 𝜃(ℓ1), . . . , 𝜃(ℓ𝑛) ∈ {0, 1}

The decision variables 𝜃(ℓ1), . . . , 𝜃(ℓ𝑛) are the configuration kinds of arithmetic instruc-

tions and array variables. Since they are integers, the optimization problem belongs to the

class of integer linear programs. The index 𝑖 iterates over all constraints generated by the

reliability and accuracy analyses. The index 𝑘 iterates over the sequences of the candidate

approximate instructions in the constraints.

Complexity. The number of constraints for a single program path is linearly proportional

to the number of kernel outputs (the return value and the array parameters). The num-

ber of paths that Chisel’s precondition generator produces is in the worst case exponential

in the number of control flow divergence points. However, in practice, one can use the

simplification procedure from [19, Section 5.4], which can identify most of the path predi-

cates as redundant and remove them during the analysis. Out of the remaining predicates,

Chisel can immediately solve those that involve only numerical parameters and pass only

the optimization constraints with kind configurations to the optimization solver.

The number of decision variables is proportional to the number of instructions and array

parameters in a kernel. In general, integer linear programming is NP complete with respect

to the number of decision variables. However, existing solvers can successfully and efficiently

solve many classes of integer linear programs with hundreds of variables.

We describe two techniques that can reduce the size of the generated optimization prob-

lem. First, the precondition generator can create constraints at coarser granularities. For

example, a single decision variable may represent program statements, basic blocks, or loop

bodies. (Section 6.9.1). Second, Chisel can separately optimize the invoked functions that

implement hierarchically structured kernels (Section 6.9.2).

129

5.6 Discussion

This chapter presented the analysis of reliability, accuracy, and energy savings of the ap-

proximate kernel computations. This section discusses computational patterns with approx-

imate kernels that are amenable to Chisel’s optimization and challenges when extending the

analysis from kernel computations to full programs.

5.6.1 Computational Patterns with Approximate Kernels

We anticipate that Chisel’s optimization is particularly useful for the applications that

naturally expose approximate kernels. Examples of such application domains include ma-

chine learning, multimedia, information retrieval, scientific, and financial analysis applica-

tions [19, 25, 27, 113]. Our previous work [19] and applications that we evaluate in Chapter 6

represent typical examples of computations that expose approximate kernels. These com-

putations fall in two general patterns – approximate computations that naturally tolerate

errors and checkable computations that check for and correct errors.

Approximate Computations. An approximate computation can often acceptably tol-

erate occasional errors in its execution or the data that it operates on. These computations

are often implemented as loops that iterate over data. Chisel is well-suited for optimizing

approximate kernels that can represent a body of such a loop.

Computational patterns that calculate order statistics, such as minimums/maximums

or medians of elements computed by an approximate kernel often tolerate occasional un-

bounded errors. In case of error, these approximate computations may not produce an

exact result, but will typically return one of the similar, but slightly less desirable results.

Example of such a computation can be Argmin pattern from Section 2.4.2. Our previous

work [19] shows that approximating motion estimation computation in x264 (that produces

an exact minimum block with probability at least 0.98), results in small overall errors (less

than 1% quality loss of the final video).

Computational patterns that calculate an average or a sum of elements computed by

an approximate kernel often tolerate small bounded errors, even if the errors occur most

of the time. While the errors of the individual elements often cancel out, even if the

errors introduce a systematic bias in the computation’s result, the approximate computation

still preserves the result’s central tendency. However, an occasional unbounded error can

significantly affect the result of such computation. In such cases, a developer may augment

the kernel with a sanity checker (which we describe below) to ensure that the result is

within the expected range.

130

Computational patterns that represent a map computation, i.e., loops that independently

run an approximate kernel for each input can often tolerate both the occasional unbounded

or bounded error. For instance, a single execution of an approximate kernel in the scale

example (Section 4.1) computes a single pixel value. A human eye can often tolerate such

inaccuracies. If the unbounded error is unacceptable, a developer may provide sanity checks.

Computational patterns that represent an iterative computation, i.e., loops whose each

iteration refines the result computed by an approximate kernel until the loop exit criterion is

met, can often tolerate errors at the expense of a greater number of iterations or producing a

less accurate output [71]. A developer can derive the kernel’s specification from the estimate

of how many more iterations will typically the approximate iterative computation execute.

Checkable Computations. A developer can augment an approximate computation with

an efficient sanity checker that dynamically validates the correctness of the computations

result. If a checker detects an error, then it reexecutes the approximate kernel. While sanity

checkers are kernel-specific, we can classify them as full and partial correctness checkers.

A full correctness checker detects whether the result of an approximate kernel is correct.

Examples of such checks can be in numerical computations (e.g., Newton’s method example

from [19]) or computations that solve NP-hard problems (e.g., solving SAT problem for a

logical formula is computationally hard, but checking whether some assignment of logical

variables is correct is computationally much simpler).

A partial correctness checker detects whether the result of an approximate kernel satisfies

some important integrity property of the computation. For instance, a distance metric

should not return a negative value, or an index of a most desirable element in an array

must point within the array’s bounds. In addition to manually implemented checkers,

researchers have recently studied design of automatic outlier detectors [2] that can learn

the typical output ranges and identify if a computation produces a likely incorrect result.

5.6.2 Limitations of Chisel’s Optimization

While analysis-based accuracy-aware optimization can, in principle, optimize full programs,

we anticipate that such analysis will often produce unacceptably low reliability and accuracy

expressions. Below we discuss limitations and sources of imprecision of the analyses.

Monotonicity of Reliability/Accuracy Analysis. The expressions that the reliability

and accuracy analyses generate are monotonic in a sense that each additional analyzed

operation decreases the reliability of the computation and increases the absolute error,

respectively. Therefore, applying this reasoning for long chains of instructions (such as a

full program) will likely result in unacceptable reliability.

131

To alleviate this problem, a developer can use approximate kernels as parts of specific

computational patterns, such as those that we described in Section 5.6.1. By using prop-

erties of such patterns, a developer may find accuracy specifications for kernels that sat-

isfy a program-level sensitivity metric (e.g., using the analytic approach presented in Sec-

tion 4.1.2). In addition, a developer may identify and optimize multiple kernels in a program.

We discuss optimizing multiple kernels in Section 6.9.8.

Imprecision of Analyses. While the reliability and accuracy analyses produce sound

error frequency and magnitude bounds, they can suffer from imprecision that cause the

analysis to produce a more conservative reliability/accuracy expressions and thus miss some

optimization opportunities.

Reliability analysis computes a probability that all instructions in a sequence execute

correctly. It is imprecise in the sense that it does not account for the probability that the

computation can return to the exact execution after experiencing multiple faults. However,

this design choice makes the analysis computationally tractable (specifically computing

a lower bound on ℛ(𝑂)). In addition, reliability predicate generated by this analysis is

sound for a relaxed fault model in which, after the first failed instruction, the subsequent

instructions can experience correlated errors (e.g., with higher failure probability).

Accuracy analysis computes a magnitude of absolute error of approximate arithmetic

operations. It has three main sources of imprecision. First, the underlying interval analysis

computes imprecise intervals in the presence of control flow. Second, the error propagation

analysis computes the sensitivity coefficients assuming that all of the kernel’s operations are

approximate. Third, the error magnitude bounds depend on the input intervals specified

by a developer. To make the analysis more precise, a developer may run Chisel on several

input intervals to produce multiple kernel implementations specialized for these intervals.

Both reliability and accuracy analyses are imprecise when analyzing arrays. Specifically,

the analysis of arrays abstracts away accesses to different indices. The analyses treat all

updates to an array as an update to a single shared element.

Energy analysis computes an expression that characterizes relative energy savings. It

has two main sources of imprecision. First, it operates on a set of specific inputs (which

affects the collected execution traces, number of executed iterations of bounded loops, and

the size of the arrays) and can therefore overfit to those inputs. Second, it assumes that

control flow deviations have a small impact on the kernel’s execution time and ignores such

time/energy savings differences caused by divergent control flow (we discuss in Section 6.9.5

how to penalize instructions that can impact control flow).

132

5.6.3 From Kernel Optimization to Full Program Optimization

While Chisel’s optimization algorithm provides rigorous optimization of approximate ker-

nels, many times these kernels are parts of larger, more complex programs, for which the

full program analysis is too imprecise or intractable. In such cases,

When approximate kernels are parts of larger, more complex programs, for which the

full program analysis is too imprecise, a developer can use sensitivity profiling to 1) help

identify kernel computations and 2) derive the kernel-level accuracy specifications that likely

satisfy the application-level sensitivity metric. Therefore, Chisel enables the developer to

expose approximate kernels, and separate them from the remaining outer (“connective”)

code, which transfers data between kernel executions, makes decisions based on approximate

kernel’s results, or performs some auxiliary computation.

Chisel’s core algorithm optimizes time- and energy-consuming kernels for which a de-

veloper provides a formal specification of the input intervals and output accuracy. Chisel

uses static analysis to compute reliability and accuracy constraints in the underlying in-

teger linear program. With this approach, Chisel can find the versions of the kernel that

maximize savings, while satisfying the developer’s accuracy specification. This optimization

with exposed kernels resembles the scenario we described in Figure 1.1b.

Since approximate kernels have a specific function within the program, from the perspec-

tive of the outer code, the kernel specifications quantify accuracy loss, which indicates how

a kernel’s result may affect the outer computation. For example, Section 5.6.1 discusses

how a developer can reason about several larger computational patterns that interact with

approximate kernels. Therefore, exposing the kernel and its explicit specification allows the

developer of the outer code to reason about approximation at the level of the kernel, rather

than at the level of its individual instructions. This separation with a defined specification

can help both during development and debugging of programs.

From the perspective of the kernel computation, the specification abstracts away the

complexity of the outer computation and allows Chisel optimization system to focus full

optimization effort on the kernel computation, while providing rigorous guarantees for the

kernel’s accuracy specification. Chisel’s automatic and rigorous optimization provides a

developer with the flexibility to seamlessly change the specification of the kernel computa-

tions if the application’s requirements change, port the computation to another approximate

hardware device with a different hardware specification, or dynamically adapt a program

execution to run an alternative approximate versions to adjust to the fluctuations in the

program’s operational environment.

133

6 Evaluation and Extensions of Chisel

Optimization Algorithm

We evaluate Chisel on several applications over a parameterized space of approximate hard-

ware designs. Our evaluation consists of the following parts:

Sensitivity Profiling. We present how sensitivity profiling can help developers effectively

identify an appropriate reliability specification for an application.

Optimization Problem Size. We present statistics that characterize the size of Chisel’s

optimization problem.

Energy Savings. We present the percentage of potential energy savings that Chisel found

in the approximate kernels.

Output Quality. We present the resulting end-to-end sensitivity metric for the execution

of the synthesized approximate benchmarks on a set of test inputs.

6.1 Chisel Implementation

We have implemented Chisel using OCaml. To generate the optimization problem, Chisel’s

optimizer implements the reliability analysis (Section 5.2), the accuracy analysis (Sec-

tion 5.3) and the energy analysis (Section 5.4). To solve the optimization problem, we

use Gurobi mixed integer programming solver [48]. Finally, the transformation pass uses

the optimization problem solution to generate a source code of the kernel with Rely anno-

tations for approximate instructions and memory annotations.

The framework also contains several helper passes. The C-translation pass produces a

(fully reliable) C program that allows executing the kernel written in the Rely language.

A sensitivity profiler transforms the kernel to generate the computation that will generate

the correct result only with a specified probability. It uses the C-translation pass to generate

134

Approximation
Mild Medium Aggressive

Failure Rate Savings Failure Rate Savings Failure Rate Savings

Arithmetic Operation
10−6 12% 10−4 22% 10−2 30%

Timing Errors

Cache Read Upset 10−16.7

70%
10−7.4

80%
10−3

90%
Cache Write Upset 10−5.59 10−4.94 10−3

DRAM refresh error 10−9 17% 10−5 22% 10−3 24%

Table 6.1: Approximate Hardware Configurations and Operation Failure Rates from [105]

the exact implementation of the kernel. It also implements a search algorithm to find the

reliability specification for the function that corresponds to the developer’s accuracy target.

A trace profiler generates an instrumented C program from the kernel. The instrumenta-

tion collects traces as sequences of assembly instructions from Section 4.2. These frequencies

are used to compute the frequencies of instructions (𝑛𝑖𝑛𝑡, 𝑛𝑓𝑝, and 𝑛𝑜𝑖) in the energy objec-

tive.

The framework also contains a fault injection pass that simulates the execution of the

computation on approximate hardware. This pass injects random errors at the locations of

the approximate arithmetic instructions and memory instructions operating on approximate

data (given the specification of approximate hardware). It collects execution statistics of

the approximate computation with errors (including the quality of the output and the

frequencies of approximate instructions executed the traces used to estimate savings).

