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We present Pasado, a technique for synthesizing precise static analyzers for Automatic Differentiation. Our

technique allows one to automatically construct a static analyzer specialized for the Chain Rule, Product Rule,

and Quotient Rule computations for Automatic Differentiation in a way that abstracts all of the nonlinear

operations of each respective rule simultaneously. By directly synthesizing an abstract transformer for the

composite expressions of these 3 most common rules of AD, we are able to obtain significant precision

improvement compared to prior works which compose standard abstract transformers together suboptimally.

We prove our synthesized static analyzers sound and additionally demonstrate the generality of our approach

by instantiating these AD static analyzers with different nonlinear functions, different abstract domains (both

intervals and zonotopes) and both forward-mode and reverse-mode AD.

We evaluate Pasado on multiple case studies, namely computing certified bounds on a neural network’s local

Lipschitz constant, soundly bounding the sensitivities of financial models, certifying monotonicity, and lastly,

bounding sensitivities of the solutions of differential equations from climate science and chemistry for verified

ranges of initial conditions and parameters. The local Lipschitz constants computed by Pasado on our largest

CNN are up to 2750× more precise compared to the existing state-of-the-art zonotope analysis. Additionally,

the bounds obtained on the sensitivities of the climate, chemical, and financial differential equation solutions

are between 1.31 − 2.81× more precise (on average) compared to a state-of-the-art zonotope analysis.
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1 INTRODUCTION
Automatic Differentiation (AD) has served as the backbone for many applications across Computer

Science. Indeed, AD has driven much of the modern deep learning revolution since derivative com-

putations are essential both for training Deep Neural Networks (DNNs) and ensuring trustworthy

Machine Learning (ML). In particular, guarantees on derivatives are necessary for establishing
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many important properties in ML systems, e.g., certifying Lipschitz bounds of DNNs [Jordan and

Dimakis 2020], demonstrating privacy of DNNs [Rosenberg et al. 2023], proving fairness [Gupta

et al. 2021] or providing explanations of how DNNs make their decisions [Lerman et al. 2021]. AD is

also used extensively in scientific computing for tasks as diverse as climate modeling [Mametjanov

et al. 2012], analyzing differential equations [Bendtsen and Stauning 1996; Ma et al. 2021] and

sensitivity analysis [Hovland et al. 2005]. Formalizations of derivatives computed using AD and

their properties also have widespread use in Graphics [Bangaru et al. 2021; Yang et al. 2022].

Given the importance of formalizing properties over derivatives, formal verification techniques

have recently been applied to AD [Hückelheim and Hascoët 2022; Hückelheim et al. 2018; Jordan

and Dimakis 2021; Laurel et al. 2022a]. In particular, abstract interpretation [Cousot and Cousot

1977] has been used to statically analyze AD code [Jordan and Dimakis 2021; Laurel et al. 2022a;

Vassiliadis et al. 2016] to ensure guaranteed bounds on derivatives.

Existing Abstract Interpretation work focuses primarily on developing precise abstract trans-

formers for linear operations and assignments [Cousot and Halbwachs 1978; Singh et al. 2017].

However, AD computations are highly non-linear. Compared to just the original program (called the

primal), the derivative program AD computes (called the adjoint) can have 2-5× more non-linear

operations [Griewank and Walther 2008], e.g., for the most common operations:

• Every composition with a non-linear function in the primal requires a separate composition with

that function’s derivative in the adjoint and an additional multiplication, due to the chain rule.

• A single multiplication in the primal leads to 2 separate multiplications in the adjoint due to the

product rule.

• A single division in the primal leads to 4 nonlinear operations in the adjoint due to quotient rule.

While one could reduce these groups of nonlinear operations to a series of basic (nonlinear) primi-

tives, and then compose the corresponding primitives’ abstract transformers, this construction loses

precision. Even leveraging variable sharing in AD programs to reduce the number of applications

of those basic abstract transformers, as in Laurel et al. [2022b] still loses precision as our evaluation

will show. While one could try to design custom abstract transformers for groups of nonlinear

operations, as in Singh et al. [2019a], this idea requires significant human expertise to handcraft

the transformers and must be redone for each different function (e.g. tanh(𝑥), 𝜎 (𝑥)) [Fryazinov
et al. 2010] and for each different abstract domain. Hence to date, there exists no general recipe for

constructing AD static analyzers which can precisely abstract multiple non-linear operations for

different functions, support multiple abstract domains and support both modes of AD.

Challenges. We focus on developing a general technique to synthesize precise static analyzers

tailored to the needs and structure of AD. By abstracting multiple nonlinear computations all at once

instead of suboptimally composing abstractions of each primitive operation, we seek to significantly

improve the precision of the abstract interpretation of AD. Lastly, we seek to remove the burden

on the abstraction designer from having to design transformers for each function and each abstract

domain and each mode of AD. However, this approach must overcome two major challenges:

(1) Determine the right granularity for the abstraction. While grouping more operations together

for the abstraction improves precision, the difficulty in synthesizing abstract transformers scales

with the number of operations due to the need to solve multivariate optimization problems.

Hence we must identify patterns to abstract that strike a balance between scalability and preci-

sion. The composite abstraction of a group of AD operations should be general enough to yield

efficient and precise static analyzers for (1) multiple different functions (e.g. 𝜎 (𝑥), exp(𝑥),
√
𝑥)

and (2) be instantiated with different abstract domains (e.g. interval, zonotope [Ghorbal et al.

2009], DeepPoly [Singh et al. 2019b]). Finally, we want to make sure the AD patterns we abstract

are general enough to support both forward-mode and reverse-mode AD.
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(2) Prove the synthesis procedure obtains sound abstract transformers for different functions and

abstract domains. To synthesize an abstract transformer for a group of nonlinear operations

over multiple variables, one must first solve a multi-dimensional, non-convex optimization

problem to obtain soundness guarantees. However, we also want the proof techniques used to

prove soundness to be general so that we can easily apply them to different nonlinear functions

as well as have these proof technique support different abstract domains.

Our Work. To address these challenges, we propose Pasado. The main idea of Pasado is to

soundly synthesize precise linear abstract transformers that are tailored to the Chain rule, Product

Rule and Quotient Rule expressions of AD. Given their ubiquity in AD programs, we have identified

that these patterns strike a desirable balance between efficiency, precision and tractability of the

synthesized transformers. Pasado synthesizes sound abstract transformers for these composite,
multivariate, nonlinear AD expressions directly instead of naively composing standard abstractions

for each primitive nonlinear operation together. Additionally, Pasado supports both forward- and

reverse-mode AD. Pasado’s procedure is automated, hence one need not design hand-crafted

abstract transformers as in Singh et al. [2018] and Du et al. [2021]. Furthermore, Pasado is general

enough to support different function primitives and different abstract domains so that this idea can

be fully leveraged to synthesize general static analyzers for differentiable programming languages.

Lastly, Pasado is tractable, scalable and efficient enough to analyze large computations such as

automatically differentiating through Convolutional Neural Networks (CNNs).

Pasado synthesizes these abstract transformers using a multi-step procedure. We first use linear

regression to fit a hyperplane to the pattern we are trying to abstractly interpret. This step involves

sub-sampling the AD expression at concrete points in a given input interval and using those

evaluations for the linear regression. These input bounds may come from variables in the primal,

hence Pasado simultaneously uses existing abstract interpretation methods to obtain bounds on the

primal. Additionally, because the hyperplane is only a linear approximation it is unsound, hence we

must also account for the deviation between this hyperplane and the original function to maintain

soundness. Thus we solve for the maximum deviation between this hyperplane and the original

AD expression we are abstracting and use this deviation to obtain sound linear bounds enclosing

the hyperplane. A core part of our contribution is the mathematical proof of an efficient solution

to this maximization problem. Specifically, we show how to provably rule out virtually all critical

points, effectively reducing this optimization problem to examining boundary points.

We evaluate Pasado on multiple Case Studies including (1) robust sensitivity analysis of ODE

solutions for both Neural ODEs and climate models, (2) provable bounds on sensitivities of financial

models, (3) local Lipschitz robustness certification and (4) monotonicity certification. Due to

Pasado’s precision and scalability, the bounds obtained on the sensitivities of the climate, chemical,

and financial differential equation solutions are between 1.31 − 2.81× more precise (on average)

compared to a state-of-the-art zonotope AD analysis and on our largest CNN, the local Lipschitz

constants computed by Pasado are up to 2750× more precise compared to the existing state-of-the-

art zonotope AD analysis from Laurel et al. [2022b].

Contributions. In summary, this paper makes the following contributions:

(1) Approach. We present Pasado, a general formalism for synthesizing precise static analyzers

for composite AD expressions. Due to Pasado’s generality, this approach can be instantiated

for a broad class of functions with both forward and reverse mode AD and with different

abstract domains. (Sections 4.1-4.3)

(2) Guarantees. We formally prove the soundness of the abstract transformers synthesized by

Pasado (Section 4.4) and theorems about their precision and generality (Sections 4.5-4.6).
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(3) Implementation. We implement Pasado as a practical tool and instantiate it with both

forward- and reverse-mode AD, as well as both the interval and zonotope domains and their

reduced product. (Section 5.1). Pasado is available at https://github.com/uiuc-arc/Pasado.

(4) Evaluation. We experimentally show the benefit of Pasado on Lipschitz certification, mono-

tonicity analysis and differential equation models from chemistry, finance, and climate

science, and derive polyhedral bounds on sensitivities of these ODE solutions for the first

time. (Sections 5.2-5.5)

2 EXAMPLE
We next proceed with a simple example illustrating our technique.

Running Example. A key application of static analysis of Automatic Differentiation that we

target in this work is for robust sensitivity analysis of ordinary differential equation (ODE) solvers.

We note that we are the first to consider such a static analysis. Our running example consists of

automatically differentiating through the ODE solver (as in Ma et al. [2021]) for a simple ODE. Our

ODE is a popular energy balance model used in climate science [Kaper and Engler 2013], where the

global temperature 𝑇 is a function of time 𝑡 and 𝑄, 𝑅, 𝛼, 𝑒 are the global insolation, heat capacity,

albedo and (scaled) emissivity parameters respectively. This ODE is given as:

𝑑𝑇

𝑑𝑡
=
𝑄 · (1 − 𝛼) − 𝑒 ·𝑇 4

𝑅
(1)

The program that we will statically analyze solves this ODE numerically, thus obtaining a

sequence [𝑇0, ...,𝑇𝑚] of temperatures for𝑚 time steps. To solve the ODE numerically, we will need

the system dynamics function (RHS of Eq. 1) which as can be seen, is described by the function

𝑓 (𝑇, 𝑡,𝑄, 𝛼, 𝑒, 𝑅) = 𝑄 · (1−𝛼 )−𝑒 ·𝑇 4

𝑅
. The program for a simple Euler ODE solver applied to Eq. 1, which

we will denote as ODESolve𝑓 is given below:

1 function ODESolve 𝑓 (𝑄,𝛼, 𝑒, 𝑅, 𝑡0,𝑇0, 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒, 𝑠𝑡𝑒𝑝𝑠 ) :
2 for ( i = 1 ; i < 𝑠𝑡𝑒𝑝𝑠 ; i ++) {

3 𝑇𝑖 = 𝑇𝑖−1 + 𝑓 (𝑇𝑖−1, 𝑡𝑖−1,𝑄, 𝛼, 𝑒, 𝑅) · 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 / / Eu l e r i n t e g r a t o r

4 𝑡𝑖 = 𝑡𝑖−1 + 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 }

5 return T , t

Thus by solving the ODE numerically (instead of symbolically) we can automatically differentiate

through the numerical ODE solver itself, to get the derivative of the numerical solver’s output with

respect to the initial condition inputs, in this case 𝑇0.

Applying AD to ODESolve is possible because ODESolve is itself a differentiable program since

it performs only differentiable operations, which are just addition, multiplication (by the step size),

as well as the multiplications, division, subtraction, and the (4
𝑡ℎ
) power function found inside of

the dynamics 𝑓 . Automatically differentiating through ODESolve will allow us to better understand

how sensitive the numerical solution of ODEs are to different initial conditions or parameters (e.g.

different values of 𝑒 or 𝑅). Hence we will ultimately compute

𝜕ODESolve𝑓 (𝑄,𝛼,𝑒,𝑅,𝑡0,𝑇0,𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒,𝑠𝑡𝑒𝑝𝑠 )
𝜕𝑇0

.

Abstract Sensitivity Analysis. However, our goal is to not just automatically differentiate

through ODESolve to perform the sensitivity analysis at individual points (as done in Ma et al.

[2021]), rather our goal is to abstractly compute these sensitivities for an entire range of initial
conditions. Furthermore, since the physical parameters of this climate ODE can vary (e.g. 𝑒 has

dependence on the weather), we want this sensitivity analysis to capture an entire range of feasible

parameter values. This abstract sensitivity analysis is performed by abstractly interpreting AD

applied to the ODE solver. Hence we abstractly compute

𝜕ODESolve𝑓 (𝑄,𝛼,𝑒,𝑅,𝑡0,𝑇0,𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒,𝑠𝑡𝑒𝑝𝑠 )
𝜕𝑇0

for
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1 T [ 0 ] . r e a l , T [ 0 ] . dua l = . . . / / These values are passed in as inputs
2 e . r e a l , e . dua l = . . .

3 R . r e a l , R . dua l = . . .

4 s t e p _ s i z e = . . . / / always treated as fixed scalar constant
5 Q , a lpha = . . . / / treated as fixed scalar constants for this example
6 C = Q∗ (1 − a lpha ) / / constant propagation for Q and alpha (both are constants)
7

8 i 1 . r e a l = FourthPower ( T [ 0 ] . r e a l ) / / Computes Line 3 of ODESolve𝑓
9 i 1 . dua l = 4 ∗Cube ( T [ 0 ] . r e a l ) ∗ T [ 0 ] . dua l / / Chain Rule
10

11 i 2 . r e a l = e . r e a l ∗ i 1 . r e a l

12 i 2 . dua l = ( e . r e a l ∗ i 1 . dua l ) + ( e . dua l ∗ i 1 . r e a l ) / / Product Rule
13

14 i 3 . r e a l , i 3 . dua l = C − i 2 . r e a l , − i 2 . dua l / / Linearity
15

16 i 4 . r e a l = i 3 . r e a l / R . r e a l

17 i 4 . dua l = ( ( i 3 . dua l ∗R . r e a l ) − ( i 3 . r e a l ∗R . dua l ) ) / Square ( R . r e a l ) / / Quotient Rule
18

19 T [ 1 ] . r e a l , T [ 1 ] . dua l = ( s t e p _ s i z e ∗ i 4 . r e a l )+T [ 0 ] . r e a l , ( s t e p _ s i z e ∗ i 4 . dua l )+T [ 0 ] . dua l

Fig. 1. Unrolled AD source code for differentiating a single iteration of ODESolve𝑓

various ranges of 𝑇0, 𝑒 and 𝑅. This abstract sensitivity analysis can be viewed as a static analysis

(using abstract interpretation) of a differentiable program, in this case the ODESolve program.

Specification. By performing the AD-based sensitivity analysis abstractly for ranges of initial
conditions and parameter values, we can ultimately prove properties like the monotonicity of

the numerical ODE solution with respect to the initial values for all values in the given input

ranges. Proving monotonicity of the final ODE solution with respect to the initial conditions has

been shown to be important for understanding physical processes [Wang et al. 2022]. Proving

monotonicity of the output of this climate model with respect to the initial temperature conditions

for a range of values and atmospheric conditions, allows us to prove properties such as the future

temperature (after 𝑁 time steps) being a strictly increasing function of the current temperature (the

initial condition), even under a range of different atmospheric conditions. Thus, our goal in this

example is to prove monotonicity of the future temperature computed by ODESolve𝑓 with respect

to the initial temperature, 𝑇0 after 𝑁 = 12 steps when both 𝑇0 and the atmospheric conditions are

known only up to some interval. We will prove this property by certifying that the derivative is

always non-zero. While abstract interpretation of AD has been done before [Laurel et al. 2022a,b;

Vassiliadis et al. 2016], we will soon see that those techniques are not precise enough to prove the

monotonicity property that we are interested in.

Example Source Code. Since ODE solvers run for a fixed, finite number of iterations, conceptu-

ally they can be unrolled. Hence the first step is to unroll the ODE solver program into straight-line

code that we can abstractly interpret. For illustration simplicity, Pasado’s abstract AD applied to

a single iteration of ODESolve𝑓 is shown in Fig. 1, however, Pasado can analyze any fixed, finite

number of iterations, though more iterations will diminish the precision. Indeed, the full results of

Pasado’s analysis after 12 iterations are later shown in Fig. 3. Since we are performing AD, we must

also keep track of each variable’s derivative. For this example, we elect for forward mode AD, hence

we store each variable’s value in the real component and its derivative in the associated dual
component, as we encode derivatives using the canonical dual numbers [Griewank and Walther

2008]. Hence, our concrete semantics are first-order version of [Laurel et al. 2022b]. As will be seen

later, our approach is general enough to support both forward and reverse mode AD. Lines 1-5

correspond to program statements that read in and store the input values for the initial condition

𝑇0, as well as the parameter values for 𝑄, 𝛼, 𝑒 and 𝑅.

Chain Rule. On line 9, we compute the derivative of composing the 4
𝑡ℎ

power function with

the input variable𝑇0, stored in variable i1. Due to the chain rule, this step also requires multiplying
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by T[0].dual. We compute the derivative of this function application using the chain rule, where

in this case
𝑑
𝑑𝑇0
𝑇 4

0
= 4𝑇 3

0
. Between the cube function (Cube(T[0])), and the multiplication by

T[0].dual, there are 3 nonlinear operations (all multiplications) involved in the computation of

i1.dual. These multiple nonlinear operations pose a direct challenge for the subsequent abstract

interpretation, however, as we will see, Pasado is specifically designed to overcome this challenge.

Product Rule. To propagate derivatives through the computation, we now need to compute

the derivative of the product of 𝑇 4
with 𝑒 . This step involves computing the product rule for

the program variables i1 and e. However, as can be seen on line 12, the product rule involves 2

nonlinear multiplication operations. Upon computing both the product of𝑇 4
with 𝑒 (line 11) and its

derivative (line 12), we next execute line 14 to compute the difference of this product with𝑄 · (1−𝑎),
which has already been stored in variable C in line 6. Because of linearity, the derivative of this

difference (line 14) is straightforward to compute. Thus upon completion of line 14, we finally have

computed both the numerator of the dynamics function 𝑓 , and its associated derivative.