6.2 Hardware Reliability and Energy Specifications

We use the reliability and energy specifications for approximate hardware initially presented

in [105, Table 2] to instantiate our approximate hardware specification, 𝜓. We reproduce

this data in Table 6.1. It defines three configurations, denoted as mild, medium and ag-

gressive, for arithmetic instructions, caches, and main memories respectively. We consider

only the unreliable arithmetic operations (that produce the correct results with specified

probability) and unreliable memories.

System Parameters. To compute the overall system savings (Section 5.4.2), we use the

server configuration parameters specified in [105, Section 5.4]: CPU consumes 𝜇𝐶𝑃𝑈 = 55%

of energy and the main memory consumes the remaining 45%; the ALU consumes 𝜇𝐴𝐿𝑈 =

65% of CPU’s energy and the cache consumes the remaining 𝜇𝑐𝑎𝑐ℎ𝑒 = 35% energy.

135

The sizes of the reliable and approximate regions of the main memory are determined

before the execution of the kernel computations and remain fixed until all kernel computa-

tions finish. We assume that the capacity of the approximate region of the cache (that can

store approximate heap data) is twice that of the reliable cache that contains instructions

and reliable data, and therefore 𝑐𝑢 = 67%.

Error Model. The error injection pass and its runtime insert faults in the synthesized

computation with the frequency specified by the hardware specification. For integer and

floating point ALU operations, the error model returns a fully random result (as in [105]).

For read and write memory errors, the error model flips from one (with highest probability)

up to three bits (with lowest probability) in the word.

6.3 Benchmarks

We implemented a set of benchmarks from several application domains. The benchmarks

were selected because they tolerate some amount of error in the output:

∙ Scale. Scales an image by a factor provided by the user. The kernel computes the

output pixel value by interpolating over neighboring source image pixels.

∙ Discrete Cosine Transform (DCT). A compression algorithm used in various lossy

image and audio compression methods. The kernel computes a frequency-domain

coefficient of an 8x8 image block.

∙ Inverse Discrete Cosine Transform (IDCT). Reconstructs an image from the co-

efficients generated by DCT. The kernel reconstructs a single pixel from the frequency

domain grid.

∙ Black-Scholes. Computes the price of a portfolio of European Put and Call options

using the analytical Black-Scholes formula. The kernel calculates the price of a sin-

gle option. Our implementation is derived from the benchmark from the PARSEC

benchmark suite [118].

∙ Successive Over-relaxation (SOR). The Jacobi SOR computation is a part of var-

ious partial differential equation solvers. The kernel averages the neighboring matrix

cells computed in the previous iteration. It is derived from the benchmark from the

SciMark 2 suite [119].

136

Benchmark Size Kernel Time Array Parameter Representative

(LoC) (LoC) in Kernel % Count / Heap % Inputs (Profile/Test)

scale 218 88 93.43% 2 / 99% 13 (5/8)

dct 532 62 99.20% 2 / 98% 13 (5/8)

idct 532 93 98.86% 2 / 98% 9 (3/6)

blackscholes 494 143 65.11% 6 / 84.4% 24 (8/16)

sor 173 23 82.30% 1 / 99% 20 (6/14)

Table 6.2: Benchmark Description
Benchmark Sanity Test Sensitivity Metric

scale × Peak Signal-to-Noise Ratio

dct × Peak Signal-to-Noise Ratio

idct × Peak Signal-to-Noise Ratio

blackscholes X Relative Portfolio Difference

sor X Average Relative Difference

Table 6.3: Description of Benchmark’s Accuracy Metric

Table 6.2 presents an overview of the benchmark computations. For each computation,

Column 2 (“Size”) presents the number of lines of code of the benchmark computation. Col-

umn 3 (“Kernel”) presents the number of lines of kernel computation that is a candidate

for optimization. Column 4 (“Time in Kernel %”) presents the percentage of instruc-

tions that the execution spends in the kernel computation. Column 5 (“Array Parameter

Count/Heap %”) presents the number of array arguments and the percentage of heap allo-

cated space that these variables occupy. Column 6 (“Representative Inputs”) presents the

number of representative inputs collected for each computation.

Table 6.3 presents the application’s accuracy requirement. Column 2 (“Sanity Test”)

presents whether the computation contains a sanity test that ensures the integrity of its

result. Column 3 (“Sensitivity Metric”) presents the sensitivity metric of the computation.

Representative Inputs. For each benchmark, we have selected several representative

inputs. The analysis uses a subset of these inputs (designated as “Profile”) to obtain the

estimates of the instruction mixes and construct the objective function of the optimization

problem. We use the remaining inputs (designated as “Test”) to evaluate the synthesized

approximate computation.

Sensitivity Metrics. For the three image processing benchmarks (Scale, DCT, and

IDCT) we use peak signal to noise ratio between images produced by the original and the

137

Benchmark Reliability Sensitivity metric

Bound Average Conservative

scale 0.995 30.93 ± 0.95 dB 23.01 dB

dct 0.99992 27.74 ± 1.32 dB 22.91 dB

idct 0.992 27.44 ± 0.49 dB 20.96 dB

blackscholes 0.999 0.005 ± 0.0005 0.05

sor 0.995 0.058 ± 0.034 ≥ 1.0

Table 6.4: Software Specification PSNR and Sensitivity Profiling

synthesized versions of the benchmark. Specifically for DCT, the sensitivity metric converts

the image from the frequency domain and computes the PSNR on the resulting image.

For Blackscholes, we have used the relative difference between the sum of the absolute

errors between the option prices and the absolute value of the price of the portfolio (the

sum of all option values returned by the fully accurate program). For SOR, the sensitivity

metric is the average relative difference between the elements of the output matrix.

Sanity Tests. Two of the benchmark computations have built-in sanity test compu-

tations that ensure that the intermediate or final results of the computation fall within

specific intervals. These computations typically execute for only a small fraction of the

total execution time. The Blackscholes sanity test uses a no-arbitrage bound [12] on the

price of each option to filter out executions that produce option prices that violate basic

properties of the Black-Scholes model. The SOR benchmark checks whether the computed

average is between the minimum and maximum array value.

If the sanity test computation fails, the approximate computation may skip updating

the result (as in SOR), or reexecute the computation (as in Blackscholes). In the case of

reexecution, the overall savings are scaled by the additional execution time of the kernel

computation.

6.4 Sensitivity Profiling Results

To find reliability specifications for the benchmark applications, the sensitivity profiler

relates the reliability degradation of a kernel computation with the benchmark’s end-to-end

sensitivity metric.

Methodology. For each profiling input, we perform 100 fault injection experiments. As

in Section 4.1.2, we use the sensitivity profiler to compute the average sensitivity metric

value (over the space of possible injected faults) for multiple reliability bounds using a

138

Benchmark Optimization Reliability

Variables Constraints

scale 147 4

dct 121 1

idct 104 1

blackscholes 77 2

sor 36 1

Table 6.5: Optimization Problem Statistics

developer-provided sensitivity testing procedure. For each benchmark, we select one re-

liability bound that yields an acceptable sensitivity metric. We also analytically derive

conservative estimates of the average sensitivity metric.

Table 6.4 presents the final reliability specifications for the benchmarks. Column 2

presents the reliability bound. Column 3 presents the average metric obtained from sen-

sitivity testing. Column 4 presents the analytic conservative lower bound on the average

sensitivity metric.

Image Benchmarks. For Scale and IDCT, the sensitivity testing procedure (like the

one from Section 4.1.2) modifies a single pixel. For DCT, the sensitivity testing procedure

changes a single coefficient in the 8x8 DCT matrix. To compute the lower bound on the

average PSNR, we use an analytical expression from Section 4.1.2. Note that DCT has

smaller average PSNR than the other two benchmarks, as a single incorrectly computed

coefficient can make 64 pixels in the final image incorrect.

Blackscholes. The sensitivity testing procedure conservatively estimates the error at the

end of the computation by returning either the upper or the lower no-arbitrage bound

(whichever is more distant from the exact option value). For reliability bound 0.999, the

average absolute error is $150.6 (±$1.63), while the average value of the portfolio is $28361.4.

Therefore, the relative error of the portfolio price is approximately 0.50%. To derive a

conservative analytic expression for the deviation, we use the no-arbitrage bound formula,

while assuming that the price of the portfolio is at least $4000 (e.g., each option in a portfolio

with 4K options is worth at least a dollar) and the strike price is less than $200.

SOR. For SOR, the sensitivity testing strategy returns a random value within the typical

range of the input data. Since the computation performs multiple updates to the elements

of the input matrix, the worst-case relative error typically exceeds 100%.

139

6.5 Optimization Problem Solving Results

Chisel’s optimization algorithm constructs the optimization problem and calls the Gurobi

solver. Table 6.5 presents for each benchmark the number of variables (Column 2) and

the number of constraints (Column 3) constructed by Chisel. For each of these problems,

Gurobi took less than a second to find the optimal solution (subject to optimality tolerance

bound 10−9) on an 8-core Intel Xeon E5520 with 16 GB of RAM.

6.6 Energy Savings Results

We next present the potential savings that Chisel’s optimization uncovered. We relate the

savings obtained for the traces of profiled inputs to 1) the maximum possible savings when

the reliability bound is 0.0 and 2) the savings for the previously unseen test inputs.

Methodology. To get the statistics on the approximate execution of the benchmarks,

we run the version of the benchmark transformed using the fault injection pass. We ran

the benchmark 100 times for each test input. To estimate the energy savings, we use the

instruction counts from the collected traces and the expressions derived in Section 5.4.

Results. Table 6.6 presents the system savings that Chisel’s optimization algorithm finds

for the kernel computations. For each benchmark, we present the target reliability bound

that we set according to the exploration in Section 6.4. We also present the potential

savings, which are the maximum possible savings when all instructions and memory regions

have medium configuration (Table 6.1) and the result’s reliability bound is 0.0 – so that all

operations can be unreliable and all arrays can be stored in unreliable memory.

For each benchmark, Column 1 (“Hardware Configuration”) presents the approximate

hardware configuration. We represent the system configurations as triples of the form

CPU/Cache/Main, denoting the reliability/saving configuration of CPU instructions, cache

memories, and main memories, respectively. We use the letters “m” and “M”’ to denote the

mild and medium reliability/savings configuration of the system component from Table 6.1.

We omit the aggressive configurations as they yield no savings or only small savings for the

reliability bounds of our benchmarks. For instance, the configuration “M/m/M” denotes a

medium configuration for CPU instructions, mild configuration for the cache memory, and

medium configuration for the main memory. The column “Profile” contains the savings

that Chisel finds for the inputs used in sensitivity profiling. The column “Test” contains

savings computed from the traces of inputs not used during sensitivity profiling.

140

Benchmark: scale

Reliability Bound: 0.995

Potential Savings: 20.28%

Hardware Energy Savings Sensitivity Metric

Configuration Profile Test for Test Inputs

m/m/m 14.11% 14.16% 44.79 ± 2.51

M/m/m 14.22% 14.28% 35.30 ± 1.95

M/M/m 15.39% 15.42% 34.07 ± 1.19

M/m/M 18.17% 18.20% 33.13 ± 1.33

M/M/M 19.35% 19.36% 32.31 ± 1.08

Benchmark: dct

Reliability Bound: 0.99992

Potential Savings: 20.09%

Hardware Energy Savings Sensitivity Metric

Configuration Profile Test for Test Inputs

m/m/m 6.73% 6.72% 30.34 ± 3.84

M/m/m 6.73% 6.73% 30.37 ± 4.41

M/M/m 0.00% – –

M/m/M 8.72% 8.72% 29.76 ± 4.81

M/M/M 0.00% – –

Benchmark: idct

Reliability Bound: 0.992

Potential Savings: 19.96%

Hardware Energy Savings Sensitivity Metric

Configuration Profile Test for Test Inputs

m/m/m 13.38% 13.38% 31.28 ± 0.80

M/m/m 13.40% 13.40% 30.45 ± 0.75

M/M/m 7.34% 7.34% 30.36 ± 0.19

M/m/M 8.70% 8.70% 30.36 ± 0.18

M/M/M 9.32% 9.32% 30.35 ± 0.20

Benchmark: blackscholes

Reliability Bound: 0.999

Potential Savings: 17.39%

Hardware Energy Savings Sensitivity Metric

Configuration Profile Test for Test Inputs

m/m/m 9.87% 9.79% 0.0002 ± 0.00004

M/m/m 9.90% 9.81% 0.0006 ± 0.00008

M/M/m 5.38% 5.35% 0.0005 ± 0.00006

M/m/M 6.36% 6.32% 0.0005 ± 0.0008

M/M/M 4.40% 4.52% 0.0005 ± 0.0008

Benchmark: sorl

Reliability Bound: 0.995

Potential Savings: 20.07%

Hardware Energy Savings Sensitivity Metric

Configuration Profile Test for Test Inputs

m/m/m 14.52% 14.50% 0.029 ± 0.022

M/m/m 14.83% 14.87% 0.051 ± 0.032

M/M/m 16.07% 16.07% 0.046 ± 0.038

M/m/M 18.81% 18.70% 0.086 ± 0.090

M/M/M 19.83% 19.43% 0.080 ± 0.074

Table 6.6: Energy Savings and Sensitivity Metric Results (Configurations: ’m’ denotes mild

and ’M’ medium CPU/Cache/Memory approximation). Shaded configuration

yields maximum energy savings.