Quotient Rule. Having computed the intermediate expression needed for the numerator, we

next come to the division operation shown in line 16. To compute the derivative of this division,

AD must compute the quotient rule, as shown in line 17. It is important to see that the quotient rule

has 4 nonlinear operations, which as mentioned, pose challenges for precise abstract interpretation.

Upon computing the quotient and its derivative (with respect to𝑇0), we finally compute the value

of the next time step, 𝑇1 and its associated derivative in line 19. Thus we now have both the value

of the temperature at the next time step as well as the derivative of the temperature at the next

time step with respect to the initial condition, which is just

𝜕ODESolve𝑓 (𝑄,𝛼,𝑒,𝑅,𝑡0,𝑇0,𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒,𝑠𝑡𝑒𝑝𝑠 )
𝜕𝑇0

. We

will next see how to abstractly interpret this AD computation precisely using Pasado.

Precise Abstract Interpretation with Pasado. As observed in the preceding description,

there are multiple nonlinear operations involved in computing the derivatives that are stored

in the intermediate variables’ dual components. These nonlinearities present a challenge for

precise abstract interpretation, as precise numerical abstract domains like zonotopes and polyhedra

were originally designed for analyzing linear functions and are thus not well suited for handling

nonlinear operations [Adjé et al. 2010]. For instance, with the zonotope abstract domain, each

nonlinear operation introduces a new noise symbol, thus the large number of nonlinear operations

(like multiplications) in AD runs the risk of substantial over-approximation. Existing abstract

interpretations for AD [Laurel et al. 2022a,b] suffer from these weaknesses and, as we will later see,

produce bounds that are too loose to be useful for our analysis.

For this example, we will use the reduced product of the zonotope domain with intervals

to represent our abstraction. Pasado’s synthesis method produces precise abstractions for both

domains improving the precision of the reduced product. As we will later see, our construction is

general and thus could be instantiated with other abstract domains such as the DeepPoly domain

or quadratic zonotopes. Since we are using the reduced product of zonotopes with intervals, the

abstract program state is shown in purple where H Var = 𝑎0 +
∑
𝑗 𝑎 𝑗𝜖 𝑗 , 𝑙𝑉𝑎𝑟 = 𝑐𝑙 , 𝑢𝑉𝑎𝑟 = 𝑐𝑢 I signifies

that variable 𝑉𝑎𝑟 (which could be either a real or dual component) is abstractly represented with

affine form 𝑎0 +
∑
𝑗 𝑎 𝑗𝜖 𝑗 , but also maintains, tighter, refined bounds [𝑐𝑙 , 𝑐𝑢]. Here 𝑎 𝑗 , 𝑐𝑙 , 𝑐𝑢 ∈ R and

each 𝜖 𝑗 ∈ [−1, 1] is a noise symbol, which intuitively is a term in a first-order symbolic polynomial.

Fig. 2 shows the abstract interpretation of the original source code. In this example we want to

abstractly compute guaranteed bounds on

𝜕ODESolve𝑓 (𝑄,𝛼,𝑒,𝑅,𝑡0,𝑇0,𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒,𝑠𝑡𝑒𝑝𝑠 )
𝜕𝑇0

when 𝑇0 ∈ [275, 400],
𝑅 ∈ [2.65, 2.95], 𝑒 ∈ [0.6𝜎, 0.9𝜎], 𝛼 = 0.3, 𝑄 = 342, 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 = 0.025 and 𝑠𝑡𝑒𝑝𝑠 = 1. For the scaled

emmisivity 𝑒 , the value of 𝜎 is the Stefan-Boltzmann constant 5.67 · 10−8. Thus to specify these

bounds over the input, we initialize the abstract program state as shown in lines 2-16.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 291. Publication date: October 2023.



Synthesizing Precise Static Analyzers for Automatic Differentiation 291:7

SynthesizedAbstraction forChainRule.The first computationwe perform is the computation

of the quartic power function on line 18 and its derivative on line 21. As our contribution is focused

solely on constructing synthesized abstraction for just the derivative terms, we use the standard

interval and zonotope multiplication abstract transformers for the quartic function on line 18.

It is important to note that after abstractly executing line 18 but before executing line 21, the

zonotope abstract state will have 8 noise symbols 𝜖1−8. To abstractly interpret line 21, we use

Pasado’s synthesized abstract transformer instead of the standard zonotope multiplication abstract

transformer. The first step of Pasado’s synthesis procedure is to solve a linear regression problem

for 𝐴, 𝐵,𝐶 ∈ R such that within the box [𝑙𝑇 [0] .𝑟𝑒𝑎𝑙 , 𝑢𝑇 [0] .𝑟𝑒𝑎𝑙 ] × [𝑙𝑇 [0] .𝑑𝑢𝑎𝑙 , 𝑢𝑇 [0] .𝑑𝑢𝑎𝑙 ] ⊂ R2:

𝐴 · (𝑇 [0] .𝑟𝑒𝑎𝑙) + 𝐵 · (𝑇 [0] .𝑑𝑢𝑎𝑙) +𝐶 ≈ 4 · (𝑇 [0] .𝑟𝑒𝑎𝑙)3 · (𝑇 [0] .𝑑𝑢𝑎𝑙)
Pasado performs this step by sampling uniformly-spaced points in the box, which here is

[275, 400]×[1, 1]. For each sampled point𝑥𝑖 , 𝑦𝑖 we evaluate 4𝑥
3

𝑖 ·𝑦𝑖 which is used as the “ground-truth”
for the linear regression. For this example linear regression produces the result:𝐴 = 1378673.47, 𝐵 =

0,𝐶 = −304748724.48. Hence the affine form will be
�𝑖1.𝑑𝑢𝑎𝑙 = 𝐴 �𝑇 [0] .𝑟𝑒𝑎𝑙 +𝐵 �𝑇 [0] .𝑑𝑢𝑎𝑙 +𝐶 +𝐷𝜖𝑛𝑒𝑤 ,

where 𝜖𝑛𝑒𝑤 is a single new noise symbol and the ℎ̂𝑎𝑡 notation denotes the variable’s affine form

stored in the abstract state. The next step is computing 𝐷 by soundly bounding the error between

this linear approximation and the true function 4 · (𝑇 [0] .𝑟𝑒𝑎𝑙)3 · (𝑇 [0] .𝑑𝑢𝑎𝑙), as shown in Eq. 2

𝐷 = max

𝑥∈[275,400],𝑦∈[1,1]
|4𝑥3 · 𝑦 − (𝐴𝑥 + 𝐵𝑦 +𝐶) | (2)

Noting that [𝑙𝑇 [0] .𝑟𝑒𝑎𝑙 , 𝑢𝑇 [0] .𝑟𝑒𝑎𝑙 ] = [275, 400] and [𝑙𝑇 [0] .𝑑𝑢𝑎𝑙 , 𝑢𝑇 [0] .𝑑𝑢𝑎𝑙 ] = [1, 1]. While at first

glance this may seem like a difficult nonconvex, multivariable optimization problem a core con-

tribution of Pasado is proving that we can reduce this multivariable optimization problem to

simpler 1D optimization subproblems as well as just checking the corner points. Hence we can

actually find the exact value of 𝐷 by solving for roots of 12(𝑇 [0] .𝑟𝑒𝑎𝑙)2 · 𝑙𝑇 [0] .𝑑𝑢𝑎𝑙 − 𝐴 = 0 and

12(𝑇 [0] .𝑟𝑒𝑎𝑙)2 · 𝑢𝑇 [0] .𝑑𝑢𝑎𝑙 − 𝐴 = 0, checking those roots and additionally checking the corner

points {𝑙𝑇 [0] .𝑟𝑒𝑎𝑙 , 𝑢𝑇 [0] .𝑟𝑒𝑎𝑙 } × {𝑙𝑇 [0] .𝑑𝑢𝑎𝑙 , 𝑢𝑇 [0] .𝑑𝑢𝑎𝑙 }. The coefficient 𝐷 will be used as the new noise

symbol’s magnitude to ensure the linear approximation is still a sound zonotopic enclosure.

An important detail is that because of our technique, the abstract transformer for the composite

expression 4*Cube(T[0].real)*T[0].dual only introduces a single new noise symbol (𝐷𝜖𝑛𝑒𝑤),

hence why there are only nine noise symbols (𝜖1−9) as shown in line 22. This insight is critical, as

evaluating the same expression with the standard zonotope multiplications would introduce three

noise symbols instead of one. It is known that having fewer noise symbols can lead to computational

savings [Turner 2020], and this reduction helps us offset some of the cost of synthesizing trans-

formers. Furthermore, we can use the same technique to solve the simpler optimization problems

min

𝑥∈[275,400],𝑦∈[1,1]
4𝑥3 · 𝑦 and max

𝑥∈[275,400],𝑦∈[1,1]
4𝑥3 · 𝑦, which can be used to give us refined interval

lower and upper bounds, which in this case are [8.318 · 107, 2.56 · 108]. While these bounds appear

large, they will eventually be scaled to a tight range upon multiplication with 𝑒 since 𝑒 < 10
−7
.

Further, while in this case these interval bounds are identical to those obtained via standard interval

arithmetic, for other functions, our optimally solved bounds are often much more precise. We

take the intersection of the bounding box of the affine form which is [6.759 · 107, 2.56 · 108] with
[8.318 · 107, 2.56 · 108] to get the final refined lower and upper bounds. In this case the refined

interval bounds obtained by solving the two simpler optimization problems are strictly tighter

than the affine form’s bounding box (hence the result is still [8.318 · 107, 2.56 · 108]), however, this
need not always be true, hence why we take the intersection. A key benefit of our approach is that

because our abstract transformers use interval bounds to solve their optimization problem they
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1 T [ 0 ] . r e a l , T [ 0 ] . dua l = . . . / / These values are passed in as inputs
2 H T[0].real = 337.5 + -62.5𝜖1 , 𝑙𝑇 [0] .𝑟𝑒𝑎𝑙 = 275, 𝑢𝑇 [0] .𝑟𝑒𝑎𝑙 = 400 I
3 H T[0].dual = 1, 𝑙𝑇 [0] .𝑑𝑢𝑎𝑙 = 1, 𝑢𝑇 [0] .𝑑𝑢𝑎𝑙 = 1 I
4 e . r e a l , e . dua l = . . .

5 H e.real = 4.25 · 10−8 + -8.50 · 10−9𝜖3 , 𝑙𝑒.𝑟𝑒𝑎𝑙 = 3.40 · 10−8 , 𝑢𝑒.𝑟𝑒𝑎𝑙 = 5.1 · 10−8 I
6 H e.dual = 0, 𝑙𝑒.𝑑𝑢𝑎𝑙 = 0, 𝑢𝑒.𝑑𝑢𝑎𝑙 = 0 I
7 R . r e a l , R . dua l = . . .

8 H R.real = 2.8 + -0.15𝜖5 , 𝑙𝑅.𝑟𝑒𝑎𝑙 = 2.65, 𝑢𝑅.𝑟𝑒𝑎𝑙 = 2.95 I
9 H R.dual = 0, 𝑙𝑅.𝑑𝑢𝑎𝑙 = 0, 𝑢𝑅.𝑑𝑢𝑎𝑙 = 0 I
10 s t e p _ s i z e = . . . / / always treated as fixed scalar constant
11 H step_size = 0.025, 𝑙𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 = 0.025, 𝑢𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 = 0.025 I
12 Q , a lpha = . . . / / treated as fixed scalar constants for this example
13 H Q = 342, 𝑙𝑄 = 342, 𝑢𝑄 = 342 I
14 H alpha = 0.3, 𝑙𝑎𝑙𝑝ℎ𝑎 = 0.3, 𝑢𝑎𝑙𝑝ℎ𝑎 = 0.3 I
15 C = Q∗ (1 − a lpha ) / / constant propagation for Q and alpha (both are constants)
16 H C = 239.4, 𝑙𝐶 = 239.4, 𝑢𝐶 = 239.4 I
17

18 i 1 . r e a l = FourthPower ( T [ 0 ] . r e a l ) / / Computes Line 3 of ODESolve𝑓
19 H i1.real = 12974633789.062 + -9610839843.75𝜖1 + 889892578.12𝜖7 + 2124633789.062𝜖8 ,

20 𝑙𝑖1.𝑟𝑒𝑎𝑙 = 5719140625, 𝑢𝑖1.𝑟𝑒𝑎𝑙 = 25600000000 I
21 i 1 . dua l = 4 ∗Cube ( T [ 0 ] . r e a l ) ∗ T [ 0 ] . dua l / / Chain Rule
22 H i1.dual = 161798882.57 + -86167091.83𝜖1 + 8034025.58𝜖9 , 𝑙𝑖1.𝑑𝑢𝑎𝑙 = 83187500, 𝑢𝑖1.𝑑𝑢𝑎𝑙 = 256000000 I
23

24 i 2 . r e a l = e . r e a l ∗ i 1 . r e a l

25 H i2.real = 551.78 + -408.72𝜖1 + -110.35𝜖3 + 37.84𝜖7 + 90.35𝜖8 + 107.38𝜖10 , 𝑙𝑖2.𝑟𝑒𝑎𝑙 = 194.57, 𝑢𝑖2.𝑟𝑒𝑎𝑙 = 1306.45 I
26 i 2 . dua l = ( e . r e a l ∗ i 1 . dua l ) + ( e . dua l ∗ i 1 . r e a l ) / / Product Rule
27 H i2.dual = 6.88 + -3.66𝜖1 + 2.94e-15𝜖7 + 7.03e-15𝜖8 + 0.34𝜖9 + 2.17𝜖11 , 𝑙𝑖2.𝑑𝑢𝑎𝑙 = 2.83, 𝑢𝑖2.𝑑𝑢𝑎𝑙 = 13.06 I
28

29 i 3 . r e a l , i 3 . dua l = C − i 2 . r e a l , − i 2 . dua l / / Linearity
30 H i3.real = -312.38 + 408.72𝜖1 + 110.35𝜖3 + -37.84𝜖7 + -90.35𝜖8 + -107.38𝜖10 , 𝑙𝑖3.𝑟𝑒𝑎𝑙 = −1067.05, 𝑢𝑖3.𝑟𝑒𝑎𝑙 = 44.82 I
31 H i3.dual = -6.88 + 3.66𝜖1 + -2.94e-15𝜖7 + -7.03e-15𝜖8 + -0.34𝜖9 + -2.17𝜖11 , 𝑙𝑖3.𝑑𝑢𝑎𝑙 = −13.06, 𝑢𝑖3.𝑑𝑢𝑎𝑙 = −2.83 I
32

33 i 4 . r e a l = i 3 . r e a l / R . r e a l

34 H i4.real = -111.9 + 146.39𝜖1 + 39.52𝜖3 + -5.38𝜖5 + -13.55𝜖7 + -32.36𝜖8 + -38.46𝜖10 + -0.61𝜖12 + 14.48𝜖13 ,

35 𝑙𝑖4.𝑟𝑒𝑎𝑙 = −402.66, 𝑢𝑖4.𝑟𝑒𝑎𝑙 = 16.91 I
36 i 4 . dua l = ( ( i 3 . dua l ∗R . r e a l ) − ( i 3 . r e a l ∗R . dua l ) ) / Square(R.real) // Quotient Rule
37 H i4.dual = -2.47 + 1.31𝜖1 + -0.0009𝜖3 + -0.15𝜖5 + 0.0003𝜖7 + 0.0007𝜖8 + 0.0009𝜖10 + -0.12𝜖9 + -0.78𝜖11 + 0.11𝜖14 ,

38 𝑙𝑖4.𝑑𝑢𝑎𝑙 = -4.93, 𝑢𝑖4.𝑑𝑢𝑎𝑙 = -0.96I
39

40 T [ 1 ] . r e a l , T [ 1 ] . dua l = ( s t e p _ s i z e ∗ i 4 . r e a l )+T [ 0 ] . r e a l , ( s t e p _ s i z e ∗ i 4 . dua l )+T [ 0 ] . dua l

41 H T[1].real = 334.7 + -58.84𝜖1 + 0.99𝜖3 + -0.13𝜖5 + -0.33𝜖7 + -0.81𝜖8 + -0.96𝜖10 + -0.015𝜖12 + 0.36𝜖13 ,

42 𝑙𝑇 [1] .𝑟𝑒𝑎𝑙 = 272.25, 𝑢𝑇 [1] .𝑟𝑒𝑎𝑙 = 397.15I
43 H T[1].dual = 0.94 + 0.03𝜖1 + -2.01e-5𝜖3 + -0.004𝜖5 + 6.88e-6𝜖7 + 1.64e-5𝜖8 + -0.003𝜖9 + 1.95e-5𝜖10 + -0.02𝜖11 + 0.002𝜖14 ,

44 𝑙𝑇 [1] .𝑑𝑢𝑎𝑙 = 0.8767, 𝑢𝑇 [1] .𝑟𝑒𝑎𝑙 = 0.9760I

Fig. 2. Abstractly Interpreted AD source code for differentiating a single iteration of ODESolve𝑓

can directly benefit from having these refined bounds which directly leads to more precise affine

forms. In contrast, as noted in [Turner 2020], the standard zonotope transformers for multiplication

cannot take advantage of the refined bounds to improve precision of the resulting affine form.

SynthesizedAbstraction for Product Rule. Pasado’s next step is to compute the product in line

24, as well as the derivative using the product rule in line 26. As mentioned, Pasado is focused solely

on developing precise abstractions for the derivatives, hence the multiplication of the real parts in

line 24 uses the standard interval and zonotope domain multiplications. Similarly to the chain rule,

our synthesized abstract transformer will solve a linear regression problem for new𝐴, 𝐵,𝐶, 𝐷, 𝐸 ∈ R
such that in the region [𝑙𝑒.𝑟𝑒𝑎𝑙 , 𝑢𝑟𝑒𝑎𝑙 ] × [𝑙𝑒.𝑑𝑢𝑎𝑙 , 𝑢𝑒.𝑑𝑢𝑎𝑙 ] × [𝑙𝑖1.𝑟𝑒𝑎𝑙 , 𝑢𝑖1.𝑟𝑒𝑎𝑙 ] × [𝑙𝑖1.𝑑𝑢𝑎𝑙 , 𝑢𝑖1.𝑑𝑢𝑎𝑙 ]:

𝐴 · (𝑒.𝑟𝑒𝑎𝑙) + 𝐵 · (𝑒.𝑑𝑢𝑎𝑙) +𝐶 · (𝑖1.𝑟𝑒𝑎𝑙) + 𝐷 · (𝑖1.𝑑𝑢𝑎𝑙) + 𝐸 ≈ 𝑒.𝑟𝑒𝑎𝑙 · 𝑖1.𝑑𝑢𝑎𝑙 + 𝑒.𝑑𝑢𝑎𝑙 · 𝑖1.𝑟𝑒𝑎𝑙

Hence the resulting affine form is
�𝑖2.𝑑𝑢𝑎𝑙 = 𝐴(�𝑒.𝑟𝑒𝑎𝑙) +𝐵(�𝑒.𝑑𝑢𝑎𝑙) +𝐶 (�𝑖1.𝑟𝑒𝑎𝑙) +𝐷 (�𝑖1.𝑑𝑢𝑎𝑙) +𝐸 +

𝐹𝜖𝑛𝑒𝑤 In this example, the linear regression finds the new coefficients should be𝐴 = 0, 𝐵 = −6·10−24,
𝐶 = 3 · 10−24, 𝐷 = 4.25 · 10−8 and 𝐸 = −5 · 10−14. Our abstraction must also solve for the maximum
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error 𝐹 . Among our key contributions is proving that for the product rule, this error can be obtained

by just enumerating the 2
4
corner points. Hence we compute 𝐹 as:

max

(𝑥1,𝑦1,𝑥2,𝑦2 ) ∈
{𝑙𝑒.𝑟𝑒𝑎𝑙 ,𝑢𝑒.𝑟𝑒𝑎𝑙 }×{𝑙𝑒.𝑑𝑢𝑎𝑙 ,𝑢𝑒.𝑑𝑢𝑎𝑙 }×{𝑙𝑖1.𝑟𝑒𝑎𝑙 ,𝑢𝑖1.𝑟𝑒𝑎𝑙 }×{𝑙𝑖1.𝑑𝑢𝑎𝑙 ,𝑢𝑖1𝑑𝑢𝑎𝑙 }

| (𝑥1 ·𝑦2)+(𝑥2 ·𝑦1)−(𝐴𝑥1+𝐵𝑦1+𝐶𝑥2+𝐷𝑦2+𝐸) |

In this example, 𝐹 = 2.17. While our example has two multiplications on line 26, Pasado introduces

only a single noise symbol (𝐹𝜖𝑛𝑒𝑤) instead of two as the standard zonotope multiplication would.

Furthermore, we can solve a simpler version of the previous optimization problem for direct interval

lower and upper bounds using the same approach (enumerating over the corners) and then take

the intersection of those with the bounding box of the affine form. Performing this procedure

ultimately gives us 𝑖2.𝑑𝑢𝑎𝑙 ’s refined bounds of [2.83, 13.06] as shown on line 27.

Synthesized Abstraction for Quotient Rule. Upon computing the products, computing the

affine transformations on line 29 is straightforward. Hence the abstract interpreter next proceeds to

line 33 to compute the quotient. The derivative is computed via quotient rule on line 36. As before,

Pasado uses linear regression to solve for coefficients 𝐴, 𝐵,𝐶, 𝐷, 𝐸 ∈ R such that

𝐴 · (𝑖3.𝑟𝑒𝑎𝑙) + 𝐵 · (𝑖3.𝑑𝑢𝑎𝑙) +𝐶 · (𝑅.𝑟𝑒𝑎𝑙) +𝐷 · (𝑅.𝑑𝑢𝑎𝑙) + 𝐸 ≈ (𝑅.𝑟𝑒𝑎𝑙 · 𝑖3.𝑑𝑢𝑎𝑙) − (𝑖3.𝑟𝑒𝑎𝑙 · 𝑅.𝑑𝑢𝑎𝑙)
𝑅.𝑟𝑒𝑎𝑙2

Here the values are 𝐴 = -4.2 · 10−6, 𝐵 = 0.35, 𝐶 = 1.01, 𝐷 = 6.5 · 10−6, and 𝐸 = -2.84, where
the resulting affine form is

�𝑖4.𝑑𝑢𝑎𝑙 = 𝐴 �(𝑖3.𝑟𝑒𝑎𝑙) + 𝐵 �(𝑖3.𝑑𝑢𝑎𝑙) +𝐶 �(𝑅.𝑟𝑒𝑎𝑙) + 𝐷 �(𝑅.𝑑𝑢𝑎𝑙) + 𝐸 + 𝐹𝜖𝑛𝑒𝑤 .
Solving for the maximum error, 𝐹 , is more involved, as we must solve:

max

𝑥1∈[𝑙𝑖3.𝑟𝑒𝑎𝑙 ,𝑢𝑖3.𝑟𝑒𝑎𝑙 ],𝑦1∈[𝑙𝑖3.𝑑𝑢𝑎𝑙 ,𝑢𝑖3.𝑑𝑢𝑎𝑙 ]
𝑥2∈[𝑙𝑅.𝑟𝑒𝑎𝑙 ,𝑢𝑅.𝑟𝑒𝑎𝑙 ],𝑦2∈[𝑙𝑅.𝑑𝑢𝑎𝑙 ,𝑢𝑅.𝑑𝑢𝑎𝑙 ]

| (𝑥2 · 𝑦1) − (𝑥1 · 𝑦2)
𝑥2
2

− (𝐴𝑥1 + 𝐵𝑦1 +𝐶𝑥2 + 𝐷𝑦2 + 𝐸) |

The solution to this optimization requires Pasado to solve for roots of a cubic equation, as we will

see. However, Pasado can likewise use that same technique to directly solve for optimal interval

bounds: min
(𝑥2 ·𝑦1 )−(𝑥1 ·𝑦2 )

𝑥2
2

and max
(𝑥2 ·𝑦1 )−(𝑥1 ·𝑦2 )

𝑥2
2

over the same 4D region as above. We ultimately

obtain the affine form shown in line 43 and the refined bounds [0.8767, 0.9760] in line 44.

Results. Abstractly interpreting the computation using Pasado’s synthesized transformers offers

notable precision gains over standard interval and zonotope abstract transformers. As mentioned,

Pasado’s bounds on the derivative after one iteration are: [0.8767, 0.9760], whereas, the respective
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bounds computed with intervals are [0.862, 0.978] and with zonotopes are [0.868, 1.013]. While

Figs. 1 and 2 show only a single iteration, the benefits of Pasado compound over multiple iterations.

Fig. 3 shows the bounds computed for up to 𝑁 = 12 iterations by both Pasado and the interval

and zonotope AD baselines. This plot shows how Pasado’s improvement compounds, and how after

12 iterations (full code not shown), Pasado’s derivative bounds stay provably positive, and thus can

prove monotonicity with respect to 𝑇0, whereas interval and zonotope abstract AD cannot.

3 PRELIMINARIES
We now detail the necessary preliminaries for describing both automatic differentiation as well as

abstract interpretation. We also detail some of the key mathematical requirements for Pasado.

3.1 Automatic Differentiation Implementation
Forward-Mode AD. In forward-mode AD, one computes both the primal (the original program)

as well as the tangent derivatives simultaneously in a single forward pass. For functions 𝑓 : R𝑚 →
R𝑛 , computing the full Jacobian via forward mode requires 𝑚 passes, hence forward mode is

more efficient when𝑚 < 𝑛. Since the computation of both the original primal program and the

derivatives are interwoven into a single forward pass and thus happens simultaneously, one must

designate separate variables for the primal (the real part) and the associated derivatives (the dual

part). This separation of variables into disjoint sets is canonically implemented with dual numbers
[Griewank and Walther 2008], where the real component of the dual number encodes the variables

of the primal, and the dual component of the dual number encodes the associated derivatives.

The standard rules of calculus – chain rule, product rule and quotient rule can be encoded by

overloading the respective arithmetic operation for dual numbers. For a given variable 𝑥 , we will

denote the real part as 𝑥 .𝑟𝑒𝑎𝑙 and the dual part storing the associated derivative as 𝑥 .𝑑𝑢𝑎𝑙 .

Reverse-ModeAD. In reverse mode AD, one first computes the primal and then back-propagates

the derivatives from the output variable back to the input variables [Griewank and Walther 2008].

For functions 𝑓 : R𝑚 → R𝑛 , computing the full Jacobian via reverse mode requires 𝑛 passes, hence

reverse mode is more efficient when𝑚 > 𝑛. Unlike with forward-mode AD, in reverse-mode AD

the original program (the primal) is computed in its entirety before even a single derivative is

computed. However, one still needs a separate set of variables to store the derivatives. Following

convention, we will simply let 𝑥 denote a given variable in the primal and 𝑥 denote the adjoint

derivative for 𝑥 that is computed in the backward pass.

3.2 Abstract Interpretation
We now describe the necessary preliminaries of Abstract Interpretation. Abstract Interpretation

[Cousot and Cousot 1977] is a framework for soundly over-approximating the set of possible

executions of a program. For Pasado’s analysis, we require the following:

(1) A numerical abstract domain,Awhich may be either Intervals or any abstract domain that can

represent linear transformations exactly (e.g. Zonotopes, Quadratic Zonotopes, Polyhedra).

A can also be a reduced product of those aforementioned domains.

(2) A concretization function 𝛾 : A → P(R𝑛) that maps an abstract element in the Abstract

Domain to sets of AD program states (which are just tuples of 𝑛 real numbers.).

(3) A bounding box function 𝑅𝑎𝑛𝑔𝑒 : A→ R𝑛 × R𝑛 that takes an abstract element describing

sets of AD program states of 𝑛 variables and returns the bounds on each variable.

(4) Sound abstract transformers, 𝑇
♯

𝑓
: A→ A, for each univariate nonlinear function 𝑓 : R→ R.

The functions we consider are {log(𝑥), exp(𝑥),
√
𝑥, 𝑥2, 𝑥3, 𝑥4, tanh(𝑥), 𝜎 (𝑥),NormalCDF (𝑥)}.
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(5) Sound abstract transformers, 𝑇
♯
𝑜𝑝 : A→ A, for each binary operation 𝑜𝑝 ∈ {+,−, ∗, /}.

Additionally, unique to our approach is that we will also require a guaranteed root solver for the

second derivative of each nonlinear function 𝑓 listed in (4), so that we can solve for all 𝑥∗ ∈ [𝑙, 𝑢] (or
certify that none exist inside [𝑙, 𝑢]) such that 𝑓 ′′ (𝑥∗) = 𝐶 for any given𝐶 . For this root-solving, one

may use a verified root finding technique like Bisection or a verified Newton’s method, however for

many of the functions such that 𝑓 ′′−1 has an analytical formula, we can use the analytical formula

to solve for 𝑥∗ directly. For instance when 𝑓 (𝑥) = exp(𝑥), we know 𝑓 ′′−1 (𝑥) = log(𝑥).
For our purposes we will use the reduced product of the Zonotope domain with the Interval

domain as this combination is essentially a (restricted) polyhedral domain that is more expressive

than standard zonotopes, however as described in Theorem 4.5, our constructionwould equally work

for other domains which can symbolically express linear relationships exactly such as quadratic

zonotopes, or the DeepPoly domain.

For our purposes an abstract state 𝑎 ∈ A will map each variable 𝑥𝑖 to both an affine form,

𝑎[𝑥𝑖 ] .𝑥𝑖 = 𝑥𝑖0 +
∑
𝑗 𝑐 𝑗𝜖 𝑗 and an interval 𝑎[𝑥𝑖 ] .[𝑙𝑥𝑖 , 𝑢𝑥𝑖 ]. The bounding box function returns the

intersection of the associated interval with the bound on the affine form, hence 𝑅𝑎𝑛𝑔𝑒 (𝑎[𝑥𝑖 ]) =
[𝑥𝑖0 −

∑
𝑗 |𝑐 𝑗 |, 𝑥𝑖0 +

∑
𝑗 |𝑐 𝑗 |] ⊓ 𝑎[𝑥𝑖 ] .[𝑙𝑥𝑖 , 𝑢𝑥𝑖 ]. Since we take the reduced product, our concretization

function uses both the standard interval and zonotope concretization functions 𝛾𝐼𝑛𝑡 , 𝛾𝑍𝑜𝑛𝑜 [Ghorbal

et al. 2009] and is given as:

𝛾 (𝑎) =
{
(𝑥1, ..., 𝑥𝑛) ∈ R𝑛 : (𝑥1, ..., 𝑥𝑛) ∈ 𝛾𝑍𝑜𝑛𝑜

(
𝑛∧
𝑗=1

𝑎[𝑥 𝑗 ] .𝑥 𝑗

)
∩ 𝛾𝐼𝑛𝑡

(
𝑚∧
𝑗=1

𝑎[𝑥 𝑗 ] .[𝑙𝑥 𝑗 , 𝑢𝑥 𝑗 ]
)}

As mentioned in Section 2, for analyzing the real (non-derivative) part of the program we will

use the given domain’s standard abstract transformers required in (4) and (5) hence Pasado only

focuses on synthesizing abstractions for the derivative terms to improve precision. Further, since

addition can already be done exactly with zonotopes, Pasado will use the standard transformers for

addition, even in the derivative computations.

4 SYNTHESIZING PRECISE STATIC ANALYZERS
We now present Pasado, our technique for synthesizing precise abstract transformers, specialized

for AD. Pasado’s technique allows us to synthesize precise abstract transformers for the Chain Rule,

Product Rule and Quotient Rule of Calculus, which we will denote 𝑇
♯

𝐶𝑓
, 𝑇

♯

𝑃
, 𝑇

♯

𝑄
: A → A. Pasado

will use standard abstract transformers (e.g., 𝑇
♯

𝑓
, 𝑇

♯
𝑜𝑝 required in Section 3.2) to abstract the primal

computation and 𝑇
♯

𝐶𝑓
, 𝑇

♯

𝑃
, 𝑇

♯

𝑄
to abstract the derivative computation.

Since both forward-mode AD and reverse-mode AD ultimately use these same rules, we can

synthesize precise abstractions for each of the core operations for either mode of AD. The only

difference between AD modes is the order of application, for instance in forward mode for 𝑎 ∈ A,
the application order would be 𝑇

♯

𝑃
(𝑇 ♯
∗ (𝑇 ♯

𝐶𝑓
(𝑇 ♯

𝑓
(𝑎)))) whereas for reverse mode the order would be

𝑇
♯

𝑃
(𝑇 ♯

𝐶𝑓
(𝑇 ♯
∗ (𝑇 ♯

𝑓
(𝑎)))) as the entire primal must be abstracted before any derivatives can be. While

there are other rules of calculus, like the generalized power rule, for which our techniques are

inapplicable (due to differences in the Hessian behavior), these three rules comprise the majority of

nonlinear AD operations and thus are the most important.

Pasado’s abstract transformer synthesis involves a combination of linear regression at uniformly

spaced points and solving a nonlinear optimization problem to ensure soundness. For tractability,

we limit the number of sampled grid points used in the linear regression (which trades off precision).
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(a) (b) (c)

Fig. 4. Visualization of Pasado’s abstract transformer synthesis for the Chain rule pattern 𝑔(𝑥,𝑦) = 𝜎 (𝑥) ·
(1 − 𝜎 (𝑥)) · 𝑦 on [−1, 1] × [−1, 1]. In (a), the blue surface represents 𝑔(𝑥,𝑦). In (b), the blue dots on the blue

surface represent evaluations of 𝑔(𝑥,𝑦) at grid sampled points. The yellow hyperplane in (b) is computed by

performing linear regression with these blue points and has equation 𝐴𝑥 + 𝐵𝑦 +𝐶 . In (c), the red lines show

the difference between 𝑔(𝑥,𝑦) and the plane and 𝐷 represents the maximum such difference. The lower and

upper orange planes in (c) are the enclosing linear bounds given by 𝐴𝑥 + 𝐵𝑦 +𝐶 ± 𝐷 . The enclosing bounds
are parallel for the Zonotope domain and here the maximum difference 𝐷 occurs at a corner point.

4.1 Chain Rule Synthesized Transformer
The first rule of Calculus for which we want to synthesize a precise abstraction is the Chain Rule.

For functions 𝑓 , 𝑔 : R→ R, the chain rule is mathematically given as:

𝑓 (𝑔(𝑢))′ = 𝑓 ′ (𝑔(𝑢)) · 𝑔′ (𝑢)
Forward-Mode Chain Rule. In forward-mode AD this rule is implemented via:

𝑧.𝑟𝑒𝑎𝑙 = 𝑓 (𝑥 .𝑟𝑒𝑎𝑙);
𝑧.𝑑𝑢𝑎𝑙 = 𝑓 ′ (𝑥 .𝑟𝑒𝑎𝑙) · 𝑥 .𝑑𝑢𝑎𝑙 ;

where intuitively, 𝑥 .𝑟𝑒𝑎𝑙 = 𝑔(𝑢), 𝑥 .𝑑𝑢𝑎𝑙 = 𝑔′ (𝑢), 𝑧.𝑟𝑒𝑎𝑙 = 𝑓 (𝑔(𝑢)), and 𝑧.𝑑𝑢𝑎𝑙 = 𝑓 (𝑔(𝑢))′.
Reverse-Mode Chain Rule. Likewise in reverse-mode AD, this rule is implemented as:

𝑧 = 𝑓 (𝑥); ...
𝑧 = ...

𝑥 += 𝑓 ′ (𝑥) · 𝑧;
where the "..." at the end of the first line represents the break between the end of the primal part
of the differentiable program and the start of the adjoint part of the same differentiable program,

which computes all the derivatives (e.g. 𝑧, 𝑥 ).