141

Overall, for these benchmarks and hardware specification, the majority of savings (over

95%) come from storing data in unreliable memories. For Scale and SOR, Chisel marks all

array parameters and a significant portion of instructions as unreliable for the configuration

“M/M/M”. For Scale, the optimization achieves over 95% (19.35% compared to 20.28%) of

the maximum savings. For SOR, it obtains more than 98% of the maximum savings.

In general, the hardware parameters affect the result that Chisel produces. For instance,

Chisel cannot apply any approximation for the medium main memory configuration for

DCT (which is the benchmark with the strictest reliability bound) – it produces a kernel in

which all operations are reliable. However, for mild memory and cache configurations, the

optimization can obtain up to 43% of the maximum possible savings.

For IDCT, Chisel obtains greater savings for mild (“m”) configurations of the unreliable

memories, because in this case both arrays (passed as the function parameters) can be

allocated in the unreliable memory, to obtain 67% of the maximum possible savings. When

the memory configurations are at the medium (“M”) level, Chisel can place only one array

parameter in unreliable memory.

For Blackscholes, Chisel also selects different combinations of unreliable input array pa-

rameters based on the configurations of the main and cache memories and exposes up to

57% of the maximum possible savings. Blackscholes reexecutes some of its computation

(when detected by the sanity test), but this reexecution happens for only a small fraction

of the options (less than 0.03% on average) and has a very small impact on program’s

execution time and energy consumption.

For all benchmarks, the energy savings obtained on the test inputs typically have a

deviation less than 3% from the savings estimated on the profiling inputs.

6.7 Output Quality Results

We next present the end-to-end sensitivity metrics results for the executions of programs

with synthesized kernels.

Methodology. We instrumented the unreliable operations selected by the optimizer and

injected errors in their results according to the hardware specification and error model.

Results. Table 6.6 also presents the end-to-end sensitivity of the optimized benchmarks.

Column 4 (“Sensitivity Metric for Test Inputs”) presents the mean and the standard de-

viation of the distribution of the error metric. The number of faults per execution ranges

from several (Blackscholes) to more than a thousand (DCT and IDCT).

142

The sensitivity metric of Scale, DCT, and IDCT is the average PSNR metric (higher value

of PSNR means better accuracy). We note that the value of the metric for the synthesized

computation is similar to the sensitivity profiling results (Table 6.4). The accuracy of Scale

and IDCT increases for the mild configuration of arithmetical operations, as the frequency

of faults and therefore the number of faulty pixels caused by computation decreases. The

higher variance in DCT is caused by the inputs of a smaller size, where each fault can

significantly impact PSNR.

The accuracy of blackscholes exceeds the accuracy predicted by the sensitivity testing

(up to 0.06% on test inputs vs. 0.5% in sensitivity testing). The error injection results

for SOR are less accurate than the sensitivity profiling results for medium main memory

configurations (8.0% vs. 5.8%). We attribute this lower accuracy to the fact that the

sensitivity profiling does not inject errors in the read-only edge elements of the input matrix.

6.8 Kernel Transformations

We now focus on the kernels that Chisel’s optimization algorithm generated. For each

benchmark, we examined the kernel with maximum energy savings. Appendix A presents

the optimized programs that Chisel produced.

Scale. We discussed the transformation of scale’s kernel in Section 4.1.3.

DCT. Chisel places the array that contains the pixels of the output image in the unreliable

memory. All arithmetic operations remain reliable, as they all occur in a nested loop.

IDCT. Chisel places both arrays (these arrays contain the pixels of the source and output

image) in unreliable memory. Chisel also selects 14% of the arithmetic instructions as

unreliable. The instrumented instructions include those that affect the condition of one of

the inner bounded loops. Since this loop executes at most 8 iterations (which is enforced by

the language semantics), this transformation does not have a visible impact on the energy

consumption of the kernel.

Blackscholes. Chisel places 5 out of 6 input arrays in unreliable memory. These arrays

contain different input parameters for computing the blackscholes equation. In addition,

Chisel selects 7% of the arithmetic operations as unreliable that satisfy the specification.

SOR. Chisel places the input array in unreliable memory and selects 82% of the arithmetic

operations as unreliable. These unreliable instructions do not affect the control flow.

143

6.9 Chisel’s Extensions

This section describes several directions for how to extend Chisel’s algorithm to support a

wider set of computations.

6.9.1 Operation Selection Granularity

When the number of decision variables in the optimization problem for a large kernel com-

putation is too large to solve given the computational resources at-hand, a developer may

instruct the optimizer to mark all instructions in a block of code with the same kind (i.e.,

all exact or all approximate). The optimization algorithm assigns a single label ℓ to all op-

erations within this block of code. This approach reduces the number of decision variables

and, therefore, the resources required to solve the optimization problem.

6.9.2 Function Calls

To analyze function calls, one can use multiple strategies. We outline three such strategies.

Inlining. Chisel’s preprocessor inlines the body of the called function before the precon-

dition generation analyses. The constraint generator will then assign different labels to

instructions inlined at each call site. This approach provides the finest granularity, but for

kernels with a large number of call sites may increase the solving time.

Multiple Existing Implementations. A called function 𝑓 may have multiple imple-

mentations, each with its own reliability specification. The specification of each of the

𝑚 implementations of 𝑓 consists of the function’s reliability specification 𝜌𝑓,𝑖 · ℛ(·) and

estimated energy savings 𝛼𝑓,𝑖.

For 𝑛 calls to the function 𝑓 in the kernel, the constraint generator specifies the labels

ℓ𝑓,1,1, . . . , ℓ𝑓,𝑚,𝑛. The reliability expression for a 𝑘-th call site becomes
∏︀
𝑖 𝜌
ℓ𝑓,𝑖,𝑘
𝑓,𝑖 . The relative

ALU energy consumption expression for the same call site is 𝜇𝑓,𝑘 · (1 −
∑︀

𝑖 𝜃(ℓ𝑓,𝑖.𝑘) · 𝛼𝑓,𝑖).
A trace profiler can record the count of instructions that the exact computation spends in

each called function to calculate the parameters 𝜇𝑓,𝑘.

We also specify a constraint
∑︀𝑚

𝑖=1 𝜃(ℓ𝑓,𝑖.𝑘) = 1 for each call site to ensure that the opti-

mization procedure selects exactly one of the alternative implementations of 𝑓 .

Inferring Reliability Specification. Instead of selecting from one of the predefined

reliability specifications, one can use the optimization procedure to find the acceptable

144

reliability degradation of the called function 𝑓 that will satisfy the reliability specification

of the caller function. The constraint generator can then be extended to directly model the

logarithm of the reliability as a continuous decision variable 𝜌′(ℓ𝑓) ≤ 0 (ℓ𝑓 is the label of 𝑓).

For the energy consumption expression, the optimization requires the developer to provide

a function 𝛼𝑓 (𝜌
′(ℓ𝑓)), which specifies a lower bound on the energy savings. To effectively use

an optimization solver like Gurobi, this function is required to be linear (the optimization

problem is a mixed integer linear program), or quadratic (the optimization problem is a

mixed integer quadratic program).

6.9.3 Overhead of Operation Mode Switching

Some approximate architectures impose a performance penalty when switching between

exact and approximate operation modes due to e.g. dynamic voltage or frequency scaling.

Therefore, for these architectures it is beneficial to incorporate the cost of switching into

the optimization problem. For example, the constraint generator can produce additional

constraints that bound the total switching overhead [109].

To specify this additional constraint, we let ℓ𝑖 and ℓ𝑖+1 be the labels of two adjacent

arithmetic instructions. Next, we define auxiliary counter variables 𝑠𝑖 ∈ {0, 1} such that

𝑠𝑖 ≥ 𝜃(ℓ𝑖)− 𝜃(ℓ𝑖+1) ∧ −𝑠𝑖 ≤ 𝜃(ℓ𝑖)− 𝜃(ℓ𝑖+1).

Finally, we specify the constraint
∑︀

𝑖 𝑠𝑖 ≤ 𝐵 to limit the total number of mode changes to

be below the bound 𝐵.

6.9.4 Array Index Computations and Control Flow

Instead of relying on support for failure-oblivious program execution (Section 4.2.3), Chisel

can further constrain the set of optimized instructions to exclude instructions that compute

array indices and/or affect the flow of control. To ensure that approximate computation does

not affect an expression that computes an array index or a branch condition, a dependence

analysis can compute the set of all instructions that contribute to the expression’s value.

Chisel then sets the labels of these instructions to zero to indicate that the instructions

must be exact.

6.9.5 Energy Analysis and Control Flow

The analysis used to estimate energy savings (presented in Section 5.4) assumes that the

control flow divergences caused by approximate instructions and data have a negligible effect

on the program’s execution time and energy consumption. This assumption is valid when the

145

branches of the computation have a similar number of instructions or when the probability

of computing incorrectly an if/loop condition is very small. When this assumption is not a

good approximation, it is possible to specify a penalty for operations and data that affect

the control flow. This penalty is proportional to the number of times each such operation

is executed.

To add the impact of divergence to arithmetic operations, we define the set CF that

contains all arithmetic instructions, which may affect the computation’s control flow. Then

the auxiliary analysis TraceMax𝛾,𝜓(ℓ) can compute the maximum energy consumption (ac-

cording to the hardware specification 𝜓) of the traces in the program 𝛾 that start from the

instruction with label ℓ. Conceptually, to implement such function, one can define a version

of dataflow dependency analysis that counts the number of instructions across the traces.

Then, we can specify the absolute energy consumption of arithmetic instructions as, e.g.,

𝐸int(𝜃) =
∑︀

ℓ∈IntInst
𝑛ℓ · (1 − 𝜃(ℓ) · 𝛼int) · ℰint +

∑︀
ℓ∈CF

(1 − 𝜌ℓ) · 𝜃(ℓ) · TraceMax𝛾,𝜓(ℓ). This

expression states that with probability 1 − 𝜌ℓ, the computation has the potential to use

maximum energy if it takes (the unlikely) sequence of instructions. We can similarly add

the term in the expressions for the energy consumption of memories. In that case, the

penalty term would add this time to the numerator 𝑡′ of the fraction 𝑡′/𝑡.

6.9.6 Hardware with Multiple Approximate Operation Specifications

To support hardware platform with arithmetic operations and memory regions with multi-

ple reliability/savings specifications (𝜌𝑜𝑝,𝑖, 𝛼𝑜𝑝,𝑖), we can use an approach analogous to the

one for functions with multiple implementations. Specifically, each arithmetic operation can

be analyzed as one such function. Analogously, to specify one of 𝑘 approximate memory

regions for a parameter 𝑣, the generator defines the labels ℓ𝑣,1, . . . , ℓ𝑣,𝑘. It generates the

reliability expression
∏︀
𝑖 𝜌
ℓ𝑣,𝑖
𝑚𝑜𝑝,𝑖 for each memory operation and the memory savings expres-

sion
∑︀

𝑖 𝜃(ℓ𝑣,𝑖) · 𝛼𝑚𝑒𝑚,𝑖 for each array parameter. To select a single memory region, the

generator produces the constraint
∑︀

𝑖 𝜃(ℓ𝑣,𝑖) = 1.

6.9.7 Interval-Based Reliability Specifications

Some approximate hardware designs may operate unreliably only if data is in certain in-

tervals (e.g., having long carry propagation in arithmetic operations for large numbers).

The extended approximate hardware specification can then contain optional input ranges

for which the operation can operate unreliably. Chisel’s analysis can use the helper interval

analysis (Section 5.3.5) to check whether the result of an arithmetic operation belongs to

146

the interval that may exhibit unreliable hardware operation, and only in that case add the

reliability term 𝜌ℓ for the operation.

6.9.8 Multiple Kernels

A program may contain multiple approximate kernels. To adapt Chisel’s workflow, we

consider following modifications to the reliability profiling and the optimization.

Reliability Profiling. The approximate execution of one kernel may affect the inputs

and the execution of the other kernels. Therefore, to find the reliability specifications of

multiple kernels, the reliability profiler enumerates parts of the induced multidimensional

search space. First, the one-dimensional profiler (Section 4.1.2) finds the lower reliability

bound of each kernel. Then, to find the configuration of kernel reliability specifications that

yield an acceptably accurate result, the profiler can systematically explore the search space,

e.g. using strategies analogous to those that find configurations of accuracy-aware program

transformations [53, 75, 79, 113] from a finite set of possible configurations. The profiler

then returns configurations that closely meet the accuracy target, ordered by the reliability

of the most time-consuming kernels.