ChainRuleAbstraction Pattern.Based on these implementations, themain expression, present

in both forward and reverse AD, for which we want to synthesize an abstract transformer, 𝑇
♯

𝐶𝑓
, is:

𝑔(𝑥,𝑦) = 𝑓 ′ (𝑥) · 𝑦
The benefit of synthesizing an abstraction for this chain rule pattern is that this pattern could

have multiple nonlinear operations. For instance, if 𝑓 (𝑥) = 𝜎 (𝑥), then 𝑓 ′ (𝑥) = 𝜎 (𝑥) · (1 − 𝜎 (𝑥)),
which has a nonlinear multiplication, in addition to the nonlinear multiplication with 𝑦. Thus

naively composing the abstract transformers for each nonlinear operation e.g., 𝑇
♯
∗ (𝑇 ♯
∗ (𝑇 ♯
− (𝑇

♯
𝜎 (𝑎))))

as in Laurel et al. [2022b] can lead to imprecision. Particularly when using zonotopes, each of those

nonlinear operations introduces a new noise symbol which adds additional over-approximation. In

contrast, 𝑇
♯

𝐶𝑓
introduces only a single noise symbol for the entire chain rule derivative expression.

Abstraction. We now present how to abstract the chain rule pattern. Algorithm 1 presents

the abstract transformer 𝑇
♯

𝐶𝑓
and Fig. 4 presents a geometric intuition. The core idea is to sample
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Algorithm 1 Chain Rule Abstract Transformer 𝑇
♯

𝐶𝑓

Input: Abstract state 𝑎 where 𝑥 = 𝑎[𝑥] .𝑥 and 𝑦 = 𝑎[𝑦] .𝑦
𝑙𝑥 , 𝑢𝑥 ← 𝑅𝑎𝑛𝑔𝑒 (𝑎[𝑥])
𝑙𝑦, 𝑢𝑦 ← 𝑅𝑎𝑛𝑔𝑒 (𝑎[𝑦])
𝑔𝑟𝑖𝑑 ← 𝐺𝑟𝑖𝑑𝑆𝑎𝑚𝑝𝑙𝑒 ( [𝑙𝑥 , 𝑢𝑥 ] × [𝑙𝑦, 𝑢𝑦])
𝑝𝑡𝑠 ← {𝑓 ′ (𝑥) · 𝑦 : (𝑥,𝑦) ∈ 𝑔𝑟𝑖𝑑}
𝐴, 𝐵,𝐶 ← 𝐿𝑖𝑛𝑒𝑎𝑟𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛(𝑔𝑟𝑖𝑑, 𝑝𝑡𝑠)
if 𝐴 = 0 then 𝐴← 𝐴 + 𝛿
𝐷 ← max

𝑥∈[𝑙𝑥 ,𝑢𝑥 ],𝑦∈[𝑙𝑦 ,𝑢𝑦 ]
|𝑓 ′ (𝑥) · 𝑦 − (𝐴𝑥 + 𝐵𝑦 +𝐶) |

𝑙, 𝑢 ← min

𝑥∈[𝑙𝑥 ,𝑢𝑥 ],𝑦∈[𝑙𝑦 ,𝑢𝑦 ]
𝑓 ′ (𝑥) · 𝑦, max

𝑥∈[𝑙𝑥 ,𝑢𝑥 ],𝑦∈[𝑙𝑦 ,𝑢𝑦 ]
𝑓 ′ (𝑥) · 𝑦

return 𝐴𝑥 + 𝐵𝑦 +𝐶 + 𝐷𝜖𝑛𝑒𝑤 , [𝑙, 𝑢]

uniformly spaced points that lie within the range of the input intervals and then solve a linear

regression problem to find the best linear approximation of 𝑓 ′ (𝑥) · 𝑦 at those points. However, the

most critical step for proving soundness is solving a challenging multidimensional, nonconvex

optimization problem, to soundly enclose the linear approximation, which we now describe.

Optimization Problem. The core technical difficulty of the Chain Rule abstract transformer lies

in solving the following equation for the maximum deviation between the linear approximation

(𝐴𝑥 + 𝐵𝑦 +𝐶) and the function 𝑓 ′ (𝑥) · 𝑦 itself (example shown in Fig. 4). This maximum deviation

is needed to obtain the tightest enclosure around the linear approximation (𝐴𝑥 + 𝐵𝑦 +𝐶) such that

this enclosure still provably contains the range of 𝑓 ′ (𝑥) · 𝑦. This deviation 𝐷 is computed as:

𝐷 = max

𝑥∈[𝑙𝑥 ,𝑢𝑥 ],𝑦∈[𝑙𝑦 ,𝑢𝑦 ]
|𝑓 ′ (𝑥) · 𝑦 − (𝐴𝑥 + 𝐵𝑦 +𝐶) | (3)

Pasado reduces this multivariate, non-convex optimization problem into two simpler univariate

problems as well as simply checking the four corner points: {𝑙𝑥 , 𝑢𝑥 } × {𝑙𝑦, 𝑢𝑦} (we provide a full
explanation in Section 4.4). For the correctness of our proof which is subsequently shown in

Theorem 4.1, it is a technical requirement that 𝐴 ≠ 0. If linear regression obtains 𝐴 = 0, we perturb

𝐴 by a small quantity, 𝛿 < 10
−9
. To solve the two univariate optimization problems, we compute

all 𝑥∗ ∈ [𝑙𝑥 , 𝑢𝑥 ] such that 𝑓 ′′ (𝑥∗) = 𝐴
𝑙𝑦

and all 𝑥∗∗ ∈ [𝑙𝑥 , 𝑢𝑥 ] such that 𝑓 ′′ (𝑥∗∗) = 𝐴
𝑢𝑦

. Thus we must

also examine the points (𝑥∗, 𝑙𝑦) and (𝑥∗∗, 𝑢𝑦). We can solve for all 𝑥∗ and 𝑥∗∗ using the guaranteed

root solver that we required in Section 3.2. Hence the optimization problem ultimately reduces to:

𝐷 = max

(𝑥,𝑦) ∈
(
{𝑙𝑥

1
,𝑢𝑥

1
}×{𝑙𝑦

1
,𝑢𝑦

1
}
)
∪{ (𝑥∗,𝑙𝑦 ),(𝑥∗∗,𝑢𝑦 ) }

|𝑓 ′ (𝑥) · 𝑦 − (𝐴𝑥 + 𝐵𝑦 +𝐶) |

While inspired by Ryou et al. [2021], our proof technique is more general as we can handle any
𝑓 satisfying the properties of Section 3.2. The generality of our approach also stems from expanding

this proof technique to other patterns arising from AD. We also show how to adapt this proof to

obtain precise interval domain transformers. Indeed, the key benefit is that we can use virtually

the same proof to get the exact lower and upper bounds of 𝑓 ′ (𝑥) · 𝑦 for the given input intervals.

Hence we can compute optimal lower and upper bounds, 𝑙 and 𝑢, as follows:

𝑙 = min

(𝑥,𝑦) ∈
(
{𝑙𝑥

1
,𝑢𝑥

1
}×{𝑙𝑦

1
,𝑢𝑦

1
}
)
∪{ (𝑥∗,𝑙𝑦 ),(𝑥∗∗,𝑢𝑦 ) }

𝑓 ′ (𝑥) · 𝑦 (4)

𝑢 = max

(𝑥,𝑦) ∈
(
{𝑙𝑥

1
,𝑢𝑥

1
}×{𝑙𝑦

1
,𝑢𝑦

1
}
)
∪{ (𝑥∗,𝑙𝑦 ),(𝑥∗∗,𝑢𝑦 ) }

𝑓 ′ (𝑥) · 𝑦 (5)
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The core benefit of having both zonotope affine forms and separately computed interval lower

and upper bounds is that not only does the same proof strategy give us sound abstractions for both

domains, but by taking their reduced product, we can always use the interval results to refine the

zonotope, as in Singh et al. [2019c] to enhance precision.

4.2 Product Rule Synthesized Transformer

The next rule of calculus for which we wish to synthesize a precise abstract transformer, 𝑇
♯

𝑃
is the

Product Rule. For functions 𝑓 , 𝑔 : R→ R, the product rule is mathematically given as:

(𝑓 (𝑢) · 𝑔(𝑢))′ = 𝑓 ′ (𝑢) · 𝑔(𝑢) + 𝑓 (𝑢) · 𝑔′ (𝑢)
Forward-Mode Product Rule. In forward-mode AD, the product rule is implemented via:

𝑧.𝑟𝑒𝑎𝑙 = 𝑥 .𝑟𝑒𝑎𝑙 · 𝑦.𝑟𝑒𝑎𝑙 ;
𝑧.𝑑𝑢𝑎𝑙 = (𝑥 .𝑑𝑢𝑎𝑙 · 𝑦.𝑟𝑒𝑎𝑙) + (𝑥 .𝑟𝑒𝑎𝑙 · 𝑦.𝑑𝑢𝑎𝑙);

where intuitively, 𝑥 .𝑟𝑒𝑎𝑙 = 𝑓 (𝑢), 𝑦.𝑟𝑒𝑎𝑙 = 𝑔(𝑢), 𝑥 .𝑑𝑢𝑎𝑙 = 𝑓 ′ (𝑢), and 𝑦.𝑑𝑢𝑎𝑙 = 𝑔′ (𝑢). It is
important to note that the computation of 𝑧.𝑑𝑢𝑎𝑙 involves 2 nonlinear multiplications.

Reverse-Mode Product Rule. Similarly, in reverse-mode AD, the product rule is encoded as:

𝑧 = 𝑥 · 𝑦; ...
𝑧 = ...

𝑥 += 𝑦 · 𝑧;
𝑦 += 𝑥 · 𝑧;

Product Rule Abstraction Pattern. Based on the product rule implementations shown above,

the computational pattern for which we want to synthesize an abstraction is:

𝑔(𝑥1, 𝑦1, 𝑥2, 𝑦2) = (𝑥1 · 𝑦2) + (𝑥2 · 𝑦1)
In the event that some of the arguments are zero, this pattern could involve a single multiplication.

Conversely, when all arguments are nonzero, this pattern entails two nonlinear multiplications. In

particular, the instantiation of this abstraction for reverse-mode AD can be seen as a special case

whereby we set the first argument 𝑥1 to 0.

Abstraction. We now present Pasado’s synthesis technique for the product rule abstract trans-

former, 𝑇
♯

𝑃
in Algorithm 2. As with the chain rule pattern, we synthesize the coefficients by solving

a linear regression, and a tractable, but nonconvex optimization problem.

There is another key benefit to Pasado’s product rule abstract transformer. The standard zonotope

multiplication operates directly on the coefficients of the input affine forms. As a result, the standard

abstract transformer cannot leverage tighter ranges on the inputs, as these ranges are never taken

into account. Thus, when performing the two multiplications of the product rule with regular

zonotopes, the ability to leverage improved precision from a reduced product is limited. In contrast,

since Pasado’s synthesized abstraction directly incorporates the bounds on the input, Pasado can

immediately benefit from the improved precision that a reduced product with intervals offers.

Optimization Problem. For the product rule abstraction, we must solve the following 4D

nonlinear, nonconvex optimization problem:

𝐹 = max

𝑥1∈[𝑙𝑥
1
,𝑢𝑥

1
],𝑦1∈[𝑙𝑦

1
,𝑢𝑦

1
]

𝑥2∈[𝑙𝑥
2
,𝑢𝑥

2
],𝑦2∈[𝑙𝑦

2
,𝑢𝑦

2
]

| (𝑥1 · 𝑦2) + (𝑥2 · 𝑦1) − (𝐴𝑥1 + 𝐵𝑦1 +𝐶𝑥2 + 𝐷𝑦2 + 𝐸) | (6)

The benefit of this optimization problem is that we only need to check the 2
4
corner points, i.e.,

{𝑙𝑥1 , 𝑢𝑥1 } × {𝑙𝑦1 , 𝑢𝑦1 } × {𝑙𝑥2 , 𝑢𝑥2 } × {𝑙𝑦2 , 𝑢𝑦2 }, hence the optimization problem of Eq. 6 reduces to:
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Algorithm 2 Product Rule Abstract Transformer 𝑇
♯

𝑃

Input: Abstract state 𝑎 where 𝑥1 = 𝑎[𝑥1] .𝑥1, 𝑦1 = 𝑎[𝑦1] .𝑦1, 𝑥2 = 𝑎[𝑥2] .𝑥2, and 𝑦2 = 𝑎[𝑦2] .𝑦2
𝑙𝑥1 , 𝑢𝑥1 ← 𝑅𝑎𝑛𝑔𝑒 (𝑎[𝑥1]) and 𝑙𝑦1 , 𝑢𝑦1 ← 𝑅𝑎𝑛𝑔𝑒 (𝑎[𝑦1])
𝑙𝑥2 , 𝑢𝑥2 ← 𝑅𝑎𝑛𝑔𝑒 (𝑎[𝑥2]) and 𝑙𝑦2 , 𝑢𝑦2 ← 𝑅𝑎𝑛𝑔𝑒 (𝑎[𝑦2])
𝑔𝑟𝑖𝑑 ← 𝐺𝑟𝑖𝑑𝑆𝑎𝑚𝑝𝑙𝑒 ( [𝑙𝑥1 , 𝑢𝑥1 ] × [𝑙𝑦1 , 𝑢𝑦1 ] × [𝑙𝑥2 , 𝑢𝑥2 ] × [𝑙𝑦2 , 𝑢𝑦2 ])
𝑝𝑡𝑠 ← {(𝑥1 · 𝑦2) + (𝑥2 · 𝑦1) : (𝑥1, 𝑦1, 𝑥2, 𝑦2) ∈ 𝑔𝑟𝑖𝑑}
𝐴, 𝐵,𝐶, 𝐷, 𝐸 ← 𝐿𝑖𝑛𝑒𝑎𝑟𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛(𝑔𝑟𝑖𝑑, 𝑝𝑡𝑠)
𝐹 ← max

𝑥1∈[𝑙𝑥
1
,𝑢𝑥

1
],𝑦1∈[𝑙𝑦

1
,𝑢𝑦

1
]

𝑥2∈[𝑙𝑥
2
,𝑢𝑥

2
],𝑦2∈[𝑙𝑦

2
,𝑢𝑦

2
]

| (𝑥1 · 𝑦2) + (𝑥2 · 𝑦1) − (𝐴𝑥1 + 𝐵𝑦1 +𝐶𝑥2 + 𝐷𝑦2 + 𝐸) |

𝑙, 𝑢 ← min

𝑥1∈[𝑙𝑥
1
,𝑢𝑥

1
],𝑦1∈[𝑙𝑦

1
,𝑢𝑦

1
]

𝑥2∈[𝑙𝑥
2
,𝑢𝑥

2
],𝑦2∈[𝑙𝑦

2
,𝑢𝑦

2
]

(𝑥1 · 𝑦2) + (𝑥2 · 𝑦1), max

𝑥1∈[𝑙𝑥
1
,𝑢𝑥

1
],𝑦1∈[𝑙𝑦

1
,𝑢𝑦

1
]

𝑥2∈[𝑙𝑥
2
,𝑢𝑥

2
],𝑦2∈[𝑙𝑦

2
,𝑢𝑦

2
]

(𝑥1 · 𝑦2) + (𝑥2 · 𝑦1)

return 𝐴𝑥1 + 𝐵𝑦1 +𝐶𝑥2 + 𝐷𝑦2 + 𝐸 + 𝐹𝜖𝑛𝑒𝑤, [𝑙, 𝑢]

𝐹 = max

(𝑥1,𝑦1,𝑥2,𝑦2 ) ∈{𝑙𝑥
1
,𝑢𝑥

1
}×{𝑙𝑦

1
,𝑢𝑦

1
}×{𝑙𝑥

2
,𝑢𝑥

2
}×{𝑙𝑦

2
,𝑢𝑦

2
}
| (𝑥1 ·𝑦2) + (𝑥2 ·𝑦1) − (𝐴𝑥1 + 𝐵𝑦1 +𝐶𝑥2 +𝐷𝑦2 + 𝐸) |

However, as with the chain rule, we will also solve for the lower and upper bounds, 𝑙 and 𝑢,

for (𝑥1 · 𝑦2) + (𝑥2 · 𝑦1) exactly. Furthermore, we can use the same proof technique to obtain these

bounds and thus merely enumerate over the 2
4
corners to evaluate the expression, hence:

𝑙 = min

(𝑥1,𝑦1,𝑥2,𝑦2 ) ∈{𝑙𝑥
1
,𝑢𝑥

1
}×{𝑙𝑦

1
,𝑢𝑦

1
}×{𝑙𝑥

2
,𝑢𝑥

2
}×{𝑙𝑦

2
,𝑢𝑦

2
}
(𝑥1 · 𝑦2) + (𝑥2 · 𝑦1) (7)

𝑢 = max

(𝑥1,𝑦1,𝑥2,𝑦2 ) ∈{𝑙𝑥
1
,𝑢𝑥

1
}×{𝑙𝑦

1
,𝑢𝑦

1
}×{𝑙𝑥

2
,𝑢𝑥

2
}×{𝑙𝑦

2
,𝑢𝑦

2
}
(𝑥1 · 𝑦2) + (𝑥2 · 𝑦1) (8)

4.3 Quotient Rule Synthesized Transformer
Synthesizing an abstract transformer for Quotient Rule is challenging due to the divisions and

multiplications involved. In fact, many works [Shi et al. 2020; Stolfi and De Figueiredo 1997]

decompose the abstraction of the division 𝑥/𝑦 into first abstracting the univariate function 1/𝑦,
then abstracting the multiplication of that intermediate result with 𝑥 . However, our goal is to

avoid decomposing these expressions into basic primitives, as naively composing primitive abstract

transformers leads to imprecision. For functions 𝑓 , 𝑔 : R→ R, the quotient rule is defined as:

( 𝑓 (𝑢)
𝑔(𝑢) )

′ =
𝑓 ′ (𝑢) · 𝑔(𝑢) − 𝑓 (𝑢) · 𝑔′ (𝑢)

𝑔(𝑢)2

Forward-Mode Quotient Rule. In forward-mode AD the quotient rule is implemented as:

𝑧.𝑟𝑒𝑎𝑙 =
𝑥 .𝑟𝑒𝑎𝑙

𝑦.𝑟𝑒𝑎𝑙
;

𝑧.𝑑𝑢𝑎𝑙 =
𝑥 .𝑑𝑢𝑎𝑙 · 𝑦.𝑟𝑒𝑎𝑙 − 𝑥 .𝑟𝑒𝑎𝑙 · 𝑦.𝑑𝑢𝑎𝑙

(𝑦.𝑟𝑒𝑎𝑙)2 ;

where intuitively 𝑧.𝑑𝑢𝑎𝑙 = ( 𝑓 (𝑢 )
𝑔 (𝑢 ) )

′
, 𝑥 .𝑑𝑢𝑎𝑙 = 𝑓 ′ (𝑢), and 𝑦.𝑑𝑢𝑎𝑙 = 𝑔′ (𝑢).
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Reverse-Mode Quotient Rule. Likewise in reverse-mode AD the quotient rule is encoded as:

𝑧 =
𝑥

𝑦
; ...