Optimization. The optimization algorithm for multiple kernels needs to consider only

the allocation of arrays, since the ALU operations are independent between kernels.

The multiple kernel optimization operates in two main stages. In the first stage, it com-

putes the energy savings of each individual kernel for all combinations of shared array

variables. Conceptually, if the shared variables are labeled as ℓ1, . . . , ℓ𝑘, the optimization

algorithm calls the basic optimization problems for all combinations of the kind configura-

tions 𝜃(ℓ1), . . . , 𝜃(ℓ𝑘), while pruning the search tree when the algorithm already identifies

that a subset of labels cannot satisfy the reliability bound.

In the second stage, the analysis searches for the maximum joint savings of the combina-

tion of 𝑚 kernels. It searches over the combination of individual kernel results for which

all array parameters have the same kind configuration, i.e., 𝜃(1)(ℓ𝑖) = . . . = 𝜃(𝑚)(ℓ𝑖) for

each 𝑖 ∈ {1, . . . , 𝑘}. The algorithm returns the combination of kernels with maximum joint

energy savings, which is a sum of the kernels’ savings weighted by the fraction of their

execution time. While, in general, the number of individual optimization problems may

increase exponentially with the number of shared array variables 𝑘, this number is typically

small and the search can remain tractable.

147

7 Related Work

This chapter presents related work in the areas of software- and hardware-based approximate

computing. We also present relevant related work from the areas of probabilistic program

analysis, analysis of analytic program properties, and approximate databases.

7.1 Compiler-Level Approximations

Researchers have developed many systems that apply accuracy-aware transformations to

reduce the amount of energy and/or time required to execute computations on commod-

ity (exact and fully reliable) hardware platforms. Approximate transformations, such as

task skipping [22, 71, 95], loop perforation [78, 79, 113], approximate function substitu-

tion [6, 9, 102, 125] (which replaces the exact implementation of a function with its less

accurate alternative), dynamic knobs [53] (which selects at runtime one of the several ap-

proximate versions of the computation based on the application’s performance goal), early

termination of barriers at parallel loops [96] (which results in skipping contributions from

interrupted threads), reduction sampling [102, 125] (which selects only a random subset

of inputs from program codes that implement reductions like summation or maximiza-

tion), approximate parallelization with data races [75, 80], and tuning floating-point opera-

tions [100, 110] can all reduce the energy and/or time required to execute the computation.

Common to all these transformations is that they create new knobs that expose and con-

trol the tradeoff between accuracy and performance/energy. To automatically justify these

transformations, researchers have proposed various techniques for 1) analyzing sensitivity of

computations, 2) analyzing safety of transformations, and 3) navigating the tradeoff space

to find knob configurations that result in profitable tradeoffs.

7.1.1 Sensitivity Analysis

A critical region of program code, when transformed, causes unacceptable program errors

(such as crashing, becoming unresponsive, or producing inadequate output). An approx-

imable region of program code, when transformed, only affects the accuracy of the compu-

148

tation. Researches presented dynamic techniques for identifying critical and approximable

code regions [10, 20, 79, 98, 99]. Researchers also presented static analysis techniques that

reason about the propagation of errors through computation [24, 25, 31].

Dynamic Sensitivity Analysis. Testing-based sensitivity analyses can identify critical

regions of the program. In general, dynamic sensitivity analyses transform a program’s

code, change program’s inputs, or change its execution environment. The analyses reason

about the effect of these changes on the program’s output and classify the code regions

accordingly. For instance, Section 2.1.2 presents a dynamic analysis that identifies critical

parts of the program by transforming a program using loop perforation. This approach

extends our early work on Quality of service profiling [79], which transforms program using

loop perforation to separate critical and approximable regions of programs.

Snap [20] combines input fuzzing with dynamic execution and influence tracing to quanti-

tatively characterize the sensitivity of the computation to changes to the input. ASAC [99]

characterizes the sensitivity of the computation to changes in the intermediate program

data. Ringenburg et al. [98] present quality of result debugger techniques that track ap-

proximate dataflow and identify the contribution of each approximate operation and corre-

lation between approximate operations on the result’s quality. Bao et al. [10] use whitebox

sampling to find discontinuities in numerical computations.

In Chapter 4, we presented Chisel’s sensitivity profiling that quantitatively relates the

rate of incorrect kernel results to the quality of the result that the program produces. It

relies on the developer-provided noise models (that a developer can provide as sensitivity

testing functions). Chisel’s sensitivity profiling differs from previous techniques in the source

of the noise (incorrect approximate kernel results as opposed to changes in the computation

or inputs) and the goal of the analysis (obtaining a reliability specification, in addition to

checking the sensitivity of the kernel to noise).

Static Techniques. Chaudhuri et al. [24, 25] present techniques that statically reason

about the propagation of errors through a continuous computation. A computation is

continuous if small numerical changes in its input correspond to the small numerical changes

in its output. A computation is Lipschitz continuous if the maximum output changes are

multiples of the numerical change in the input. It can be used to reason about accuracy-

aware transformations [25].

Researchers have also proposed techniques for analyzing the worst-case behavior of numer-

ical computations. Researchers in embedded systems have traditionally used rounding error

analyses of numerical programs to derive the worst-case error bounds for reduced-bitwidth

149

floating point computations [45, 88]. Recent techniques such as [31] verify the precision of

approximate numerical computation and compute the bounds on error propagation through

non-linear computation. Chisel uses a standard interval analysis as a component to con-

struct accuracy constraints (which select which arithmetic operations can be approximated)

and reason simultaneously about the frequency and magnitude of error.

7.1.2 Safety Analysis

While dynamic sensitivity profiling techniques can help identify critical parts of the program

by finding a single failing execution, they are insufficient to prove the absence of errors

or incorrect outputs. Therefore, researchers have developed various techniques that let a

developer specify important safety property (such as non-interference of approximate and

exact code, pointer safety, or range of values that the computation produces) and verify

that the transformations preserve these properties.

EnerJ [105] presents an information-flow type system that allows the developer to separate

code and data in distinct approximate and exact regions of code. The type system ensures

that approximate data cannot be used to compute exact results (except when specially

requested by the developer). More recently, Accept [104] presents an implementation of this

type system for C/C++. Also, FlexJava [90] automates a part of approximate operation

annotation through type inference.

Carbin et al. [16] present a general framework for reasoning about arbitrary safety proper-

ties (and also worst-case error) of approximate programs. It operates within Coq, an inter-

active theorem prover. It represents accuracy-aware transformations with relax and assert

statements, which specify variables affected by the transformation, and how the transfor-

mation affects the values of program’s variables, respectively. The framework relates the

execution of the original and approximate programs, through a deterministic version of the

paired execution semantics (which inspired probabilistic versions of paired semantics in [19]

and Chapter 5). Our subsequent work presents how to automate pointer safety analysis and

several value-related safety properties (including sign, non-zero, non-negativity) [17]. More

recently, Simdiff [63] automates parts of the safety analysis from [16] using SMT solvers.

7.1.3 Search for Accuracy-Performance Tradeoffs

Profitably trading accuracy for performance is a well-known practice at an algorithmic level,

where many algorithms have exposed knobs that control the level of approximations. In

addition, accuracy-aware transformations introduce new (system-level) knobs. These knobs

jointly induce an accuracy/performance tradeoff space. A configuration of a single program

150

typically consists of multiple knobs, one for each location where a transformation can be

applied. By navigating this tradeoff space, search algorithms find configurations of knobs

that result in profitable accuracy/performance tradeoffs.

Empirical Search. Researchers have presented various techniques for exploring accura-

cy/performance tradeoff space [5, 6, 9, 53, 75, 79, 95, 96, 100, 110, 113]. These techniques

typically discretize the input space, by asking a developer to provide representative inputs,

and discretize the configuration space, by trying the approximation with a fixed number of

values for each knob (e.g., the configuration space of loop perforation in Chapter 2 has five

distinct perforation rates). The search algorithms execute the transformed programs for

various combinations of the knobs. These combinations are selected using various heuristic

search strategies, such as exhaustive search (with optional pruning) [53, 95, 113], greedy

search [79], genetic search [5, 6], or stochastic search [110].

Some of the search techniques are developer-guided, in that a developer manually exposes

accuracy knobs, by selecting which locations in the program to transform) using program

annotations [5, 6, 9, 46]. Other search techniques that automate the discovery of approxi-

mate subcomputations, check the safety of such candidate transformations using sensitivity

profiling [75, 79, 80, 95, 96, 113], pattern identification [102], or type checking [104, 105].

The majority of thse techniques construct accuracy/performance models at compile-time.

Alternatively, to improve the accuracy of the results, some techniques perform on-line recal-

ibration, by occasionally running both the exact and approximate versions of the subcom-

putations [9, 46, 103]. Recently, Ding et al. [39] presented a variable-accuracy autotuning

technique that, while searching for profitable tradeoffs at compile-time, finds configurations

of approximate program that are appropriate for different input profiles.

Mathematical Optimization-Based Search. As an alternative to empirical search,

this approach uses static analysis to construct accuracy constraints, which are then used as

part of the formulation of an optimization problem. Then, existing numerical solvers can

find the configuration of the approximate program that satisfies these constraints for all

inputs of interest (while maximizing execution time or energy consumption objective).

We have previously used linear programming as a component of an approximation al-

gorithm that finds an 𝜀-optimal expected error/performance tradeoffs for map-fold com-

putations automatically transformed using randomized program transformations, such as

function substitution and sampling [125]. Chisel similarly uses mathematical programming

to optimize for energy savings, while providing reliability and accuracy guarantees. In

contrast to the approach from [125], which operates on an abstract model of computa-

151

tion, Chisel presents an analysis that operates on programming language statements, with

randomness coming from approximate arithmetic operations and data.

In contrast to the majority of empirical search techniques, which cannot guarantee accu-

racy beyond representative inputs, optimization-based techniques can explore the tradeoff

space to satisfy the constraints that are valid for all inputs of interest (that a developer de-

scribes as a part of the input specification). In addition, optimization based techniques can,

in principle, operate on more complex configurations – e.g., a large number of possible trans-

formations, as in Chisel, or a potentially infinite number of choices for selecting the probabil-

ity of executing an approximate function version, as in [125]. However, optimization-based

techniques are presently limited to computations with a specific structure.

7.2 Approximation at Intersection of Software and Hardware

Approximate Hardware Platforms. Researchers have proposed various designs of ap-

proximate hardware components. Approximate accelerators or cores expose coarse-grained

operations that may occasionally fail or produce approximate results [66, 85, 121]. As a

special case of coarse-grain approximate accelerators, researchers in academia and industry

have presented accelerators that provide neural network abstractions [29, 43, 87, 117, 122].

Researchers have presented fine-grained approximate components, such as approximate

ALUs and FPUs that produce bounded errors or fail with small probability (specified by

the component designer) in return for a smaller size of the circuit and/or lower energy con-

sumption [40, 42, 56, 61, 72, 89, 120, 124]. Researchers have also presented approximate

main [67, 106] and cache memories [111] that can occasionally corrupt stored data. Many

of these approximate hardware designs specify the frequency of failure of their components

(e.g., an addition instruction may produce a wrong result with a small probability), and/or

the magnitude of error (e.g., an addition instruction may produce a small bounded noise).

Such components can, in principle, be represented using Chisel’s approximate hardware

model. In addition to intentionally designed approximate hardware, researchers have also

investigated conditions under which commodity hardware experiences transient or intermit-

tent errors caused by, e.g., power variation, temperature variation, or aging [123].

Overall, the diversity of approximate and unreliable hardware opens up new opportuni-

ties and challenges when optimizing programs at the compiler level. Chapter 4 presents

Chisel’s compiler support and analysis to optimize (with accuracy guarantees) programs

running on a model of approximate hardware with approximate ALUs and memories (with

approximate/unreliable components specified by the hardware designer).

152

Programming Models for Approximate Hardware. In previous work, we developed

Rely [19], a language for expressing and analyzing computations that run on approximate

hardware platforms. A developer can use Rely to manually select the operations and data

that can execute unreliably using code annotations, such as “+.” for approximate addition

and “int x in urel” for a variable in approximate memory region. The developer also

provides a reliability specification (that Chisel extends with energy and precision specifica-

tions). Rely’s analysis verifies that a kernel with manually identified unreliable instructions

and variables satisfies its reliability specification for all inputs.

In contrast to Chisel, Rely requires the developer to navigate the tradeoff between relia-

bility and energy savings (because the developer is responsible for identifying the unreliable

operations and data). Moreover, the developer must redo this identification every time the

computation is ported to a new approximate hardware platform with different reliability and

energy characteristics. Chisel leverages the reliability analysis approach from Rely to con-

struct a combined reliability/accuracy specification, which enable Chisel to automatically

optimize applications for different hardware specifications.

Flikker provides a set of C language extensions that enable a developer to specify data

that can be stored in approximate memories [67]. EnerJ provides a type system that a

developer can use to specify approximate data that can be stored in unreliable memory or

computed using unreliable operations [105]. The EnerJ type system ensures the isolation of

approximate computations and the compiler allocates data in approximate memories and

assigns approximate instructions to execute on such data. Unlike Rely, Flikker, and EnerJ,

which depend solely on the developer to identify exact and approximate operations and

data, Chisel automates the selection of approximate operations and data while ensuring

that the generated computation satisfies its reliability/accuracy specification.

Relax presents a combined hardware/software framework for detecting and recovering

from hardware faults [32]. It allows a developer to provide recovery actions (such as reexe-

cuting of a code block or discarding a part of the computation) to respond to to detected

hardware faults. However, Relax requires specialized hardware organization to support

recovery and it does not help a developer with analyzing how recovery blocks affect the

accuracy, reliability, and safety of the computation.

ExpAX is a framework for expressing accuracy and reliability constraints for a subset

of the Java language [91]. ExpAX uses a genetic programming optimization algorithm to

search for approximations that minimize the energy consumption of the computation over

a set of program traces. Chisel, in contrast, uses mathematical programming to guarantee

153

that the resulting program satisfies its reliability specification. In contrast, the genetic

algorithm in ExpAX operates on representative inputs and provides no such guarantee.

Uncertain<T> is a type system for computing on approximate data from e.g., noisy

sensors [13]. Uncertain<T> represents noise as probability distributions and dynamically

computes probabilistic bounds on error as they propagate through the computation. It

uses sampling and hypothesis testing to compute error distributions at different steps of the

computation. In contrast to our analyses, it operates fully at run-time.

Topaz is a task-based language that allows the developer to specify tasks that execute

on approximate hardware cores that may produce arbitrarily inaccurate results [2]. Topaz

includes an outlier detector that identifies likely errors in the results of a program’s tasks

and a recovery strategy to efficiently reexecute or skip tasks. It operates with a coarser grain

approximate hardware model and does not require a developer’s accuracy specification.

7.3 Probabilistic Languages and Analyses

Representations of Uncertainty. Typical approaches for modeling uncertainty use in-

tervals, random variables, or fuzzy sets to represent quantities that computations operate

on. Interval analysis [83] represents uncertain quantities as intervals and defines basic arith-

metic operations on such values (e.g., Section 5.3 describes one such analysis). It is often

used to analyze the worst-case rounding error in numerical computations, ideally producing

small error interval sizes. Additional knowledge about the inputs can make it possible to

use probabilistic, fuzzy, or hybrid modeling of uncertainty in computations [50, 59]. This

dissertation models uncertainty of inputs and program’s execution via random variables

(Chapter 3) and combination of random variables and intervals (Chapter 4).

Probabilistic Programming Languages. Researchers have presented languages for

probabilistic modeling, in which programs work directly with probability distributions [36,

47, 60, 92, 93, 101]. These languages present constructs (statements, expressions, or built-in

library calls) that introduce a random choice in the program execution. This dissertation

formulates the probabilistic semantics of the Chisel’s computations (Chapter 4) using im-

plicitly random arithmetic operators (e.g., approximate addition) and operations on approx-

imate data (e.g., reading from variable in approximate memory). We previously presented

the semantics of these operators in the Rely language [19].

Probabilistic Analyses. Researchers have also presented numerous analyses to reason

about probabilistic programs, including probabilistic axiomatic semantics, abstract inter-

pretation, and model checking e.g., [37, 62, 81, 82, 84, 114]. More recently, researchers

154

have used symbolic execution to check probabilistic assertions that state that a program’s

property is correct with high probability. Filieri et al. [44] use symbolic execution and

finite-state model checking to verify probabilistic assertions for programs that can operate

on complex data structures. Sankaranarayanan et al. [108] present a symbolic analysis that

checks for probabilistic assertions in programs with linear expressions and potentially un-

bounded loops. Claret et al. [28] use results of dataflow analysis to improve performance of

probabilistic sampling procedures in Bayesian inference computations. The analysis in [21]

checks for termination of probabilistic ’while’-loops by mapping the program semantics to

martingales (a well-known class of stochastic processes). Sampson et al. [107] present a

symbolic execution-based approach that translates a computation to a Bayesian network

and use statistical sampling and/or algebraic transformations of random variables to ap-

proximately (with high confidence) verify probabilistic assertions.

Analysis of loop perforation in Chapter 3 quantitatively analyzes the application of loop

perforation to a set of amenable computational patterns, which may appear in deterministic

or probabilistic programs. It specifies probabilistic semantics at a pattern level instead of

the statement level. In comparison with general probabilistic analyses, pattern-based anal-

yses can, typically, provide more precise accuracy bounds, since patterns provide additional

information about the nature of the analyzed computations that are instances of patterns.

In addition, Chisel’s analysis presents how to combine fully static reasoning about reliabil-

ity and absolute error of an approximate computation, instead to reason about arbitrary

probability distribution.

7.4 Analytic Properties of Programs

Continuity. Researchers have developed techniques to identify continuous or Lipschitz-

continuous programs [24, 25, 68, 69, 94]. In addition to investigating sensitivity of com-

putations to program transformations [25], additional domains in which these techniques

have been applied include differential privacy [24, 25, 94] and analysis of robust functions

for embedded systems, where noise comes from the inputs and environment [25, 68, 69].

For example, Chisel (Section 5.3) uses continuity property to calculate linear bounds on the

propagation error for arithmetic operators, and used as a part of formulation of the Chisel’s

linear optimization problem.

Idempotence. Idempotence is the property that a computation that is executed multiple

times on the same inputs produces the same result. Researchers have presented techniques

that use this property of computations [33] to support inexpensive recovery from hardware

faults and thus improve application’s fault tolerance. In the context of approximate pro-

155

gram transformations, reexecution of idempotent computations can, in principle, be used to

improve the reliability of approximate functions that use approximate arithmetic operations.

Smoothing. Smooth interpretation [23, 26] uses a gradient descent-based method to syn-

thesize parameters of programs that control cyberphysical interactions. The analysis returns

a set of parameters that minimize the difference between the expected and computed pro-

gram’s controlled values. It defines a smoothing semantics of computations, which produces

a continuous approximation of the program’s semantics (a smoothed program). Smooth

interpretation then reduces synthesis of control parameters questions for this continuous

program’s semantics to a general (continuous, but potentially non-convex) mathematical

optimization problems, that minimize the distance between the outputs the smoothed pro-

gram and the desired outputs (or output distribution). This dissertation addresses a concep-

tually related problem – using numerical search to find the configurations of approximate

programs. However, Chisel’s approach is tailored to navigate the accuracy/performance

tradeoff space to find programs that maximize performance subject to error magnitude and

frequency for all inputs of interest.

7.5 Approximate Queries in Database Systems

Modern databases often enable users to define queries that operate on some subset of the

records in a given table. Such queries come with no accuracy or performance guarantees.

Researchers have explored multiple directions for supporting approximate queries with prob-

abilistic guarantees. Approximate aggregate queries let a user specify a desired accuracy

bound or execution time of a query [1, 54, 55]. The database then generates a sampling

strategy that satisfies the specification [54, 55] or uses a cached sample, when applicable [1].

More recently, BlinkDB [3] presents an effective sampling procedure (based on aggregates

of data in table columns) to provide approximate query results with confidence intervals.

Online queries compute the exact answer for the entire data-set, but provide intermediate

results and confidence bounds [51]. Probabilistic databases [30] operate on inherently un-

certain data, and the accuracy bounds of all queries (including aggregation) depend on the

statistics of uncertain data.

Similar to the techniques in approximate computing, these systems expose knobs that

control accuracy and provide results with (probabilistic) error estimates. Such knobs can,

in principle, be used as components in more complex approximate computations. But, unlike

accuracy-aware transformations, these knobs are manually exposed by database developers

and are applicable for a specific class of sampling queries.

156

8 Future Work

Program optimization using accuracy-aware transformations that I presented in this dis-

sertation opens up a number of new research opportunities in approximate computing and

software resilience. Going forward, this research can guide research on characterizing and

exploiting approximation and uncertainty at every level of the computational stack – from

algorithms to programming languages, compilers, runtime systems, and hardware.

Approximate programs can benefit from both algorithmic and system-level approxima-

tions at various levels of the computation stack (e.g., programming systems, runtime sys-

tems, operating systems, architecture), but only if programmers have tools to help them

construct, manage, and reconfigure their approximate programs. The current research sets

foundations for new general optimization systems that can reason about and optimize using

a multitude of algorithmic-level and system-level approximation techniques.

Overall, I believe that this research direction can bring new powerful tools and techniques

for better understanding approximation and uncertainty in computation. This includes

applications that accuracy-aware compilers can automatically generate, but also the existing

approximate computations, in which a developer is fully responsible for approximation, but

uses tools to better understand the nature of his or her application and make more flexible

and systematic approximation choices. Below, I describe several directions for extending

the research presented in this dissertation.

Accuracy and Input Specification

Support for Deriving Accuracy Specifications. To systematically develop programs

that use approximate software and hardware components, we need solid tool support to

help with the process of deriving and debugging accuracy specification. This dissertation

presents some of the first steps toward building an ecosystem of tools that help deliver ap-

proximate computations. Generalizing and improving the scalability of profiling, debugging,

and testing techniques (such as sensitivity profiling) are essential for better understanding

the properties of approximate computations and deriving appropriate formal accuracy re-

quirement specifications.

157

Approximate Hardware Components. Chapter 4 presented a model of approximate

hardware with arithmetic instructions and memory regions. However, it captures only some

of the proposed approximate hardware architectures. As the field of approximate hardware

is still in its early stages of development, we will likely require more expressive specifications

of hardware-provided operations (including characteristics of their correct, approximate,

and failed execution). It is likely that many such models will have nondeterministic and/or

probabilistic components. The research presented in this dissertation, therefore, can be a

good starting point for developing such more expressive models of approximate hardware.

Accuracy Analysis and Optimization

Analyses of an approximate computation’s accuracy depend, in general, on the input spec-

ifications, the computation structure, and the accuracy specifications of the computation’s

components. To improve the capabilities of analysis of how uncertainty emerges and prop-

agates through an arbitrary computation, future research needs to address a number of

challenges, some of which are discussed below.

Analysis of Accuracy-Aware Transformations. This dissertation presents an opti-

mization approach for generating approximate versions of approximate kernels that run

on approximate hardware. Furthermore, our existing research on optimization of map-fold

computations [125] (which operates on trees of “function nodes” representing map tasks and

“reduction nodes” representing aggregation operators) presents a basis for the hierarchical

analysis of computations and composition of accuracy specifications. As an immediate con-

nection between these two techniques, we note that the optimization from Chapter 4 with

arithmetic operations produces approximate versions of “function nodes” that can be used

in optimization from [125]. As part of ongoing work and to support such applications, we

are extending an approach from [125] with a program analysis that constructs constraints

for the programs written using map and fold constructs [76].

Precision, Scalability, and Expressiveness of Accuracy Analysis. More expres-

sive and diverse accuracy specifications require more powerful analyses that will ensure

the correctness of developer specifications. In general, I anticipate that such analyses will

present new tradeoffs between their scalability, precision, and expressiveness. To develop

accuracy analyses that can verify or estimate with high confidence if an approximate com-

putation satisfies its accuracy specification and facilitate automatic optimization, future

analysis techniques can benefit from ideas and tools from numerical analysis, probabilistic

inference, and verification of probabilistic systems.

158

Sensitivity of Accuracy Analysis and Optimization. Input specifications (e.g., inter-

vals or distributions) and/or approximate hardware component specifications (e.g., failure

probability) may change over time. An important future direction for adopting approxi-

mate computing includes accuracy analyses and optimization techniques that are robust to

changes in the specifications (including input specifications, accuracy requirements and/or

hardware platform).

As a related problem, the optimizations for even slightly different accuracy requirements

or input specifications currently need to be performed from scratch. As an alternative,

investigation of incremental optimization techniques that can (as a part of an application’s

runtime system) quickly recompute new optimization results, can enable the application to

faster respond to the changes in its environment and inputs.

Program Repair and Resilience

Researchers have recently proposed techniques for automatically repairing software from

general software errors. Some of these techniques, such as research on escaping from infinite

loops using resiliency-oriented transformations [18, 58], generate code repairs that instruct

the program to produce a partial or a different result as a consequence of steering the

program execution past the error. For example, after escaping from an infinite loop, an

application may continue executing from a program statement after the loop body, or from

the return statement of one of the enclosing functions. In principle, an additional program

transformation may also try to correct parts of the program state affected by the loop escape

transformation.