𝑧 = ...

𝑥 +=
1

𝑦
· 𝑧;

𝑦 +=
−𝑥
𝑦2
· 𝑧;

If one were to take the computational pattern of 𝑧.𝑑𝑢𝑎𝑙 , but set 𝑥 .𝑑𝑢𝑎𝑙 = 0, the structure of

the computation would be similar to the computation of 𝑦. The abstraction for 𝑥 can be handled

separately using the chain rule abstraction 𝑇
♯

𝐶𝑓
, as the chain rule abstraction for log

′ (𝑦) · 𝑧 is 𝑧
𝑦
.

Quotient Rule Abstraction Pattern. Based on the quotient rule implementations shown above,

the computational pattern for which we want to synthesize an abstract transformer is:

𝑔(𝑥1, 𝑦1, 𝑥2, 𝑦2) =
(𝑥2 · 𝑦1) − (𝑥1 · 𝑦2)

𝑥2
2

This pattern is a desirable choice for having a single abstraction,𝑇
♯

𝑄
because there are 3 nonlinear

multiplications and a nonlinear division, hence the pattern would otherwise be abstracted with the

composition 𝑇
♯
∗ (𝑇 ♯

/ (𝑇
♯
− (𝑇

♯
∗ (𝑇 ♯
∗ (𝑎)))))). Furthermore there is a high degree of correlation between

the numerator and denominator since they both contain 𝑥2, however, due to the imprecision most

abstract interpreters face in the presence of multiple nonlinearities, it is hard to precisely capture

this dependency. Further, as mentioned, the computation of 𝑦 in the reverse mode is a special

instance of this abstraction pattern when the second argument 𝑦1 = 0.

Abstraction.We now present the synthesis of the abstract transformer for the Quotient Rule,𝑇
♯

𝑄
,

which Algorithm 3 presents. As before, Pasado must solve an optimization problem to obtain sound

bounds around the synthesized linear approximation (obtained via regression). To ensure that there

are not additional interior critical points to consider, we require some constraints on the synthesized

coefficients 𝐴, 𝐵,𝐶, 𝐷, 𝐸 given in terms of the input bounds 𝜅𝑥𝑖 ∈ {𝑙𝑥𝑖 , 𝑢𝑥𝑖 }, 𝜅𝑦𝑖 ∈ {𝑙𝑦𝑖 , 𝑢𝑦𝑖 }. Further
it is simple to enforce these constraints - if the synthesized coefficients do not satisfy the following

constraints, we can perturb the coefficients by some small 𝛿 , which will not affect the abstraction’s

precision, but will ensure soundness. The conditions we require are:

𝜅𝑥1 ≠
−𝐷
𝐴2
∧ 2

3

√︂
−𝜅𝑦1
𝐴𝐷

≠
−3𝜅𝑦1
2𝐶

∧ 1

𝐵
≠ 𝜅𝑥2 ∧

𝐴

𝐵2
≠ 𝜅𝑦2

The Adjust function checks that the coefficients obtained by the linear regression satisfy these

constraints, and if not, it will add small perturbations (𝛿 < 10
−9
) until the conditions are satisfied.

Optimization Problem. To obtain a sound enclosure around the linear approximation for the

Quotient rule, we must solve the following nonlinear, nonconvex 4D optimization problem:

max

𝑥1∈[𝑙𝑥
1
,𝑢𝑥

1
],𝑦1∈[𝑙𝑦

1
,𝑢𝑦

1
]

𝑥2∈[𝑙𝑥
2
,𝑢𝑥

2
],𝑦2∈[𝑙𝑦

2
,𝑢𝑦

2
]

| (𝑥2 · 𝑦1) − (𝑥1 · 𝑦2)
𝑥2
2

− (𝐴𝑥1 + 𝐵𝑦1 +𝐶𝑥2 + 𝐷𝑦2 + 𝐸) | (9)

This optimization problem is more difficult than the one needed for the product rule, however,

much of the core idea is the same and it is still tractable to solve automatically. We will still need

to check all 2
4
corner points {𝑙𝑥1 , 𝑢𝑥1 } × {𝑙𝑦1 , 𝑢𝑦1 } × {𝑙𝑥2 , 𝑢𝑥2 } × {𝑙𝑦2 , 𝑢𝑦2 }, however, we will also

need to check for potential critical points where the gradient could be zero and that cannot be
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Algorithm 3 Quotient Rule Abstract Transformer 𝑇
♯

𝑄

Input: Abstract state 𝑎 where 𝑥1 = 𝑎[𝑥1] .𝑥1, 𝑦1 = 𝑎[𝑦1] .𝑦1, 𝑥2 = 𝑎[𝑥2] .𝑥2, and 𝑦2 = 𝑎[𝑦2] .𝑦2
𝑙𝑥1 , 𝑢𝑥1 ← 𝑅𝑎𝑛𝑔𝑒 (𝑎[𝑥1]) and 𝑙𝑦1 , 𝑢𝑦1 ← 𝑅𝑎𝑛𝑔𝑒 (𝑎[𝑦1])
𝑙𝑥2 , 𝑢𝑥2 ← 𝑅𝑎𝑛𝑔𝑒 (𝑎[𝑥2]) and 𝑙𝑦2 , 𝑢𝑦2 ← 𝑅𝑎𝑛𝑔𝑒 (𝑎[𝑦2])
𝑔𝑟𝑖𝑑 ← 𝐺𝑟𝑖𝑑𝑆𝑎𝑚𝑝𝑙𝑒 ( [𝑙𝑥1 , 𝑢𝑥1 ] × [𝑙𝑦1 , 𝑢𝑦1 ] × [𝑙𝑥2 , 𝑢𝑥2 ] × [𝑙𝑦2 , 𝑢𝑦2 ])
𝑝𝑡𝑠 ←

{
(𝑥2 ·𝑦1 )−(𝑥1 ·𝑦2 )

𝑥2
2

: (𝑥1, 𝑦1, 𝑥2, 𝑦2) ∈ 𝑔𝑟𝑖𝑑
}

𝐴, 𝐵,𝐶, 𝐷, 𝐸 ← 𝐿𝑖𝑛𝑒𝑎𝑟𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛(𝑔𝑟𝑖𝑑, 𝑝𝑡𝑠)
Adjust(𝐴, 𝐵,𝐶, 𝐷, 𝐸)
𝐹 ← max

𝑥1∈[𝑙𝑥
1
,𝑢𝑥

1
],𝑦1∈[𝑙𝑦

1
,𝑢𝑦

1
]

𝑥2∈[𝑙𝑥
2
,𝑢𝑥

2
],𝑦2∈[𝑙𝑦

2
,𝑢𝑦

2
]

| (𝑥2 ·𝑦1 )−(𝑥1 ·𝑦2 )
𝑥2
2

− (𝐴𝑥1 + 𝐵𝑦1 +𝐶𝑥2 + 𝐷𝑦2 + 𝐸) |

𝑙, 𝑢 ← min

𝑥1∈[𝑙𝑥
1
,𝑢𝑥

1
],𝑦1∈[𝑙𝑦

1
,𝑢𝑦

1
]

𝑥2∈[𝑙𝑥
2
,𝑢𝑥

2
],𝑦2∈[𝑙𝑦

2
,𝑢𝑦

2
]

(𝑥2 ·𝑦1 )−(𝑥1 ·𝑦2 )
𝑥2
2

, max

𝑥1∈[𝑙𝑥
1
,𝑢𝑥

1
],𝑦1∈[𝑙𝑦

1
,𝑢𝑦

1
]

𝑥2∈[𝑙𝑥
2
,𝑢𝑥

2
],𝑦2∈[𝑙𝑦

2
,𝑢𝑦

2
]

(𝑥2 ·𝑦1 )−(𝑥1 ·𝑦2 )
𝑥2
2

return 𝐴𝑥1 + 𝐵𝑦1 +𝐶𝑥2 + 𝐷𝑦2 + 𝐸 + 𝐹𝜖𝑛𝑒𝑤, [𝑙, 𝑢]

immediately ruled out by the Hessian test. Thankfully, solving for these critical points involves

only univariate cubic polynomial equations, as we will be able to provably rule out any interior

critical point where 𝑥1, 𝑦1, and 𝑦2 are not fixed to their respective lower or upper bounds. Thus the

only potential critical points are along the edges of the 4D hypercube where 𝑥1, 𝑦1, and 𝑦2 are fixed.

To find these potential critical points, we only have to solve a cubic polynomial in 𝑥2. Thus this

set will still be finite as each cubic polynomial has at most 3 real roots. We now define this set of

potential critical points, 𝑆 as solutions to 8 possible cubic equations.

𝑆 = {(𝑥1, 𝑦1, 𝑥2, 𝑦2) : 𝑥1 ∈ {𝑙𝑥1 , 𝑢𝑥1 }, 𝑦1 ∈ {𝑙𝑦1 , 𝑢𝑦1 }, 𝑦2 ∈ {𝑙𝑦2 , 𝑢𝑦2 },𝐶𝑥32+𝑦1𝑥2−2𝑥1𝑦2 = 0, 𝑥2 ∈ [𝑙𝑥2 , 𝑢𝑥2 ]}

Thus we can solve the maximization problem of Eq. 9 by enumerating over the corner points

and all points in 𝑆 , reducing the problem to:

max

(𝑥1,𝑦1,𝑥2,𝑦2 ) ∈{𝑙𝑥
1
,𝑢𝑥

1
}×{𝑙𝑦

1
,𝑢𝑦

1
}×{𝑙𝑥

2
,𝑢𝑥

2
}×{𝑙𝑦

2
,𝑢𝑦

2
}

∪𝑆

| (𝑥2 · 𝑦1) − (𝑥1 · 𝑦2)
𝑥2
2

− (𝐴𝑥1 + 𝐵𝑦1 +𝐶𝑥2 + 𝐷𝑦2 + 𝐸) |

This strategy of solving for roots of a cubic equation to check as possible extrema can also be

used to solve for the optimal interval lower and upper bounds. Hence we compute the following:

𝑙 = min

𝑥1∈[𝑙𝑥
1
,𝑢𝑥

1
],𝑦1∈[𝑙𝑦

1
,𝑢𝑦

1
]

𝑥2∈[𝑙𝑥
2
,𝑢𝑥

2
],𝑦2∈[𝑙𝑦

2
,𝑢𝑦

2
]

(𝑥2 · 𝑦1) − (𝑥1 · 𝑦2)
𝑥2
2

= min

{𝑙𝑥
1
,𝑢𝑥

1
}×{𝑙𝑦

1
,𝑢𝑦

1
}×{𝑙𝑥

2
,𝑢𝑥

2
}×{𝑙𝑦

2
,𝑢𝑦

2
}

∪𝑆

(𝑥2 · 𝑦1) − (𝑥1 · 𝑦2)
𝑥2
2

(10)

𝑢 = max

𝑥1∈[𝑙𝑥
1
,𝑢𝑥

1
],𝑦1∈[𝑙𝑦

1
,𝑢𝑦

1
]

𝑥2∈[𝑙𝑥
2
,𝑢𝑥

2
],𝑦2∈[𝑙𝑦

2
,𝑢𝑦

2
]

(𝑥2 · 𝑦1) − (𝑥1 · 𝑦2)
𝑥2
2

= max

{𝑙𝑥
1
,𝑢𝑥

1
}×{𝑙𝑦

1
,𝑢𝑦

1
}×{𝑙𝑥

2
,𝑢𝑥

2
}×{𝑙𝑦

2
,𝑢𝑦

2
}

∪𝑆

(𝑥2 · 𝑦1) − (𝑥1 · 𝑦2)
𝑥2
2

(11)

where the only difference is that the set 𝑆 in Equations 10 and 11 is now given by 𝑆 = {(𝑥1, 𝑦1, 𝑥2, 𝑦2) :
𝑥1 ∈ {𝑙𝑥1 , 𝑢𝑥1 }, 𝑦1 ∈ {𝑙𝑦1 , 𝑢𝑦1 }, 𝑦2 ∈ {𝑙𝑦2 , 𝑢𝑦2 }, 𝑥2 =

2𝑥1𝑦2
𝑦1

, 𝑥2 ∈ [𝑙𝑥2 , 𝑢𝑥2 ]}.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 291. Publication date: October 2023.



291:18 Jacob Laurel, Siyuan Brant Qian, Gagandeep Singh, Sasa Misailovic

4.4 Soundness
In this section we prove the soundness of Pasado’s synthesized abstract transformers. At a high level,

our proof relies on the fact that at interior critical points the Hessian will be indeterminant (ensuring

they are saddle points). Intuitively, this insight allows for ruling out the (multi-dimensional) interior,

and thus checking only (lower dimensional) boundaries to solve the optimization problem.

Theorem 4.1. The Chain Rule Transformers𝑇 ♯

𝐶𝑓
, synthesized by Pasado for any 𝑓 : R→ R obeying

the properties of Sec. 3.2 are sound. Equivalently for 𝑎 ∈ A, {𝑓 ′ (𝑥) · 𝑦 : (𝑥,𝑦) ∈ 𝛾 (𝑎)} ⊆ 𝛾 (𝑇 ♯

𝐶𝑓
(𝑎))

Proof. Let 𝑓 (𝑥) : R→ R and 𝐴, 𝐵,𝐶 ∈ R be the coefficients inferred by the linear regression.

To ensure soundness of 𝑇
♯

𝐶𝑓
, our goal reduces to solving the following optimization problem:

𝑚𝑎𝑥𝑥∈[𝑙𝑥 ,𝑢𝑥 ],𝑦∈[𝑙𝑦 ,𝑢𝑦 ] |𝑓 ′ (𝑥) · 𝑦 − (𝐴𝑥 + 𝐵𝑦 +𝐶) |
Instead of looking for interior critical points with the first derivative test, we first examine the

Hessian, 𝐻 , of 𝑓 ′ (𝑥) · 𝑦 − (𝐴𝑥 + 𝐵𝑦 +𝐶) which is given as:

𝐻 =

[
𝑓 ′′′ (𝑥) · 𝑦 𝑓 ′′ (𝑥)
𝑓 ′′ (𝑥) 0

]
The Hessian determinant is −(𝑓 ′′ (𝑥)2) which is always ≤ 0. For any 𝑥 such that 𝑓 ′′ (𝑥) ≠ 0, then

−(𝑓 ′′ (𝑥)2) < 0, ruling out any interior critical point since the Hessian determinant is negative.

Further, any 𝑥 such that 𝑓 ′′ (𝑥) = 0 cannot be a critical point, since from the first derivative test

𝑓 ′′ (𝑥) − 𝐴 = 0 is necessary for a critical point, however, if 𝑓 ′′ (𝑥) = 0 then 𝑓 ′′ (𝑥) − 𝐴 = −𝐴 ≠ 0,

since we required 𝐴 ≠ 0. Thus the optimal value will occur along the 4 boundary lines of the

square. The first two boundary lines (𝑥 = 𝑙𝑥 or 𝑥 = 𝑢𝑥 ) are simple, since the optimal value of a

linear function will occur at the end points, thus it suffices to check the 4 corners {𝑙𝑥 , 𝑢𝑥 } × {𝑙𝑦, 𝑢𝑦}.
For the boundary lines where we fix 𝑦 = 𝑙𝑦 or 𝑦 = 𝑢𝑦 , we now only have to solve univariate

optimization problems. Applying the first derivative test to 𝑓 ′ (𝑥)𝑙𝑦 and 𝑓 ′ (𝑥)𝑢𝑦 we must solve for

all 𝑥∗ ∈ [𝑙𝑥 , 𝑢𝑥 ] such that 𝑓 ′′ (𝑥∗)𝑙𝑦 −𝐴 = 0 as well as all 𝑥∗∗ ∈ [𝑙𝑥 , 𝑢𝑥 ] such that 𝑓 ′′ (𝑥∗∗)𝑢𝑦 −𝐴 = 0.

However, these equations can be solved as we already required that one has a verified root solver

for 𝑓 ′′. Hence we just check (𝑥∗, 𝑙𝑦) and (𝑥∗∗, 𝑢𝑦) for all 𝑥∗, 𝑥∗∗ ∈ [𝑙𝑥 , 𝑢𝑥 ] returned by the root

solver. Furthermore, the Hessian determinant of −(𝑓 ′ (𝑥) · 𝑦 − (𝐴𝑥 + 𝐵𝑦 +𝐶)) will be identical, and
any critical point of 𝑓 ′ (𝑥) ·𝑦 − (𝐴𝑥 +𝐵𝑦 +𝐶) will be a critical point of −(𝑓 ′ (𝑥) ·𝑦 − (𝐴𝑥 +𝐵𝑦 +𝐶)),
hence we need not worry about the absolute value in the maximization problem. The full details

can be found in the appendix [Laurel et al. 2023a].

□

Theorem 4.2. The Product Rule Transformer, 𝑇 ♯

𝑃
, synthesized by Pasado is sound. Equivalently for

𝑎 ∈ A, {𝑥1 · 𝑦2 + 𝑥2 · 𝑦1 : (𝑥1, 𝑦1, 𝑥2, 𝑦2) ∈ 𝛾 (𝑎)} ⊆ 𝛾 (𝑇 ♯

𝑃
(𝑎))

Proof. (sketch) The Hessian for (𝑥1 ·𝑦2) + (𝑥2 ·𝑦1) − (𝐴𝑥1 + 𝐵𝑦1 +𝐶𝑥2 +𝐷𝑦2 + 𝐸) at any point is

the matrix


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 which has both positive and negative eigenvalues, meaning the Hessian

is everywhere indeterminant. Hence any potential critical point is necessarily a saddle point, thus

the extrema must occur along the boundaries. We repeat this procedure for each of the

(
4

3

)
3D

boundary optimization problems where in each case 1 of the 4 dimensions is fixed to a lower or
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upper boundary. The (unique) 3D sub-problem Hessians are


0 0 0

0 0 1

0 1 0

 ,

0 0 1

0 0 0

1 0 0

 , and

0 1 0

1 0 0

0 0 0


all of which have both positive and negative eigenvalues meaning any interior point along the 3D

boundary of the 4D cube is necessarily a saddle point. Repeating this same procedure for the 2D

subproblems we again find that all 2D Hessians are either indeterminant which implies any interior

critical point is a saddle (thus the extrema occurs on the corners) or the 2D subproblem is such that

the function is linear in which case the extrema will also occur only on the corners. Furthermore, by

lemma A.1 these same properties hold for −((𝑥1 ·𝑦2) + (𝑥2 ·𝑦1) − (𝐴𝑥1 +𝐵𝑦1 +𝐶𝑥2 +𝐷𝑦2 + 𝐸)) thus
handling the absolute value in the maximization problem. The full proof is found in the appendix.

□

Theorem 4.3. The Quotient Rule Transformer, 𝑇 ♯

𝑄
synthesized by Pasado is sound. Equivalently for

𝑎 ∈ A, { 𝑥2 ·𝑦1−𝑥1 ·𝑦2
𝑥2
2

: (𝑥1, 𝑦1, 𝑥2, 𝑦2) ∈ 𝛾 (𝑎)} ⊆ 𝛾 (𝑇 ♯

𝑄
(𝑎))

Proof. (sketch) The 4D Hessian is


0 0

2𝑑

𝑥3
2

−1
𝑥2
2

0 0
−1
𝑥2
2

0

2𝑦2
𝑐3

−1
𝑥2
2

6(𝑦1𝑥2−𝑥1𝑦2 )
𝑥4
2

− 4𝑦1

𝑥3
2

2𝑥1
𝑥3
2−1

𝑥2
2

0
2𝑥1
𝑥3
2

0


and its determinant is

1

𝑥8
2

, meaning that the the Hessian has no zero eigenvalues since 𝑥2 ≠ 0. Furthermore, by Sylvester’s

criteria the Hessian is neither positive definite nor negative definite, hence it is indeterminant

which implies any interior critical point is necessarily a saddle point, thus the extrema will occur

along a boundary of the 4D cube. The cases for optimizing along these 3D boundaries, and their

respective 2D boundaries, and their respective 1D boundaries are all shown in the Appendix. □

Given the similarity in all three proofs, the same ideas could theoretically be used to support other

nonlinear expressions, provided their respective Hessians also rule out interior critical points.

4.5 Precision
Having now defined how to solve the optimization problems needed for Pasado’s abstract trans-

formers and their soundness, we can now state the following theorem about their precision:

Theorem 4.4. The lower and upper interval bounds computed by Pasado’s synthesized abstract
transformers in Equations 4, 5, 7, 8, 10, and 11 are optimal for the interval domain.

Proof. (sketch) Since Pasado solves these optimization problems exactly, instead of upper

bounding the maximum or lower bounding the minimum, the bounds cannot be any tighter. □

Hence for these AD patterns, a standard interval arithmetic where one composes abstractions

of each primitive function or operation (𝑇
♯

𝑓
, 𝑇

♯
𝑜𝑝 ) can never be more precise than Pasado. Further,

because Pasado uses the standard abstract transformers in the real (primal) part of the program,

those bounds are at least as precise as standard interval arithmetic, thus Pasado’s derivative bounds

are never less precise than abstractly interpreting AD with the interval domain.

4.6 Generality
While we focus on the zonotope and interval abstract domains, Pasado is applicable to other abstract

domains that can represent linear relationships symbolically. We now state how to use Pasado to

obtain sound transformers for quadratic and polynomial zonotopes and the DeepPoly domains.
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Theorem 4.5. The abstract transformers synthesized by Pasado are also sound transformers for
quadratic and polynomial zonotopes and for the DeepPoly domain.

Proof. As we only synthesize linear transformations of the input affine forms, if these affine

forms were replaced with quadratic or polynomial forms, a linear transformation of them would

still be a valid quadratic or polynomial term expressible in those domains. For adapting the chain

rule to the DeepPoly domain we set the lower linear bound to be 𝑎≥ = 𝐴𝑥1 + 𝐵𝑦1 + (𝐶 −𝐷) and the
upper linear bound to be 𝑎≤ = 𝐴𝑥1 + 𝐵𝑦1 + (𝐶 +𝐷) instead of returning an affine form and still use

𝑙, 𝑢 for the interval bounds. Likewise for adapting the product and quotient rule transformers to the

DeepPoly domain we set the lower linear bound as 𝑎≥ = 𝐴𝑥1 + 𝐵𝑦1 +𝐶𝑥2 + 𝐷𝑦2 + (𝐸 − 𝐹 ) and the

upper linear bound as 𝑎≤ = 𝐴𝑥1 +𝐵𝑦1 +𝐶𝑥2 +𝐷𝑦2 + (𝐸 + 𝐹 ) and use 𝑙, 𝑢 for the interval bounds. □

Thus, Pasado’s combined support for multiple AD computational patterns, function primitives, and

abstract domains, provides the necessary generality for synthesizing static analyzers for AD.

5 CASE STUDIES
We now present multiple Case Studies demonstrating the benefits of synthesizing precise abstract

transformers tailored to the structure of both forward-mode AD (Sections 5.2 and 5.4) and reverse-

mode AD (Sections 5.3 and 5.5).

5.1 Methodology
We describe our experimental setup. We ran the experiments in Sections 5.2 and 5.3 on a 10-core

Apple M1 Pro SoC with 16 GB of unified memory. We ran the experiments in Sections 5.4 and 5.5

on a 32-core AMD Ryzen Threadripper PRO 3975WX CPU and an NVIDIA RTX A5000 GPU with

512 GB RAM. In all experiments, as baselines, we use AD with the interval domain [Laurel et al.

2022a] and AD with the zonotope domain [Laurel et al. 2022b], which collectively comprise the

state of the art for abstracting AD.

Implementation. We implement Pasado in Python, using a combination of the affapy li-

brary [Helaire et al 2021], the micrograd library [Karpathy et al. 2020] and PyTorch [Paszke et al.

2019]. Pasado’s implementation assumes ideal real arithmetic and is thus not floating-point sound

(though floating-point sound versions of the operations exist [Miné 2004]). While the part of the

implementation using affapy supports all cases, the part written in PyTorch leverages the specific

structure of DNNs and is thus only applicable to DNN benchmarks. For the experiments in Sections

5.2, 5.3, and 5.5 we implemented the baselines ourselves, as there was no existing code-base to use,

however for Section 5.4 we used the implementation of [Laurel et al. 2022b] directly.

5.2 Robust Sensitivity Analysis of Ordinary Differential Equations
This first case study involves performing provable sensitivity analysis on the solutions of ODEs.

As mentioned in the example section, to perform sensitivity analysis on the numerical solution

of any ODE, one must automatically differentiate through the ODE solver. For these experiments

we instantiate our technique with forward-mode AD. In our experiments we use a 4th-order

Runge-Kutta numerical solver which is more complicated than the Euler method, but a more

commonly used and accurate solver in practice. Hence for this evaluation ODESolve does not use
Euler integration (unlike the example in Section 2). We now examine the following ODEs:

Chemistry ODE. This ODE is taken from Kitchin [2018]; Saltelli et al. [2005] and models the

concentration of chemical species 𝐶𝐴 as a function of time 𝑡 . The ODE is parameterized by rate

constants 𝑘1 and 𝑘−1.
𝑑𝐶𝐴

𝑑𝑡
= −𝑘1 ·𝐶𝐴 + 𝑘−1 · (𝐶0 −𝐶𝐴) (12)
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Fig. 5. Scatter plots in logarithmic scales comparing the interval widths of the bounds on the derivatives of

(a) ODESolve𝑁𝑁 with respect to 𝑘1 and (b) ODESolve𝑓 with respect to 𝑇0.
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Fig. 6. Bounds on the sensitivities of ODESolve𝑁𝑁 with respect to 𝑘1 (left) and 𝑘−1 (right). Each region

between line segments of the same color represents the interval bound computed by that respective method’s

abstract AD. The dots represent the sensitivities evaluated at points sampled from the input intervals.

However, instead of numerically solving the ODE given in Eq. 12, we train a neural network,

𝑁𝑁 , to learn the dynamics such that 𝑁𝑁 (𝑘1, 𝑘−1,𝐶0,𝐶𝐴) ≈ −𝑘1 ·𝐶𝐴 + 𝑘−1 · (𝐶0 −𝐶𝐴), hence we
will actually numerically solve the following Neural ODE:

𝑑𝐶𝐴

𝑑𝑡
= 𝑁𝑁 (𝑘1, 𝑘−1,𝐶0,𝐶𝐴) (13)

The neural ODE approximation produces nearly identical results, hence it serves as a useful

surrogate model and also as a representative workload for ODEs where the underlying dynamics are

some learned model. In Kitchin [2018]; Saltelli et al. [2005], the authors perform sensitivity analysis

on this chemistry model using AD. However, those works computed sensitivities at scalar points

only, hence we are the first to abstractly compute this derivative-based sensitivity analysis for sets of
points. A key reason for performing the sensitivity analysis is to understand how sensitive the final

concentration is to the rate constant parameters 𝑘1 and 𝑘−1. For this evaluation, we parameterize

the ODE solver by the neural network dynamics function 𝑁𝑁 , thus ODESolve𝑁𝑁 denotes a 4
𝑡ℎ

order Runge-Kutta solver for Eq. 13. Thus we abstractly interpret AD to compute precise bounds on

both
𝜕
𝜕𝑘1

ODESolve𝑁𝑁 (𝑘1, 𝑘−1, 𝑡0,𝐶0,𝐶𝐴0, ℎ, 𝑛) and 𝜕
𝜕𝑘−1

ODESolve𝑁𝑁 (𝑘1, 𝑘−1, 𝑡0,𝐶0,𝐶𝐴, ℎ, 𝑛), where
ℎ is the step size and 𝑛 is the number of time steps.

In Fig. 5a, we plot the point (𝑢𝑜𝑢𝑟𝑠 − 𝑙𝑜𝑢𝑟𝑠 , 𝑢𝑜𝑡ℎ𝑒𝑟 − 𝑙𝑜𝑡ℎ𝑒𝑟 ), where the bounds 𝑙𝑜𝑢𝑟𝑠 and 𝑢𝑜𝑢𝑟𝑠 are
with respect to 𝑘1 and obtained from Pasado and 𝑙𝑜𝑡ℎ𝑒𝑟 and 𝑢𝑜𝑡ℎ𝑒𝑟 are the respective lower and

upper bounds computed by the other method (regular intervals, regular zonotopes), for each input

configuration and for each method. The red line denotes the identity function 𝑦 = 𝑥 , hence any

plotted point that lies above the red line signifies that Pasado’s bounds were tighter, as a point
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will lie above the line if and only if
𝑢𝑜𝑡ℎ𝑒𝑟 −𝑙𝑜𝑡ℎ𝑒𝑟
𝑢𝑜𝑢𝑟𝑠−𝑙𝑜𝑢𝑟𝑠 > 1. Furthermore, both the 𝑥- and 𝑦-axes use

logarithmic scales, hence even if points visually appear close together, the difference in precision

may be substantial. The input ranges we use to generate this plot are all the 512 combinations of

𝑘1 = 3±𝛿𝑘1 , 𝑘−1 = 3±𝛿𝑘−1 ,𝐶0 = 1±𝛿𝐶0
,𝐶𝐴 = 1±𝛿𝐶𝐴

, 𝑡0 = 0, 𝑛 = {8, 10, 12, 16} and ℎ ∈ {0.025, 0.1},
where 𝛿𝑘1 ∈ {0.05, 0.1, 0.15, 0.2}, 𝛿𝑘−1 ∈ {0.1, 0.2, 0.25, 0.3}, 𝛿𝐶0

∈ {0.1, 0.2}, 𝛿𝐶𝐴
∈ {0.1, 0.2}, which

are based on the ranges considered in Saltelli et al. [2005].

Fig. 5a shows that in all input configurations, all the points for the baseline approaches lie above

the red line, meaning that Pasado produces the most precise results. In all 512 cases the derivative

bound computed with Pasado is strictly contained inside the bound computed via interval AD,

and likewise in 497/512 cases the bound computed via Pasado is contained strictly inside the

bound computed via zonotope AD (the bounds are incomparable in 15/512 cases). Only 20/512
green points are shown since in the other cases, the interval analysis generates results that are

too over-approximate (> 10
20
) to be meaningful. The geometric mean of precision improvement

over all green points (comparing Pasado to interval AD) is 60.89 times, and the geometric mean of

precision improvement over all orange points (comparing Pasado to zonotope AD) is 1.65 times.

We next focus on a specific input configuration for finer granularity. For our specific config-

uration we use the following ranges to perform the sensitivity analysis of the Chemical ODE:

𝑘1 ∈ [2.95, 3.05], 𝑘−1 ∈ [2.8, 3.2], 𝑡0 = 0,𝐶0 ∈ [0.9, 1.1],𝐶𝐴 ∈ [0.8, 1.2], ℎ = 0.025, and 𝑛 = 16, again

based on the ranges considered in Saltelli et al. [2005]. Fig. 6 illustrates the bounds on these sensi-

tivities for the numerical solution of Eq. 12 with respect to 𝑘1 and 𝑘−1, with the 𝑥-axis representing

the time steps and the 𝑦-axis representing the sensitivities. For each color, the upper and lower

line segments represent the upper and lower bounds obtained by that method, respectively. We

can see from both figures that Pasado always produce narrower bounds compared to the standard

zonotope analysis. Additionally, within all the 16 time steps, as is shown in the left subfigure

of Fig. 6, Pasado can formally prove the monotonicity of ODESolve𝑁𝑁 with respect to 𝑘1 in this

configuration (monotonically decreasing since the sensitivity is strictly less than 0), while the

zonotope analysis cannot prove the monotonicity after the 12th step.

We measure the performance of the three methods by calculating the average runtimes for

one specific input configuration over 16 time steps, since varying input bounds has negligible

effects on runtimes. The average runtimes for the interval AD and zonotope AD are 0.12 and 81

seconds, respectively. Pasado takes 47 seconds on average, which is faster than zonotope AD - this

improvement directly results from Pasado storing fewer noise symbols, which we found to be the

biggest computational bottleneck of the affapy library.
Climate ODE. The Climate ODE is the same as in the example section and is taken from Kaper

and Engler [2013] and models the global mean temperature through an energy balance model.

In Fig. 5b, we plot the points representing (𝑢𝑜𝑢𝑟𝑠 − 𝑙𝑜𝑢𝑟𝑠 , 𝑢𝑜𝑡ℎ𝑒𝑟 − 𝑙𝑜𝑡ℎ𝑒𝑟 ) for the derivative of the
numerical solution of Eq. 1 with respect to the initial condition 𝑇0 following the same format as

Fig. 5a. The input ranges we use to generate this plot are all the 32 combinations of𝑇0 = 337.5± 𝛿𝑇0 ,
𝑅 ∈ {2.65, 2.95},𝑄 ∈ {342, 360±90},𝛼 ∈ {0.35, 0.325±0.025},𝜎 ∈ {3.402224652×10−8, 5.103336978×
10
−8}, 𝑛 = {8, 12} and ℎ ∈ {0.025, 0.05}, where 𝛿𝑇0 ∈ {37.5, 62.5}, which are based on realistic

ranges discussed in Walsh [2015].

All of the points for the baseline approaches in Fig. 5b lie above the red line (Pasado), indicating

that Pasado yields more accurate results in all cases, and additionally for all 32 of the configurations,

the derivative bounds computed by Pasado are strictly contained within the bounds computed

via interval AD and zonotope AD. The geometric mean of the precision improvement over all

green points (comparing Pasado to interval AD) is approximately 2.85 times, and the geometric

mean of the precision improvement over all orange points (comparing Pasado to zonotope AD) is
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Fig. 7. Scatter plots in logarithmic scales comparing the interval widths of the output bounds on the reverse-

mode derivatives of the Black-Scholes solution with respect to 𝐾 , 𝑆 , 𝜎 , 𝜏 , and 𝑟 , from left to right, respectively.

approximately 1.31 times. Additionally, we observe that the benefit gained from Pasado becomes

more pronounced for larger input intervals, as demonstrated by the greater vertical distance

between the data points and the red line as we move further right along the 𝑥-axis.

Fig. 3 in Section 2 represents a plot of a specific input configuration and shows the bounds

on the sensitivities of numerical solution of Eq. 1 with respect to the initial condition input 𝑇0,

formatted identically to each subfigure of Fig. 6. The input configuration used for the plot in Fig. 3

is𝑇0 ∈ {275, 400}, 𝑅 ∈ {2.65, 2.95},𝑄 = 342, 𝛼 = 0.35, 𝜎 ∈ {3.402224652×10−8, 5.103336978×10−8},
ℎ = 0.025, and 𝑛 = 12. Again, Pasado produces the most precise bounds among the three methods.

Within all the 12 iterations, Pasado can show the monotonicity of the numerical solution with

respect to the initial condition 𝑇0.

We measure the performance of the three methods by calculating the average runtimes for one

specific input configuration over 12 time steps, since varying input bounds has negligible effects

on runtimes. The average runtimes for the interval AD, zonotope AD, and Pasado are 0.0044, 0.068,

and 0.25 seconds, respectively.

5.3 Black Scholes
In the next case study, we use our synthesized AD abstractions to compute bounds on the derivatives

of the Black-Scholes solution with respect to the different parameters. The Black-Scholes model is a

solution to a Partial Differential Equation (PDE) modeling financial option values. The parameters

of the Black-Scholes model are volatility 𝜎 , time 𝜏 , strike price𝐾 , spot price 𝑆 and interest rate 𝑟 . The

derivatives of the Black-Scholes solution with respect to these parameters are commonly known

as the "greeks," and while prior work has computed bounds on the greeks [Vassiliadis et al. 2016],

only the interval domain was used, hence this experiment demonstrates the precision improvement

obtained from using Pasado’s synthesized abstract transformers. Since there are multiple inputs

but only a single output, we elect for (abstract) reverse-mode AD.