The quality of the repaired program’s output (and even the success of the continued exe-

cution) depends on the set of resiliency-oriented transformations used to repair the program.

To navigate this tradeoff space induced by program repairs, future research can investigate

how to adapt techniques used for the analysis of approximate programs to characterize

the quality of the outputs that repaired programs produce and investigate techniques that

can compose multiple resiliency-oriented transformations to maximize the quality of the

repaired program’s output.

159

9 Conclusion

Despite the central role that approximate computations play in many area of computer

science, until recently the areas of program analysis and optimization have not used this

potential to generate more flexible optimized programs. Only recently, researchers have

started investigating compiler-level techniques for automatically generating approximate

versions of programs that trade accuracy for improved performance and/or energy con-

sumption.

This dissertation presents our investigation of the properties of accuracy-aware trans-

formations and the foundation of rigorous analysis and optimization techniques that find

acceptable tradeoffs between accuracy and performance/energy. Specifically, this disserta-

tion identifies approximate kernels (subcomputations amenable to accuracy-aware trans-

formations) and their structural and functional properties. It presents accuracy analy-

sis techniques that analyze the frequency and magnitude of the noise that approximate

transformations introduce. It presents how to automatically apply accuracy-aware trans-

formations by formulating accuracy-aware program optimization as integer optimization

problem. It presents experimental results that show that accuracy-aware transformations

can discover profitable accuracy/performance tradeoffs that satisfy the developer’s accuracy

specifications.

In general, I see probabilistic accuracy analysis of approximate programs, with its ability

to represent and automatically reason about uncertainty that arises in computation, and

mathematical optimization, with its ability to find parameters that maximize or minimize an

objective function while preserving a set of constraints, as a natural fit for many problems in

approximate computing. Specifically, this dissertation presents how these general techniques

can be used to optimize a resource consumption objective, such as energy or time, while

providing acceptable execution, captured by accuracy constraints produced by program

analysis.

160

A Transformed Chisel Kernels

This appendix presents the versions of approximate programs that Chisel successfully trans-

formed (Chapter 6). We present the transformed kernels that obtained the maximum sav-

ings in the evaluation. Each approximate operation is denoted with an “.” (e.g., “+.”).

Data in approximate memory is denoted with an annotation “in unrel”. The original

programs have the same reliability specification, but no data or instruction annotations.

extern float<1.0*R(v)> my_floor(float v);

extern float<1.0*R(v)> my_ceil(float v);

void SCALE_KERNEL(float factor,

int(1)<1.0*R(src)> src in unrel, int sw, int sh,

int(1)<0.995*R(factor,src, transformed,sw,sh,dw,dh,i,j,si,sj)>

transformed in unrel,

int dw, int dh, int i, int j, float si, float sj)

{

int previ = 0; int prevj = 0;

int nexti = 0; int nextj = 0;

float previf = 0; float prevjf = 0;

float nextif = 0; float nextjf = 0;

float lr0 = 0; float lr1 = 0; float lr2 = 0;

float ll0 = 0; float ll1 = 0; float ll2 = 0;

float ul0 = 0; float ul1 = 0; float ul2 = 0;

float ur0 = 0; float ur1 = 0; float ur2 = 0;

previ = (int)my_floor(si); prevj = (int) my_floor(sj);

nexti = (int) my_ceil(si); nextj = (int) my_ceil(sj);

if (sh <= previ) { previ = sh - 1; }

if (sw <= prevj) { prevj = sw - 1; }

if (sh <= nexti) { nexti = sh - 1; }

if (sw <= nextj) { nextj = sw - 1; }

if (previ == nexti) {

if (0 == previ) {

if (sw - 1 == nexti) { }

else { nexti = nexti + 1; }

} else { previ = previ - 1; }

}

// continued on the next page ...

Figure A.1: Scale Kernel Generated for Configuration M/M/M (part 1)

161

// ... continued from the previous page

if (prevj == nextj) {

if (0 == prevj) {

if (sh - 1 == nextj) {}

else { nextj = nextj + 1; }

} else { prevj = prevj - 1; }

}

lr0 = src[(3*(previ*sw+prevj))];

lr1 = src[(3*(previ*sw+prevj)+1)];

lr2 = src[(3*(previ*sw+prevj)+2)];

ll0 = src[(3*(previ*sw+nextj))];

ll1 = src[(3*(previ*sw+nextj)+1)];

ll2 = src[(3*(previ*sw+nextj)+2)];

ur0 = src[(3*(nexti*sw+prevj))];

ur1 = src[(3*(nexti*sw+prevj)+1)];

ur2 = src[(3*(nexti*sw+prevj)+2)];

ul0 = src[(3*(nexti*sw+nextj))];

ul1 = src[(3*(nexti*sw+nextj)+1)];

ul2 = src[(3*(nexti*sw+nextj)+2)];

previf = (float) previ; prevjf = (float) prevj;

nextif = (float) nexti; nextjf = (float) nextj;

transformed[(3*(i*dw+j))]= (int)

(1.0/((nextif-previf)*(nextjf-.prevjf))

(lr0(nextjf-sj)*(nextif-si)+.ur0*.(nextjf-sj)

(si-.previf)+ll0(sj-prevjf)*.(nextif-si)+ul0

.(sj-prevjf).(si-previf)));

transformed[(3*(i*dw+j)+1)]= (int)

(1.0/((nextif-previf)*.(nextjf-prevjf))

.(lr1(nextjf-sj)*.(nextif-si)+.ur1*(nextjf-sj)

(si-previf)+ll1(sj-prevjf)*.(nextif-si)+.ul1

.(sj-.prevjf)(si-.previf)));

transformed[(3*(i*dw+j)+2)]= (int)

(1.0/((nextif-previf)*.(nextjf-prevjf))

.(lr2.(nextjf-.sj)*.(nextif-si)+.ur2*(nextjf-.sj)

(si-previf)+ll2.(sj-prevjf)*.(nextif-si)+.ul2

(sj-.prevjf)(si-previf)));

}

Figure A.2: Scale Kernel Generated for Configuration M/M/M (part 2)

162

void DCT_KERNEL(int(1)<1.0*R(src)> src, int sw, int sh,

int(1)<0.99992*R(src,sw,sh,dest,dw,dh,i,j,curri,currj)>

dest in unrel,

int dw, int dh, int i, int j, int curri, int currj)

{

int di; int dj;

int src_pix_r; int src_pix_g; int src_pix_b;

int dest_pix_r; int dest_pix_g; int dest_pix_b;

float currif; float currjf; float dif; float djf;

int dred; int dgreen; int dblue;

dred = 0; dgreen = 0; dblue = 0;

di = 0;

while(i + di < dh) : 8 {

dj = 0;

while(j + dj < dw) : 8 {

dest_pix_r = dred; dest_pix_g = dgreen; dest_pix_b = dblue;

src_pix_r = src[(3*(((i+di)*(sw)+(j+dj))))];

src_pix_g = src[(3*(((i+di)*(sw)+(j+dj)))+1)];

src_pix_b = src[(3*(((i+di)*(sw)+(j+dj)))+2)];

currif = curri; currjf = currj;

dif = di; djf = dj;

dred =(int) (dest_pix_r + (src_pix_r-128)

*4*my_cos(3.14159/8*(djf + 0.5)*currjf)

my_cos(3.14159/8(dif + 0.5)*currif));

dgreen =(int) (dest_pix_g + (src_pix_g-128)

*4*my_cos(3.14159/8*(djf + 0.5)*currjf)

my_cos(3.14159/8(dif + 0.5)*currif));

dblue =(int) (dest_pix_b + (src_pix_b-128)

*4*my_cos(3.14159/8*(djf + 0.5)*currjf)

my_cos(3.14159/8(dif + 0.5)*currif));

dj = dj + 1;

}

di = di + 1;

}

dest[(3*(((i+curri)*(dw)+(j+currj))))] = dred;

dest[(3*(((i+curri)*(dw)+(j+currj)))+1)] = dgreen;

dest[(3*(((i+curri)*(dw)+(j+currj)))+2)] = dblue;

}

Figure A.3: DCT Kernel Generated for Configuration M/m/M

163

extern float<1.0*R(v)> my_cos(float v);

extern float<1.0*R(v)> my_sin(float v);

void IDCT_KERNEL(

int(1) src in unrel, int sw, int sh,

int(1)<0.992*R(src,sw,sh,dest,dw,dh,i,j,curri,currj)>

dest in unrel, int dw, int dh, int i, int j,

int curri, int currj)

{

int di; int dj; int currk=0;

float dr; float dg; float db;

int src_pix_r; int src_pix_g; int src_pix_b;

float w1; float w2;

float currif; float currjf; float dif; float djf;

di = 0; dr = 0; dg = 0; db = 0;

while(di +. i < dh) :8 {

dj = 0;

while(dj + j < dw) : 8 {

if(di == 0){ w1 = 0.5; } else { w1 = 1.0; }

if(dj == 0){ w2 = 0.5; } else{ w2 = 1.0; }

currif = curri; currjf = currj; dif = di; djf = dj;

src_pix_r = src[(3*(((i+di)*(sw)+(j+dj))))];

src_pix_g = src[(3*(((i+di)*(sw)+(j+dj)))+1)];

src_pix_b = src[(3*(((i+di)*(sw)+(j+dj)))+2)];

dr = (dr + (src_pix_r)*w1*w2

my_cos(3.14159/8(currjf + 0.5)*djf)

my_cos(3.14159/8(currif + 0.5)*dif));

dg = (dg + (src_pix_g)*w1*w2

my_cos(3.14159/8(currjf + 0.5)*djf)

my_cos(3.14159/8(currif + 0.5)*dif));

db = (db + (src_pix_b)*w1*w2

my_cos(3.14159/8(currjf + 0.5)*djf)

my_cos(3.14159/8(currif + 0.5)*dif));

dj = dj + 1;

}

di = di +. 1;

}

dr = dr/.(8*8)+128; dg = dg/.(8*8)+.128; db = db/.(8*8)+.128;

if(dr <. 0){ dr = 0; } if(dr >. 255){ dr = 255; }

if(dg <. 0){ dg = 0; } if(dg >. 255){ dg = 255; }

if(db <. 0){ db = 0; } if(db > 255) { db = 255; }

dest[(3*(((i+curri)*(dw)+(j+currj))))] = (int) dr;

dest[(3*(((i+curri)*(dw)+(j+currj)))+1)] = (int) dg;

dest[(3*(((i+curri)*(dw)+(j+currj)))+2)] = (int) db;

}

Figure A.4: IDCT Kernel Generated for Configuration M/m/m

164

extern float<1.0*R(f)> rel_fabs(float f);

extern float<1.0*R(f)> rel_exp(float f);

extern float<1.0*R(f)> rel_sqrt(float f);

extern float<1.0*R(f)> rel_log(float f);

float<0.999*R(sptprices,strikes,rates,volatilities,times,otypes,timet,index)>

BLACKSCHOLES_KERNEL(

float(1)<1.0*R(sptprices)> sptprices in unrel,

float(1)<1.0*R(strikes)> strikes in unrel,

float(1)<1.0*R(rates)> rates in unrel,

float(1)<1.0*R(volatilities)> volatilities in unrel,

float(1)<1.0*R(times)> times,

int(1)<1.0*R(otypes)> otypes in unrel,

float timet, int index)

{

float OutputX; float xNPrimeofX; float xK2; float xK2_2;

float xK2_3; float xK2_4; float xK2_5; float xLocal;

float OptionPrice; float xDen; float d1; float d2;

float FutureValueX; float NofXd1; float NofXd2;

float NegNofXd1; float NegNofXd2;

float sptprice; float strike; float rate;

float xVolatility; float time; int otype; bool sign;

sptprice = sptprices[index]; strike = strikes[index];

rate = rates[index]; xVolatility = volatilities[index];

time = times[index]; otype = otypes[index];

d1 = (rate +. 0.5 * xVolatility * xVolatility) * time

+ rel_log(sptprice / strike);

xDen = xVolatility * rel_sqrt(time);

d1 = d1 / xDen; d2 = d1 - xDen;

// continued on the next page ...