For this experiment we compare our approach against both interval and zonotope abstract AD.

We perform the evaluation for different ranges of the parameter values to study how varying the

size of the input intervals affects the precision. The input ranges we use are all the 54 combinations

of 𝐾 = 100 ± 𝛿𝐾 , 𝑆 = 105 ± 𝛿𝑆 , 𝜎 = 5 ± 𝛿𝜎 , 𝜏 = 0.08219 ± 𝛿𝜏 , 𝑟 = 0.0125 ± 𝛿𝑟 , where 𝛿𝐾 ∈ {1, 5, 10},
𝛿𝜏 ∈ {1, 5, 10}, 𝛿𝜎 ∈ {0.5, 1, 2}, 𝛿𝜏 ∈ {0.001, 0.01}, 𝛿𝑟 = 0.001. Furthermore, there are 5 greeks and

54 different configurations, hence there are 270 total derivative bounds computed.

We plot the points (𝑢𝑜𝑢𝑟𝑠 − 𝑙𝑜𝑢𝑟𝑠 , 𝑢𝑜𝑡ℎ𝑒𝑟 − 𝑙𝑜𝑡ℎ𝑒𝑟 ) in Fig. 7 for all the derivatives of the Black-

Scholes solution with respect to the five "greeks," with the same layout as Fig. 5a. As can be seen, in

all cases all points lie above the red line, hence demonstrating that Pasado produces the most precise

results. The bounds computed with Pasado are strictly contained inside the bounds computed

with zonotope AD in 263/270 cases (rest are incomparable). The geometric mean of the precision

improvement over all green points (comparing Pasado to interval AD) is approximately 4.03 times,

and the geometric mean of the precision improvement over all orange points (comparing Pasado to
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Fig. 8. Lipschitz robustness of FFNNs with 3 (far left), 4 (left-center), or 5 (right-center) affine layers and

FFNNBig (far right) against the haze perturbation on 1000 correctly classified test images. The top row (Fig. 8a)

shows the average upper bounds on the local Lipschitz constant with respect to different 𝛼𝑚𝑎𝑥 for the interval

AD, zonotope AD, and Pasado. The bottom row (Fig. 8b) shows the increase in precision of Pasado, computed

as the ratio of the zonotope-bounded Lipschitz constant over the Pasado-bounded Lipschitz constant.

zonotope AD) is approximately 2.81 times. Furthermore, for larger input intervals (further right

along the x-axis) the improvement obtained from Pasado becomes more substantial, as evidenced

by the higher vertical distance of the points above the line.

We measure the runtime performance of each method by calculating the average runtimes across

all input configurations. The average runtimes (per configuration) for the interval AD, zonotope

AD, and Pasado are 0.0015, 0.01, and 0.05 seconds, respectively.

5.4 Lipschitz Robustness of Neural Networks
In this case study, we consider the task of computing the local Lipschitz constant of a neural

network’s output with respect to an adversarial perturbation parameter as in [Laurel et al. 2022a,b].

We study DNNs trained on the MNIST dataset and consider the Haze perturbation given as

𝑝𝛼 (𝑥𝑖 ;𝛼) = (1 − 𝛼)𝑥𝑖 + 𝛼 , where 𝛼 represents the amount of haze effects and 𝑥𝑖 corresponds

to the 𝑖𝑡ℎ input pixel. For the sake of direct comparison, we evaluate on the same range of values

for the perturbation parameter 𝛼 as in Laurel et al. [2022b].

Fig. 8 shows the results of Lipschitz certification for feed-forward neural networks (FFNNs) with

3, 4, and 5 affine layers. The test accuracies for these three FFNNs are 92.7%, 89.2%, and 86.7%,

respectively. Fig. 8a illustrates the bounds on the Lipschitz constants, where the 𝑥-axis represents

the values of 𝛼𝑚𝑎𝑥 and the 𝑦-axis represents the average upper bounds on the corresponding

Lipschitz constants (smaller being preferable) for interval AD, zonotope AD, and Pasado. Fig. 8b

exhibits the increase in precision of Pasado over zonotope AD, with the 𝑥-axis showing the values

of 𝛼𝑚𝑎𝑥 and the 𝑦-axis showing the ratio of the zonotope-bounded Lipschitz constants over the

Pasado-bounded Lipschitz constants (larger being preferable). Given that the results produced

by zonotope AD and Pasado are orders of magnitude smaller than those from interval AD for

𝛼𝑚𝑎𝑥 > 10
−2
, we employ logarithmic scales for both the 𝑥- and the 𝑦-axes to enable a more visually

clear separation between the curves representing zonotope AD and Pasado.
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As shown in Fig. 8, there is a significant improvement in precision when using Pasado in

comparison to using the interval AD or zonotope AD. In particular, for sufficiently large values of

𝛼𝑚𝑎𝑥 , specifically where 𝛼𝑚𝑎𝑥 > 10
−2
, the bounds on the Lipschitz constants for 5-layer network

that we compute are between 4 − 100× smaller than the bounds computed by the zonotope AD.

In contrast, for smaller values of 𝛼𝑚𝑎𝑥 , particularly when 𝛼𝑚𝑎𝑥 < 10
−3
, Pasado and zonotope AD

produce Lipschitz constants of nearly identical magnitudes.

We measure the performance of the three methods by calculating the average runtime across all

input configurations used to generate the plots. For the 3-layer network, the average runtimes for

the interval AD, zonotope AD, and Pasado are 0.00338, 0.00210, and 0.0636 seconds, respectively.

For the 4-layer network, the average runtimes are 0.00383, 0.00352, and 0.0969 seconds, respectively.

For the 5-layer network, the average runtimes are 0.00469, 0.00533, and 0.135 seconds, respectively.

The far right subfigure in Fig. 8 shows that Pasado is scalable to a larger FFNN, specifically the

FFNNBig architecture from Singh et al. [2019b]. The test accuracy for our FFNNBig instance is

95.8%. As in previous plots, both the 𝑥- and the 𝑦-axes use logarithmic scales. Compared to the

zonotope analysis, Pasado can be up to 182× more precise and the local Lipschitz constants can be

up to 2.01 × 106 smaller. The average runtimes for interval AD, Zonotope AD and Pasado on the

FFNNBig network are 0.0542, 0.361, and 1.49 seconds, respectively.

To further illustrate the scalability and versatility of Pasado, we also evaluate it on three convolu-

tional neural networks (CNNs), namely ConvSmall, ConvMed, and ConvBig, as defined in Singh

et al. [2018], which are state-of-the-art CNN benchmarks for verification. When the convolutional

layers of these networks are unrolled into an equivalent affine layer, the corresponding number of

intermediate neurons is more than 25, 000, which means Pasado’s chain rule abstract transformer

will be called that number of times, hence these benchmarks highlight Pasado’s scalability.

Fig. 9 presents the results of Lipschitz robustness analysis for ConvSmall, ConvMed, and

ConvBig. The test accuracies for these three CNNs are 98.5%, 99.2%, and 98.9%, respectively. As

in previous plots, we use logarithmic scales for clarity. Across all three CNNs, Pasado generates

much more precise bounds. Notably, in the ConvBig network, Pasado can offer up to 2750× greater
precision, and the local Lipschitz constants can be up to 1.99 × 10

11
smaller. For ConvSmall,

the average runtimes for the interval analysis, zonotope analysis, and Pasado are 3.38, 3.64, and

4.70 seconds, respectively. For ConvMed, the average runtimes are 5.11, 5.70, and 7.27 seconds,

respectively. For ConvBig, the average runtimes are 115, 212, and 191 seconds, respectively.

In summary, we observe that as the network architectures become larger, the precision improve-

ments offered by Pasado become more pronounced. Furthermore, in the largest convolutional

benchmark, ConvBig, the runtime of Pasado was actually faster than the standard zonotope AD

analysis baseline. This behavior is the consequence of Pasado generating fewer noise symbols

compared to standard zonotope transformers, similar to the observation in the ODE benchmarks

of Section 5.2. Hence, for sufficiently large benchmarks (like CNNs), the computational savings

obtained by propagating fewer noise symbols (as Pasado does) outweigh the costs (e.g. due to the

linear regression) associated with Pasado’s more precise abstract transformers.

5.5 Monotonicity Analysis of an Adult Income Network
In this case study, we conduct a monotonicity analysis on a multilayer perceptron (MLP) trained

on the Adult dataset [Becker and Kohavi 1996]. Monotonocity has been shown to be highly

desirable in order to ensure fairness [Shi et al. 2022; Sivaraman et al. 2020]. Our MLP takes

87 input features (where 81 of the 87 features result from one-hot encodings of the original

dataset’s categorical variables), passes these features through two hidden layers (each containing 10

neurons and applying tanh activation), and outputs a single binary classification score predicting

the income level. Our goal is to verify the monotonicity (both increasing and decreasing) of
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Fig. 9. Lipschitz robustness of ConvSmall (left), ConvMed (center), and ConvBig (right) against the haze

perturbation on 30 correctly classified test-set images. The top row (Fig. 9a) presents the average upper

bounds on the local Lipschitz constant with respect to different 𝛼𝑚𝑎𝑥 for the interval AD, zonotope AD, and

Pasado. The bottom row (Fig. 9b) presents the increase in precision of the Pasado domain, computed as the

ratio of the zonotope-bounded Lipschitz constant over the Pasado-bounded Lipschitz constant.

the MLP’s output with respect to 5 continuous input features which are: Age, Education-Num,

Capital Gain, Capital Loss, and Hours per week. Whereas prior work [Shi et al. 2022] varied one

feature at a time while holding the value of all other features as fixed, our experiments allow

all 5 of the aforementioned continuous features to simultaneously vary within interval bounds.

Hence we abstractly interpret the continuous features with a 5D 𝐿∞-ball, with a radius 𝜖 ∈ [0, 1],
while holding all the remaining features as fixed. Since training data is normalized to have zero

mean and unit variance, passing a 5D 𝐿∞-ball with 𝜖 = 0.4 through the MLP is equivalent to

exploring an infinite set of inputs that satisfy Age ∈ [33.2, 44.1], Education-Num ∈ [9.05, 11.1],
Capital Gain ∈ [−1900, 4060], Capital Loss ∈ [−73.7, 249], and Hours per week ∈ [35.5, 45.4]. For
this analysis, we used Pasado’s reverse-mode AD abstract transformers. Hence in a single (abstract)

pass, Pasado computes bounds on the partial derivatives of the output with respect to each of the

five input features.
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Fig. 10. Counts of verifiably monotonic fea-

tures of Adult MLP over 100 test-set inputs.

For each 𝐿∞-ball radius 𝜖 , Pasado abstractly computes

bounds on the five partial derivatives when the origi-

nal input is perturbed by the 𝐿∞-ball for 100 different

inputs, computing 500 partial derivative bounds in to-

tal. In addition, we compare Pasado against interval AD

and zonotope AD. For a given input 𝐿∞-ball, to verify

monotonicity with respect to a chosen feature, the partial

derivative bound with respect to that feature should prov-

ably exclude 0, meaning the interval should be strictly

positive (monotonically increasing) or strictly negative

(monotonically decreasing). This condition ensures that

the MLP is monotonic with respect to that feature for all
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input points in the given 𝐿∞-ball. Hence in Fig. 10, we show the total number of partial derivative

bounds that exclude 0 over 100 test inputs, for different-sized 𝐿∞-balls.
Fig. 10 shows that the ability of interval AD to prove monotonicity sharply decreases for 𝜖 ≥ 0.05

due to the inherent imprecision of the interval domain. For small 𝜖 such as 0 ≤ 𝜖 ≤ 0.2, zonotope

AD and Pasado produce similar counts, meaning both can prove monotonicity. However, their

respective performances diverge as 𝜖 increases. When 0.2 ≤ 𝜖 ≤ 0.6, the counts for zonotope AD

decline rapidly to nearly zero, whereas the counts for Pasado remain high. Hence, in these cases

Pasado can prove monotonicity in significantly more instances. For 𝜖 > 0.6, all three analyses

struggle to prove monotonicity for most continuous input features. The average runtimes for the

interval AD, zonotope AD, and Pasado are 0.079, 12, and 39 seconds, respectively. In summary,

Pasado is able to prove the most monotonicity specifications across all inputs.

6 RELATEDWORK
Composite and Synthesized Abstractions. The idea of abstracting a composite numeric expres-

sion all at once (as Pasado does) to obtain better precision than sub-optimally composing individual

abstract transformers for nonlinear primitives has emerged in the literature. While beneficial for

improving precision, abstracting composite expressions is challenging because soundly bounding a

composite expression typically involves solving a nonconvex, multivariable optimization problem.

As discussed in Fryazinov et al. [2010], these problems typically cannot be solved by hand due to

the need to consider interior critical points (as Pasado does). Hence recent works [Ko et al. 2019;

Kochdumper et al. 2022; Paulsen and Wang 2022a,b; Ryou et al. 2021; Singh et al. 2019a] have tried

to synthesize precise composite abstractions by solving an optimization problem (using gradient

methods or SMT solvers). However, none of these works target AD, thus none of these techniques

can leverage the structure of an AD computation as Pasado does. Further, unlike [Paulsen and

Wang 2022a,b] we do not use an SMT solver, as we can solve our optimization problems directly.

Abstract Interpretation of AD. Abstract interpretation has also been applied to AD [Jordan

and Dimakis 2021; Laurel et al. 2022a,b; Misra et al. 2023; Vassiliadis et al. 2016], however, all

of these works use either the standard interval domain or standard zonotope domain abstract

transformers, and compose them naively instead of jointly abstracting multiple AD operations

as we do. Furthermore, [Jordan and Dimakis 2021; Laurel et al. 2022a; Vassiliadis et al. 2016] are

only formalized for a single abstract domain and thus cannot immediately produce general static

analyzers for a more general set of abstract domains as Pasado can. While Laurel et al. [2022b] can

be instantiated with different abstract domains, that work uses standard abstract transformers and

thus cannot dynamically synthesize new abstractions and only supports forward mode AD.

7 CONCLUSION
We present Pasado, the first technique for synthesizing precise static analyzers tailored specifically

to Automatic Differentiation. We show the generality of Pasado by instantiating it for the Product

Rule, Quotient Rule and Chain Rule patterns, with the latter supporting multiple different non-linear

functions. Pasado’s generality also extends to multiple different abstract domains and both forward-

mode and reverse-mode AD. Our evaluation on multiple challenging scenarios from machine

learning and scientific computing shows that Pasado significantly improves precision compared to

prior techniques while simultaneously offering scalability to large computations including CNNs.
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A APPENDIX
A.1 Proof of Lemma A.1
We first prove the following helpful lemma:

Lemma A.1. Let 𝑓 (𝑥) : R𝑚 → R be twice differentiable 𝑥 ∈ R𝑚 . If 𝐻𝑒𝑠𝑠𝑖𝑎𝑛(𝑓 , 𝑥) is indeterminant
then so is 𝐻𝑒𝑠𝑠𝑖𝑎𝑛(−𝑓 , 𝑥)

Proof. If 𝐻𝑒𝑠𝑠𝑖𝑎𝑛(𝑓 , 𝑥) is indeterminant then it has both positive and negative eigenvalues. The

eigenvalues of 𝐻𝑒𝑠𝑠𝑖𝑎𝑛(−𝑓 , 𝑥) will just be −1 times each eigenvalue of 𝐻𝑒𝑠𝑠𝑖𝑎𝑛(𝑓 , 𝑥), hence there
will still be both positive and negative eigenvalues meaning 𝐻𝑒𝑠𝑠𝑖𝑎𝑛(−𝑓 , 𝑥) is indeterminant. □

A.2 Full Chain Rule Proof for Intervals
The correctness of the interval bounds also follows nearly identically as the proof for zonotopes,

albeit there is a single edge case whenever ∃𝑥∗ ∈ [𝑙𝑥 , 𝑢𝑥 ] : 𝑓 ′′ (𝑥∗) = 0 and 𝑓 ′ (𝑥∗) = 0 as the

Hessian test would be inconclusive (since its determinant would be 0), but unlike with zonotopes,

we cannot ensure that the gradient at 𝑥∗ is non-zero (as we did by enforcing 𝐴 ≠ 0) since there

could be 𝑥∗ such that both 𝑓 ′ (𝑥∗) = 𝑓 ′′ (𝑥∗) = 0. If the function 𝑓 is such that there is never any

shared root of both 𝑓 ′ and 𝑓 ′′, the proof is complete as this will never happen (this is the case for

exp, log, 𝜎, 𝑡𝑎𝑛ℎ) but for functions like 𝑥4 or 𝑥3 it is possibility. However any such 𝑥∗ will be a root
of 𝑓 ′′ (𝑥) · 𝑦 for any value of 𝑦, hence we can call the same verified root solver with 𝐴 = 0, 𝑦 = 𝑙𝑦
to obtain the 𝑥∗ . Further, 𝑓 ′ (𝑥∗) = 𝑓 ′′ (𝑥∗) = 0 implies 𝑓 ′ (𝑥∗) · 𝑦 = 0 for all 𝑦, hence checking at

(𝑥∗, 𝑙𝑦) is sufficient, and this point is already included in the points we evaluate.

A.3 Full Product Rule Proof for Intervals
Unlike in the case of the Chain rule where some of the cases depended on ensuring the gradients

were nonzero, which had to be handled differently for zonotopes vs. intervals, the entire technique

for product rule relies only on the Hessian information which will be the same for intervals in

order to compute min(𝑥1 · 𝑦2) + (𝑥2 · 𝑦1) and max(𝑥1 · 𝑦2) + (𝑥2 · 𝑦1) since 𝐻𝑒𝑠𝑠𝑖𝑎𝑛((𝑥1 · 𝑦2) + (𝑥2 ·
𝑦1) − (𝐴𝑥1 + 𝐵𝑦1 +𝐶𝑥2 +𝐷𝑦2 + 𝐸)) is the same as 𝐻𝑒𝑠𝑠𝑖𝑎𝑛((𝑥1 ·𝑦2) + (𝑥2 ·𝑦1)). Thus for computing

the bounds on the zonotope error symbol and computing the precise interval lower and upper

bounds, it suffices to simply check the 2
4
corners.