Figure A.5: Blackscholes Kernel Generated for Configuration M/m/m (part 1)

165

// ... continued from the previous page

if (d1 < 0.0) {d1 = 0.0-d1; sign = true;

} else { sign = false; }

xNPrimeofX = rel_exp(0.0-0.5 * d1 * d1) * 0.398942;

xK2 = 1.0 / (1.0 + 0.2316419 * d1);

xK2_2 = xK2 * xK2; xK2_3 = xK2_2 * xK2;

xK2_4 = xK2_3 * xK2; xK2_5 = xK2_4 * xK2;

xLocal = xK2_2 * (0.0-0.356563782) + xK2_3 * 1.781477937

+ xK2_4 * (0.0-1.821255978) + xK2_5 * 1.330274429

+ xK2 * 0.319381530;

NofXd1 = 1.0 -. xLocal * xNPrimeofX;

if (sign) { NofXd1 = 1.0 - NofXd1; }

if (d2 < 0.0) { d2 = 0.0-d2; sign = true; }

else { sign = false; }

xNPrimeofX = rel_exp(0.0 -0.5 * d2 *. d2) * 0.3989422;

xK2 = 1.0 / (1.0 + 0.2316419 * d2);

xK2_2 = xK2 * xK2; xK2_3 = xK2_2 * xK2;

xK2_4 = xK2_3 * xK2; xK2_5 = xK2_4 * xK2;

xLocal = xK2_2 * (0.0-0.356563782) +. xK2_3 * 1.781477937

+ xK2_4 * (0.0-1.821255978) + xK2_5 * 1.330274429

+ xK2 * 0.319381530;

NofXd2 = 1.0 - xLocal * xNPrimeofX;

if (sign) { NofXd2 = 1.0 - NofXd2; }

FutureValueX = strike * (rel_exp((0.0-.rate)*(time)));

if (otype == 0) {

OptionPrice = (sptprice * NofXd1) - (FutureValueX * NofXd2);

} else {

OptionPrice = (FutureValueX *(1.0 - NofXd2)) - (sptprice * (1.0 - NofXd1));

}

return OptionPrice;

}

Figure A.6: Blackscholes Kernel Generated for Configuration M/m/m (part 2)

166

float<0.995*R(G,i,j,N,omega)> SOR_KERNEL(

float(1)<1.0*R(G)> G in unrel, int i, int j, int N, float omega)

{

float omega_over_four;

float one_minus_omega;

float up;

float down;

float left;

float right;

float center;

omega_over_four = omega *. 0.25;

one_minus_omega = 1.0 -. omega;

up=G[((i-.1)*.N +. j)];

down=G[((i+.1)*N + j)];

left=G[((i)*.N +. j-.1)];

right=G[((i)*.N + j+.1)];

center=G[((i)*N +. j)];

return omega_over_four *. (up +. down +. left +. right) +.

one_minus_omega *. center;

}

Figure A.7: Sor Kernel Generated for Configuration M/M/M

167

Bibliography

[1] S. Acharya, P. Gibbons, V. Poosala, and S. Ramaswamy. Join synopses for approxi-

mate query answering. SIGMOD, 1999.

[2] S. Achour and M. Rinard. Energy efficient approximate computation with topaz.

OOPSLA, 2015.

[3] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica. Blinkdb:

queries with bounded errors and bounded response times on very large data. Eurosys,

2013.

[4] E. Amigo, J. Gonzalo, and J. Artiles. A comparison of extrinsic clustering evalu-

ation metrics based on formal constraints. Information Retrieval Journal. Springer

Netherlands, July 2008.

[5] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom, U. M. O’Reilly,

and S. Amarasinghe. Opentuner: An extensible framework for program autotuning.

PACT, 2014.

[6] J. Ansel, Y. Wong, C. Chan, M. Olszewski, A. Edelman, and S. Amarasinghe. Lan-

guage and compiler support for auto-tuning variable-accuracy algorithms. CGO, 2011.

[7] B. Arnold, N. Balakrishnan, and H. Nagaraja. A first course in order statistics.

Society for Industrial Mathematics, 2008.

[8] A. Asuncion and D. Newman. UCI machine learning repository, 2007.

[9] W. Baek and T. M. Chilimbi. Green: A framework for supporting energy-conscious

programming using controlled approximation. PLDI, 2010.

[10] T. Bao, Y. Zheng, and X. Zhang. White box sampling in uncertain data processing

enabled by program analysis. OOPSLA, 2012.

[11] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark suite: Char-

acterization and architectural implications. PACT, 2008.

168

[12] J. Birge. Optimization Methods in Dynamic Portfolio Management (Chapter 20).

Elsevier, 2007.

[13] James Bornholt, Todd Mytkowicz, and Kathryn S. McKinley. Uncertain¡T¿: A first-

order type for uncertain data. ASPLOS, 2014.

[14] A. C. Bovik. Handbook of image and video processing. Academic press, 2010.

[15] M. Carbin. Reasoning about Approximate Computing. PhD thesis, EECS Department,

MIT, Feb 2015.

[16] M. Carbin, D. Kim, S. Misailovic, and M. Rinard. Proving acceptability proper-

ties of relaxed nondeterministic approximate programs. PLDI, 2012.

[17] M. Carbin, D. Kim, S. Misailovic, and M. Rinard. Verified integrity properties for

safe approximate program transformations. PEPM, 2013.

[18] M. Carbin, S. Misailovic, M. Kling, and M. Rinard. Detecting and escaping infinite

loops with Jolt. ECOOP, 2011.

[19] M. Carbin, S. Misailovic, and M. Rinard. Verifying quantitative reliability for pro-

grams that execute on unreliable hardware. OOPSLA, 2013.

[20] M. Carbin and M. Rinard. Automatically identifying critical input regions and code

in applications. ISSTA, 2010.

[21] A. Chakarov and S. Sankaranarayanan. Probabilistic program analysis with martin-

gales. CAV, 2013.

[22] S. Chakradhar, A. Raghunathan, and J. Meng. Best-Effort Parallel Execution Frame-

work for Recognition and Mining Applications. IPDPS, 2009.

[23] S. Chaudhuri, M. Clochard, and A. Solar-Lezama. Bridging boolean and quantitative

synthesis using smoothed proof search. volume 49 of ACM SIGPLAN Notices, pages

207–220. ACM, 2014.

[24] S. Chaudhuri, S. Gulwani, and R. Lublinerman. Continuity analysis of programs.

POPL, 2010.

[25] S. Chaudhuri, S. Gulwani, R. Lublinerman, and S. Navidpour. Proving programs

robust. FSE, 2011.

[26] S. Chaudhuri and A. Solar-Lezama. Smooth interpretation. PLDI, 2010.

169

[27] V. Chippa, S. Chakradhar, K. Roy, and A. Raghunathan. Analysis and characteriza-

tion of inherent application resilience for approximate computing. Proceedings of the

50th Annual Design Automation Conference, page 113. ACM, 2013.

[28] G. Claret, S. Rajamani, A. Nori, A. Gordon, and J. Borgström. Bayesian inference

using data flow analysis. FSE, 2013.

[29] Introducing Qualcomm Zeroth Processors: Brain-Inspired Com-

puting. https://www.qualcomm.com/news/onq/2013/10/10/

introducing-qualcomm-zeroth-processors-brain-inspired-computing.

[30] N. Dalvi, C. Ré, and D. Suciu. Probabilistic databases: diamonds in the dirt. Journal

of CACM, 2009.

[31] E. Darulova and V. Kuncak. Sound compilation of reals. POPL, 2014.

[32] M. de Kruijf, S. Nomura, and K. Sankaralingam. Relax: an architectural framework

for software recovery of hardware faults. ISCA, 2010.

[33] M. de Kruijf, K. Sankaralingam, and S. Jha. Static analysis and compiler design for

idempotent processing. PLDI, 2012.

[34] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.

OSDI, 2004.

[35] J. Deutscher and I. Reid. Articulated body motion capture by stochastic search.

International Journal of Computer Vision, 2005.

[36] A. Di Pierro, C. Hankin, and H. Wiklicky. Probabilistic 𝜆-calculus and quantitative

program analysis. Journal of Logic and Computation, 2005.

[37] A. Di Pierro and H. Wiklicky. Concurrent constraint programming: Towards proba-

bilistic abstract interpretation. PPDP, 2000.

[38] E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of pro-

grams. CACM, 18(8), August 1975.

[39] Y. Ding, J. Ansel, K. Veeramachaneni, X. Shen, U. M. O’Reilly, and S. Amarasinghe.

Autotuning algorithmic choice for input sensitivity. ACM SIGPLAN Conference on

Programming Language Design and Implementation, Portland, OR, June 2015.

170

https://www.qualcomm.com/news/onq/2013/10/10/introducing-qualcomm-zeroth-processors-brain-inspired-computing
https://www.qualcomm.com/news/onq/2013/10/10/introducing-qualcomm-zeroth-processors-brain-inspired-computing

[40] P. Düben, J. Joven, A. Lingamneni, H. McNamara, G. De Micheli, K. Palem, and

T. Palmer. On the use of inexact, pruned hardware in atmospheric modelling. Philo-

sophical Transactions of the Royal Society, 372, 2014.

[41] H. Esmaeilzadeh, E. Blem, R. St Amant, K. Sankaralingam, and D. Burger. Dark

silicon and the end of multicore scaling. ISCA, 2011.

[42] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Architecture support for

disciplined approximate programming. ASPLOS, 2012.

[43] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Neural acceleration for

general-purpose approximate programs. MICRO, 2012.

[44] A. Filieri, C. Păsăreanu, and W. Visser. Reliability analysis in symbolic pathfinder.

ICSE, 2013.

[45] A. Gaffar, O. Mencer, W. Luk, P. Cheung, and N. Shirazi. Floating-point bitwidth

analysis via automatic differentiation. FPT, 2002.

[46] I. Goiri, R. Bianchini, S. Nagarakatte, and T. Nguyen. Approxhadoop: Bringing

approximations to mapreduce frameworks. ASPLOS, 2015.

[47] N. Goodman, V. Mansinghka, D. Roy, K. Bonawitz, and J. Tenenbaum. Church: a

language for generative models. UAI, 2008.

[48] Gurobi. http://www.gurobi.com/ .

[49] M. Hall, B. Murphy, S. Amarasinghe, S. Liao, and M. Lam. Interprocedural analysis

for parallelization. Languages and Compilers for Parallel Computing, 1996.

[50] J. Halpern. Reasoning about uncertainty, volume 21. MIT Press Cambridge, 2003.

[51] J.M. Hellerstein, P.J. Haas, and H.J. Wang. Online aggregation. SIGMOD, 1997.

[52] H. Hoffmann, S. Misailovic, S. Sidiroglou, A. Agarwal, and M. Rinard. Using Code

Perforation to Improve Performance, Reduce Energy Consumption, and Respond to

Failures . Technical Report MIT-CSAIL-TR-2009-042, MIT, September 2009.

[53] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and M. Rinard.

Dynamic knobs for responsive power-aware computing. ASPLOS, 2011.

[54] W. Hou, G. Ozsoyoglu, and B. Taneja. Processing aggregate relational queries with

hard time constraints. SIGMOD, 1989.

171

[55] Y. Hu, S. Sundara, and J. Srinivasan. Supporting time-constrained sql queries in

oracle. VLDB, 2007.

[56] H. Kaul, M. Anders, S. Mathew, S. Hsu, A Agarwal, F. Sheikh, R. Krishnamurthy,

and S. Borkar. A 1.45ghz 52-to-162gflops/w variable-precision floating-point fused

multiply-add unit with certainty tracking in 32nm cmos. ISSCC, 2012.

[57] K. Kennedy and J. Allen. Optimizing compilers for modern architectures: a

dependence-based approach. Morgan Kaufman, 2002.

[58] M. Kling, S. Misailovic, M. Carbin, and M. Rinard. Bolt: on-demand infinite loop

escape in unmodified binaries. OOPSLA, 2012.

[59] G.J. Klir. Uncertainty and information. John Wiley & Sons, 2006.

[60] D. Kozen. Semantics of probabilistic programs. Journal of Computer and System

Sciences, 1981.

[61] P. Kulkarni, P. Gupta, and M. Ercegovac. Trading accuracy for power with an un-

derdesigned multiplier architecture. VLSI Design, 2011.

[62] M. Kwiatkowska, G. Norman, and D. Parker. Prism: Probabilistic symbolic model

checker. Computer Performance Evaluation: Modelling Techniques and Tools, 2002.

[63] S. Lahiri, A. Haran, S. He, and Z. Rakamaric. Automated differential program veri-

fication for approximate computing. Technical report, May 2015.

[64] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong Program

Analysis & Transformation. CGO, 2004.

[65] K. Lee, A. Shrivastava, I. Issenin, N. Dutt, and N. Venkatasubramanian. Mitigating

soft error failures for multimedia applications by selective data protection. CASES,

2006.

[66] L. Leem, H. Cho, J. Bau, Q. Jacobson, and S. Mitra. Ersa: error resilient system

architecture for probabilistic applications. DATE, 2010.

[67] S. Liu, K. Pattabiraman, T. Moscibroda, and B. Zorn. Flikker: saving dram refresh-

power through critical data partitioning. ASPLOS, 2011.

[68] R. Majumdar and I. Saha. Symbolic robustness analysis. RTSS, 2009.

172

[69] R. Majumdar, I. Saha, and Z. Wang. Systematic testing for control applications.

MEMOCODE, 2010.

[70] Xiph.org Video Test Media. http://media.xiph.org/video/derf.

[71] J. Meng, A. Raghunathan, S. Chakradhar, and S. Byna. Exploiting the forgiving

nature of applications for scalable parallel execution. IPDPS, 2010.

[72] J. Miao, A. Gerstlauer, and M. Orshansky. Approximate logic synthesis under general

error magnitude and frequency constraints. ICCAD), 2013.

[73] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. Rinard. Chisel: Reliability- and

accuracy-aware optimization of approximate computational kernels. OOPSLA, 2014.

[74] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. Rinard. Reliability-aware op-

timization of approximate computational kernels with rely. Technical Report MIT-

CSAIL-TR-2014-001, MIT, 2014.

[75] S. Misailovic, D. Kim, and M. Rinard. Parallelizing sequential programs with statis-

tical accuracy tests. ACM TECS Special Issue on Probabilistic Embedded Computing,

2013.

[76] S. Misailovic and M. Rinard. Synthesis of randomized accuracy-aware map-fold pro-

grams. Technical Report MIT-CSAIL-TR-2013-031, MIT, 2013.

[77] S. Misailovic, D. Roy, and M. Rinard. Probabilistic and Statistical Analysis of Perfo-

rated Patterns. Technical Report MIT-CSAIL-TR-2011-003, MIT, 2011.

[78] S. Misailovic, D. Roy, and M. Rinard. Probabilistically accurate program transfor-

mations. SAS, 2011.

[79] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard. Quality of service profiling.

ICSE, 2010.

[80] S. Misailovic, S. Sidiroglou, and M. Rinard. Dancing with uncertainty. RACES, 2012.

[81] D. Monniaux. Abstract interpretation of probabilistic semantics. SAS, 2000.

[82] D. Monniaux. An abstract monte-carlo method for the analysis of probabilistic pro-

grams. POPL, 2001.

[83] R.E. Moore. Interval analysis. Prentice-Hall, 1966.

173

[84] C. Morgan and A. McIver. pGCL: formal reasoning for random algorithms. South

African Computer Journal, 22, 1999.

[85] S. Narayanan, J. Sartori, R. Kumar, and D. Jones. Scalable stochastic processors.

DATE, 2010.

[86] N. Nethercote and J. Seward. Valgrind A Program Supervision Framework. Electronic

Notes in Theoretical Computer Science, 2003.

[87] New IBM SyNAPSE Chip Could Open Era of Vast Neural Networks. http://www-03.

ibm.com/press/us/en/pressrelease/44529.wss.

[88] W. Osborne, R. Cheung, J. Coutinho, W. Luk, and O. Mencer. Automatic accuracy-

guaranteed bit-width optimization for fixed and floating-point systems. FPL, 2007.

[89] K. Palem. Energy aware computing through probabilistic switching: A study of limits.

IEEE Transactions on Computers, 2005.

[90] J. Park, H. Esmaeilzadeh, X. Zhang, M. Naik, and W. Harris. Flexjava: Language

support for safe and modular approximate programming. FSE, 2015.

[91] J. Park, X. Zhang, K. Ni, H. Esmaeilzadeh, and M. Naik. Expectation-oriented

framework for automating approximate programming. Technical Report GT-CS-14-

05, Georgia Institute of Technology, 2014.

[92] S. Park, F. Pfenning, and S. Thrun. A probabilistic language based upon sampling

functions. POPL, 2005.

[93] N. Ramsey and A. Pfeffer. Stochastic lambda calculus and monads of probability

distributions. POPL, 2002.

[94] J. Reed and B. C. Pierce. Distance makes the types grow stronger: a calculus for

differential privacy. ICFP, 2010.

[95] M. Rinard. Probabilistic accuracy bounds for fault-tolerant computations that discard

tasks. ICS, 2006.

[96] M. Rinard. Using early phase termination to eliminate load imbalances at barrier

synchronization points. OOPSLA, 2007.

[97] M. Rinard, C. Cadar, D. Dumitran, D.M. Roy, T. Leu, andW.S. Beebee Jr. Enhancing

server availability and security through failure-oblivious computing. OSDI, 2004.

174

http://www-03.ibm.com/press/us/en/pressrelease/44529.wss
http://www-03.ibm.com/press/us/en/pressrelease/44529.wss

[98] M. Ringenburg, A. Sampson, I. Ackerman, L. Ceze, and D. Grossman. Monitoring

and debugging the quality of results in approximate programs. ASPLOS, 2015.

[99] P. Roy, R. Ray, C. Wang, and W. Wong. Asac: automatic sensitivity analysis for

approximate computing. LCTES, 2014.

[100] C. Rubio-González, C. Nguyen, H. Nguyen, J. Demmel, W. Kahan, K. Sen, D. Bailey,

C. Iancu, and D. Hough. Precimonious: Tuning assistant for floating-point precision.

SC, 2013.

[101] N. Saheb-Djahromi. Probabilistic LCF. MFCS, 1978.

[102] M. Samadi, D. Jamshidi, J. Lee, and S. Mahlke. Paraprox: Pattern-based approxi-

mation for data parallel applications. ASPLOS, 2014.

[103] M. Samadi, J. Lee, D. Jamshidi, A. Hormati, and S. Mahlke. Sage: Self-tuning

approximation for graphics engines. MICRO, 2013.

[104] A. Sampson, A. Baixo, B. Ransford, T. Moreau, J. Yip, L. Ceze, and M. Oskin. Ac-

cept: A programmer-guided compiler framework for practical approximate computing.

Technical report, 2015.

[105] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D. Grossman.

Enerj: Approximate data types for safe and general low-power computation. PLDI,

2011.

[106] A. Sampson, J. Nelson, K. Strauss, and L. Ceze. Approximate storage in solid-state

memories. MICRO, 2013.

[107] A. Sampson, P. Panchekha, T. Mytkowicz, K. McKinley, D. Grossman, and L. Ceze.

Expressing and verifying probabilistic assertions. PLDI, 2014.

[108] S. Sankaranarayanan, A. Chakarov, and S. Gulwani. Static analysis for probabilistic

programs: inferring whole program properties from finitely many paths. PLDI, 2013.

[109] H. Saputra, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, J. S. Hu, C-H. Hsu, and

U. Kremer. Energy-conscious compilation based on voltage scaling. LCTES, 2002.

[110] E. Schkufza, R. Sharma, and A. Aiken. Stochastic optimization of floating-point

programs with tunable precision. PLDI, 2014.

[111] M. Shoushtari, A. Banaiyan, and N. Dutt. Relaxing manufacturing guard-bands in

memories for energy savings. Technical Report CECS TR 10-04, UCI, 2014.

175

[112] S. Sidiroglou, O. Laadan, C. Perez, N. Viennot, J. Nieh, and A. Keromytis. Assure:

automatic software self-healing using rescue points. ASPLOS, 2009.

[113] S. Sidiroglou, S. Misailovic, H. Hoffmann, and M. Rinard. Managing performance vs.

accuracy trade-offs with loop perforation. FSE, 2011.

[114] M. Smith. Probabilistic abstract interpretation of imperative programs using trun-

cated normal distributions. Electronic Notes in Theoretical Computer Science, 2008.

[115] M.D. Springer. The algebra of random variables. John Wiley & Sons, 1979.

[116] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S Foster. From program verification

to program synthesis. POPL, 2010.

[117] R. St Amant, A. Yazdanbakhsh, J. Park, B. Thwaites, H. Esmaeilzadeh, A. Hassibi,

L. Ceze, and D. Burger. General-purpose code acceleration with limited-precision

analog computation. ISCA, 2014.

[118] Parsec Benchmark Suite. http://parsec.cs.princeton.edu/.

[119] SciMark2 Benchmark Suite. math.nist.gov/scimark2/.

[120] J. Tong, D. Nagle, and R. Rutenbar. Reducing power by optimizing the necessary

precision/range of floating-point arithmetic. IEEE Transactions on Very Large Scale

Integrated Systems, 2000.

[121] S. Venkataramani, V. Chippa, S. Chakradhar, K. Roy, and A. Raghunathan. Quality

programmable vector processors for approximate computing. MICRO, 2013.

[122] S. Venkataramani, A. Ranjan, K. Roy, and A. Raghunathan. AxNN: energy-efficient

neuromorphic systems using approximate computing. ISLPED, 2014.

[123] L. Wanner, L. Lai, A. Rahimi, M. Gottscho, P. Mercati, C. Huang, F. Sala, Y. Agar-

wal, L. Dolecek, N. Dutt, et al. Nsf expedition on variability-aware software: Recent

results and contributions. Information Technology, 57(3):181–198, 2015.

[124] R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu. On reconfiguration-oriented ap-

proximate adder design and its application. ICCAD. IEEE Press, 2013.

[125] Z. Zhu, S. Misailovic, J. Kelner, and M. Rinard. Randomized accuracy-aware program

transformations for efficient approximate computations. POPL, 2012.

176

	Abstract
	Introduction
	Accuracy-Aware Program Transformations
	Accuracy-Aware Program Optimization
	Approximate Kernels
	Analyzing Approximate Kernel Transformations
	Searching for Approximate Kernel Transformations

	Problem Statement
	Contributions

	Characterization of Approximate Kernels Using Loop Perforation
	Sensitivity Profiling in SpeedPress
	Developer's Specification
	Loop Perforation Transformation
	Sensitivity Profiling Algorithm

	Benchmarks and Inputs
	Quantitative Exploration Results
	Sensitivity Profiling Results
	Tradeoff Space Exploration Results
	Execution Time of Analysis Results

	Computational Patterns Amenable to Loop Perforation
	Functional Patterns
	Structural Patterns

	Analysis of Perforated Computations in Benchmarks
	x264
	Bodytrack
	Swaptions
	Ferret
	Canneal
	Blackscholes
	Streamcluster

	Analysis of Perforated Kernel's Absolute Error
	Worst-Case Absolute Error Analysis
	Error Analysis Results

	Discussion
	Approximate Kernels
	Limitations of Testing-Based Accuracy-Aware Optimization

	Probabilistic Analysis of Kernels Transformed with Loop Perforation
	Motivating Example
	Preliminaries
	Pattern Components
	Definition of Loop Perforation
	Useful Probabilistic Inequalities

	Sum Pattern
	General Inputs
	Independent Inputs
	Independent Gaussian Inputs
	Independent Bounded Inputs
	Random Walk

	Mean Pattern
	Argmin-Sum Pattern
	Gaussian Inputs
	Analysis for Approximate Assumptions

	Ratio Pattern
	Gamma Inputs

	Discussion

	Reliability-Aware and Accuracy-Aware Optimization with Chisel
	Motivating Example
	Reliability Specification
	Obtaining Kernel's Reliability Specification
	Optimization Results

	Approximate Hardware Specification and Semantics
	Hardware Specification
	Hardware Semantics
	Compilation and Runtime Model
	Big-step Semantics

	Chisel Optimization Algorithm
	Configurable Approximate Programs
	Labeled Instructions and Variables
	Intermediate Language for Analysis

	Reliability Constraint Construction
	Reliability Predicates
	Semantics of Reliability Predicates
	Paired Execution Semantics
	Reliability Precondition Generator
	Optimization Constraint Construction

	Accuracy Constraint Construction
	Accuracy Specification
	Accuracy Predicates
	Extended Reliability Predicates
	Extended Reliability Precondition Generator
	Auxiliary Interval Analysis
	Analysis of Arithmetic Instructions
	Generalized Reliability and Accuracy Analysis
	Optimization Constraint Construction
	Soundness

	Energy Objective Construction
	Absolute Energy Model
	Relative Energy Model

	Final Optimization Problem Statement
	Discussion
	Computational Patterns with Approximate Kernels
	Limitations of Chisel's Optimization
	From Kernel Optimization to Full Program Optimization

	Evaluation and Extensions of Chisel Optimization Algorithm
	Chisel Implementation
	Hardware Reliability and Energy Specifications
	Benchmarks
	Sensitivity Profiling Results
	Optimization Problem Solving Results
	Energy Savings Results
	Output Quality Results
	Kernel Transformations
	Chisel's Extensions
	Operation Selection Granularity
	Function Calls
	Overhead of Operation Mode Switching
	Array Index Computations and Control Flow
	Energy Analysis and Control Flow
	Hardware with Multiple Approximate Operation Specifications
	Interval-Based Reliability Specifications
	Multiple Kernels

	Related Work
	Compiler-Level Approximations
	Sensitivity Analysis
	Safety Analysis
	Search for Accuracy-Performance Tradeoffs

	Approximation at Intersection of Software and Hardware
	Probabilistic Languages and Analyses
	Analytic Properties of Programs
	Approximate Queries in Database Systems

	Future Work
	Conclusion
	Transformed Chisel Kernels