A.4 FullQuotient Rule Proof for Zonotopes
Having proven that the 4D Hessian is indeterminant at every point, this ensures that the optimal

values must occur on the boundaries. Wewill repeat this idea for the lower dimensional subproblems

and show that when restricted to the 3 dimensional boundaries, they also do not have any interior

extrema, thus the optimal value must occur on their boundaries (the boundary of the boundaries of

the 4-cube).

We now detail the rest of the cases for the quotient rule for the Zonotope case

A.4.1 3D Subproblems.

Proof. Case 1) Fixed 𝑦2 to either 𝑙𝑦2 or 𝑢𝑦2 - we denote the fixed constant value of 𝑦2 as 𝜅𝑦2 ,

hence 𝜅𝑦2 ∈ {𝑙𝑦2 , 𝑢𝑦2 }. In this case the first derivatives are:

𝜕

𝜕𝑥1
=
𝜅𝑦2

𝑥2
2

−𝐴

𝜕

𝜕𝑦1
=

1

𝑥2
− 𝐵
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𝜕

𝜕𝑥2
=
2𝑥1𝜅𝑦2 − 𝑦1𝑥2

𝑥3
2

−𝐶

If 𝜅𝑦2 = 0, then
𝜕
𝜕𝑥1

≠ 0 since by requirement 𝐴 ≠ 0, and 𝑥2 ≠ 0, thus there is no critical point

since the gradient (
𝜕
𝜕𝑥1
, 𝜕
𝜕𝑦1
, 𝜕
𝜕𝑥2

) cannot be the all-zeros vector.

If 𝜅𝑦2 ≠ 0 then because 𝑥2 ≠ 0, 𝐴, 𝐵 ≠ 0, we can ensure that
𝜕
𝜕𝑥1

≠ 0 by requiring the condition

on 𝐴, 𝐵 that
𝐴
𝐵2

≠ 𝜅𝑦2 . Since for any 𝑥2 ∈ [𝑙𝑥2 , 𝑢𝑥2 ] this guarantees that
𝜅𝑦

2

𝑥2
2

−𝐴 and
1

𝑥2
− 𝐵 cannot

both be zero. Thus why we require both
𝐴
𝐵2

≠ 𝑙𝑦2 and
𝐴
𝐵2

≠ 𝑢𝑦2 .

Case 2) Fixed 𝑥2 to either 𝑙𝑥2 or 𝑢𝑥2 - we denote the fixed constant value of 𝑥2 as 𝜅𝑥2 . In this case

the first derivatives are:

𝜕

𝜕𝑥1
=
𝑦2

𝜅2𝑥2
−𝐴

𝜕

𝜕𝑦1
=

1

𝜅𝑥2
− 𝐵

𝜕

𝜕𝑦2
=
𝑥1

𝜅2𝑥2
− 𝐷

It sufficis to require that
1

𝐵
≠ 𝜅𝑥2 , as this guarantees that

𝜕
𝜕𝑦1

≠ 0, thus the gradient cannot be the

all-zeros vector.

Case 3) Fixed 𝑦1 to either 𝑙𝑦1 or 𝑢𝑦1 - we denote the fixed constant value of 𝑦1 as 𝜅𝑦1 , hence

𝜅𝑦1 ∈ {𝑙𝑦1 , 𝑢𝑦1 }. In this case the first derivatives are:

𝜕

𝜕𝑥1
=
−𝑦2
𝑥2
2

−𝐴

𝜕

𝜕𝑥2
=
2𝑥1𝑦2 − 𝜅𝑦1𝑥2

𝑥3
2

−𝐶

𝜕

𝜕𝑦2
=
−𝑥1
𝑥2

2
− 𝐷

.

For this case we will show that any hypothetical root of the above system of equations (which is

what is needed for a critical point) is necessarily a saddle point.

Case 3.1) 𝜅𝑦1 ≠ 0. If
𝜕
𝜕𝑥1

= 𝜕
𝜕𝑥2

= 𝜕
𝜕𝑦2

= 0 then any critical point will be a root of the above

system of equations, furthermore such a root (𝑥∗
1
, 𝑥∗

2
, 𝑦∗

2
) would be of the form: (−𝐷𝑥∗

2

2, 𝑥∗
2
,−𝐴𝑥∗

2

2),
as that would be needed to ensure that

𝜕
𝜕𝑥1

= 𝜕
𝑦2

= 0. Plugging such a hypothetical root into
𝜕
𝜕𝑥2

= 0

implies that 𝑥∗
2
must also be a root of

2𝐴𝐷𝑥∗
2

4 − 𝜅𝑦1𝑥∗2
𝑥∗
2

3
−𝐶 = 0

But since 𝑥∗
2
must be nonzero, then equivalently it must be a root of:

𝑥∗
2

3 − 𝐶

2𝐴𝐷
𝑥∗
2

2 −
𝜅𝑦1

2𝐴𝐷
= 0

Furthermore the Hessian determinant is − 2(𝑥1𝑦2+𝜅𝑦
1
𝑥2 )

𝑥8
2

, however the Hessian has 0 in its upper

left corner, meaning the Hessian is neither positive definite nor negative definite (Sylvester’s

criteria). Thus if the Hessian determinant is non-zero, then the Hessian is necessarily indeterminant

meaning the hypothetical root would be a saddle point. Thus we simply need to show that at
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such a hypothetical root (−𝐷𝑥∗
2

2, 𝑥∗
2
,−𝐴𝑥∗

2

2), the Hessian determinant is non-zero. The Hessian

determinant is non-zero provided that the numerator (𝑥1𝑦2 + 𝜅𝑦1𝑥2) ≠ 0, However computing this

numerator at our hypothetical root gives:

(𝐴𝐷 (𝑥∗
2
)4 + 𝜅𝑦1𝑥∗2)

Which is zero if 𝑥∗
2
= 0 (which is not possible) or:

𝑥∗
2
=

3

√︂
−𝜅𝑦1
𝐴𝐷

Thus we just need to ensure that
3

√︃
−𝜅𝑦

1

𝐴𝐷
is not also a root of 𝑥∗

2

3 − 𝐶
2𝐴𝐷

𝑥∗
2

2 − 𝜅𝑦
1

2𝐴𝐷
= 0. We can

ensure this by requiring that

2

3

√︂
−𝜅𝑦1
𝐴𝐷

≠
−3𝜅𝑦1
2𝐶

Case 3.2) 𝜅𝑦1 = 0. In this case it is still true that any root would be of the form (−𝐷𝑥∗
2

2, 𝑥∗
2
,−𝐴𝑥∗

2

2),
further because 𝜅𝑦1 = 0, 𝑥∗

2
must necessarily be

𝑥∗
2
=

𝐶

2𝐴𝐷

However, as before the Hessian has a 0 in the upper left cornermeaning it is not positive definite or

negative definite, furthermore the determinant is− 2𝑥1𝑦2

𝑥8
2

, which at the point (−𝐷 ( 𝐶
2𝐴𝐷
)2, 𝐶

2𝐴𝐷
,−𝐴( 𝐶

2𝐴𝐷
)2)

is non-zero meaning the Hessian is indeterminant

It is worth noting that the Reverse mode version of the quotient rule is an instance of this case.

Case 4) Fixed 𝑥1 to either 𝑙𝑥1 or 𝑢𝑥1 - we denote the fixed constant value of 𝑥1 as 𝜅𝑥1 . In this case

the first derivatives are:

𝜕

𝜕𝑦1
=

1

𝑥2
− 𝐵

𝜕

𝜕𝑥2
=
2𝜅𝑥1𝑦2 − 𝑦1𝑥2

𝑥3
2

−𝐶

𝜕

𝜕𝑦2
=
𝜅𝑥1

𝑥2
2
− 𝐷

.

If 𝜅𝑥1 = 0, then
𝜕
𝜕𝑦2

= −𝐷 and 𝐷 ≠ 0, hence it is impossible for there to be an extrema. If 𝜅𝑥1 ≠ 0,

then it suffices to require that 𝜅𝑥1 ≠
−𝐷
𝐴2

. This is because
1

𝑥2
− 𝐵 = 0 =

𝜅𝑥
1

𝑥2
2

−𝐷 implies that 𝐵2 = −𝐷
𝜅𝑥

1

.

Hence by the contrapositive
1

𝑥2
− 𝐵 = 0 =

𝜅𝑥
1

𝑥2
2

− 𝐷 cannot have been true. □

A.4.2 2D Subproblems. Here we show that when solving for the optimal values along the boundary

of the boundary, we can still ensure that there are no interior critical points, and thus all local

extrema must occur on the boundary of the boundary of the boundary.

Proof. Case 1) Fixed 𝑥2, 𝑦2 to 𝜅𝑥2 and 𝜅𝑦2 respectively. In this case the function
(𝑥2 ·𝑦1 )−(𝑥1 ·𝑦2 )

𝑥2
2

−
(𝐴𝑥1 + 𝐵𝑦1 +𝐶𝑥2 + 𝐷𝑦2 + 𝐸) becomes linear in both dimensions, and the optimal values will occur

at the corner points and hence there are no interior critical points.

Case 2) Fixed𝑦1,𝑦2 to𝜅𝑦1 and𝜅𝑦2 respectively. The 2DHessian determinant in this 2D subproblem

is

−4𝜅2𝑦
2

𝑥6
2

which is negative provided 𝜅𝑦2 ≠ 0. Hence if 𝜅𝑦2 ≠ 0 any interior point is a saddle. If

𝜅𝑦2 = 0 then
𝜕
𝜕𝑥1

= −𝐴 ≠ 0, hence there are no interior critical points to begin with.
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Case 3) Fixed 𝑦1, 𝑥2 to 𝜅𝑦1 and 𝜅𝑥2 respectively. In this case the 2D Hessian determinant is
−1
𝑥4
2

which is always strictly negative, hence any potential critical point would necessarily be a saddle

point and thus not a local extrema.

Case 4) Fixed 𝑥1, 𝑦2 to 𝜅𝑥1 and 𝜅𝑦2 respectively. In this case the 2D Hessian determinant is also
−1
𝑥4
2

which is always strictly negative, hence any potential critical point would necessarily be a saddle

point and thus not a local extrema.

Case 5) Fixed 𝑥1, 𝑥2 to 𝜅𝑥1 and 𝜅𝑥2 respectively. In this case the function
(𝑥2 ·𝑦1 )−(𝑥1 ·𝑦2 )

𝑥2
2

− (𝐴𝑥1 +
𝐵𝑦1 +𝐶𝑥2 + 𝐷𝑦2 + 𝐸) becomes linear in both dimensions, and the optimal values will occur at the

corner points and hence there are no interior critical points. Case 6) Fixed 𝑥1, 𝑦1 to 𝜅𝑥1 and 𝜅𝑦1

respectively. In this case the Hessian determinant is

−4𝜅2𝑥
1

𝑥6
2

which is negative provided 𝜅𝑥1 ≠ 0 hence

any interior critical point is necessarily a saddle point. If 𝜅𝑥1 = 0, then
𝜕
𝜕𝑦2

= −𝐷 ≠ 0, thus there is

no critical point to begin with. □

A.4.3 1D Subproblems.

Proof. Case 1) Fix every variable to its lower or upper bounds except 𝑥1. In this case the function

becomes linear and thus the extrema will occur at either 𝑥1 = 𝑙𝑥1 or 𝑥1 = 𝑢𝑥1
Case 2) Fix every variable to its lower or upper bounds except 𝑦1. In this case the function still is

linear. and thus the extrema will occur at either 𝑦1 = 𝑙𝑦1 or 𝑦1 = 𝑢𝑦1
Case 3) Fixed every variable to its lower or upper bounds except 𝑥2. In this case the function is not

linear hence we have to solve for critical points, however thankfully this is now only a univariate

problem. We have to solve for 𝑥2 ∈ [𝑙𝑥2 , 𝑢𝑥2 ] such that
𝜕
𝜕𝑥2

=
2𝜅𝑥

1
𝜅𝑦

2
−𝜅𝑦

1
𝑥2

𝑥3
2

−𝐶 = 0. Hence we must

solve the 3rd degree polynomial 𝐶𝑥3
2
+ 𝜅𝑦1𝑥2 − 2𝜅𝑥1𝜅𝑦2 = 0. However because 𝜅𝑥1 , 𝜅𝑦1 , 𝜅𝑦2 each

could be the respective lower or upper bounds, this means we must actually solve 8 versions of this

3rd degree (univariate) polynomial. However this can still easily be done analytically, and thus we

would check if each of the 8 equations has a root in [𝑙𝑥2 , 𝑢𝑥2 ]
Case 4) Fix every variable to its lower or upper bounds except 𝑦2. In this case the function still is

linear and thus the extrema will occur at either 𝑦2 = 𝑙𝑦2 or 𝑦2 = 𝑢𝑦2 □

A.4.4 0D Subproblems. We just enumerate over all 2
4
corners: (𝑥1, 𝑦1, 𝑥2, 𝑦2) ∈ {𝑙𝑥1 , 𝑢𝑥1 }×{𝑙𝑦1 , 𝑢𝑦1 }×

{𝑙𝑥2 , 𝑢𝑥2 } × {𝑙𝑦2 , 𝑢𝑦2 }

A.5 FullQuotient Rule Proof for Intervals
We now detail the rest of the cases for the quotient rule for the Interval case

A.5.1 3D Subproblems.

Proof. Case 1) Fixed 𝑦2 to either 𝑙𝑦2 or 𝑢𝑦2 - we denote the fixed constant value of 𝑦2 as 𝜅𝑦2 ,

hence 𝜅𝑦2 ∈ {𝑙𝑦2 , 𝑢𝑦2 }. In this case the first derivatives are:

𝜕

𝜕𝑥1
=
𝜅𝑦2

𝑥2
2

𝜕

𝜕𝑦1
=

1

𝑥2

𝜕

𝜕𝑥2
=
2𝑥1𝜅𝑦2 − 𝑦1𝑥2

𝑥3
2

Since the range [𝑙𝑥2 , 𝑢𝑥2 ] excludes zero, this ensures that 𝜕
𝜕𝑦1

= 1

𝑥2
is never zero
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Case 2) Fixed 𝑥2 to either 𝑙𝑥2 or 𝑢𝑥2 - we denote the fixed constant value of 𝑥2 as 𝜅𝑥2 . In this case

the first derivatives are:

𝜕

𝜕𝑥1
=
𝑦2

𝜅2𝑥2
𝜕

𝜕𝑦1
=

1

𝜅𝑥2
𝜕

𝜕𝑦2
=
𝑥1

𝜅2𝑥2

Since the range [𝑙𝑥2 , 𝑢𝑥2 ] excludes zero, this ensures 𝜅𝑥2 ≠ 0, hence
𝜕
𝜕𝑦1

= 1

𝜅𝑥
2

is never zero

Case 3) Fixed 𝑦1 to either 𝑙𝑦1 or 𝑢𝑦1 - we denote the fixed constant value of 𝑦1 as 𝜅𝑦1 , hence

𝜅𝑦1 ∈ {𝑙𝑦1 , 𝑢𝑦1 }. In this case the first derivatives are:

𝜕

𝜕𝑥1
=
−𝑦2
𝑥2
2

𝜕

𝜕𝑥2
=
2𝑥1𝑦2 − 𝜅𝑦1𝑥2

𝑥3
2

𝜕

𝜕𝑦2
=
−𝑥1
𝑥2

2

.

Case 3.1) 𝜅𝑦1 ≠ 0. Since 𝑥2 ≠ 0, the only way for
𝜕
𝜕𝑥1

= 𝜕
𝜕𝑦2

= 𝜕
𝜕𝑥2

= 0 is if 𝑥1 = 𝑦2 = 0 and 𝜅𝑦1 = 0,

hence if 𝜅 ≠ 0, then it is not possible for
𝜕
𝜕𝑥2

to be zero.

Case 3.2 𝜅𝑦1 = 0. In this case if [𝑙𝑥1 , 𝑢𝑥1 ] and [𝑙𝑦2 , 𝑢𝑦2 ] both include 0, then we could have a critical

point that the Hessian test cannot immediately rule out. However the value of the function at this

critical point is always 0, hence it suffices to add a single additional point (0) to the finite list of

points to check

Case 4) Fixed 𝑥1 to either 𝑙𝑥1 or 𝑢𝑥1 - we denote the fixed constant value of 𝑥1 as 𝜅𝑥1 . In this case

the first derivatives are:

𝜕

𝜕𝑦1
=

1

𝑥2

𝜕

𝜕𝑥2
=
2𝜅𝑥1𝑦2 − 𝑦1𝑥2

𝑥3
2

𝜕

𝜕𝑦2
=
𝜅𝑥1

𝑥2
2

Since the range [𝑙𝑥2 , 𝑢𝑥2 ] excludes zero, this ensures that 𝜕
𝜕𝑦1

= 1

𝑥2
is never zero. □

A.5.2 2D Subproblems.

Proof. Case 1) Fixed 𝑥2, 𝑦2 to 𝜅𝑥2 and 𝜅𝑦2 respectively. In this case the function
(𝑥2 ·𝑦1 )−(𝑥1 ·𝑦2 )

𝑥2
2

becomes linear in both dimensions, and the optimal values (both min and max) will occur at the

corner points and hence there are no interior critical points.

Case 2) Fixed𝑦1,𝑦2 to𝜅𝑦1 and𝜅𝑦2 respectively. The 2DHessian determinant in this 2D subproblem

is

−4𝜅2𝑦
2

𝑥6
2

which is negative provided 𝜅𝑦2 ≠ 0. Hence if 𝜅𝑦2 ≠ 0 any interior point is a saddle. If

𝜅𝑦2 = 0 then the function
(𝑥2 ·𝑦1 )−(𝑥1 ·𝑦2 )

𝑥2
2

becomes

𝜅𝑦
1

𝑥2
, hence

𝜕
𝜕𝑥2

=
−𝜅𝑦

1

𝑥2
2

which is non-zero provided

𝜅𝑦1 ≠ 0. If 𝜅𝑦1 and 𝜅𝑦2 = 0, then the function is everywhere 0, which will caught when we check

corner points.
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Case 3) Fixed 𝑦1, 𝑥2 to 𝜅𝑦1 and 𝜅𝑥2 respectively. In this case the 2D Hessian determinant is
−1
𝑥4
2

which is always strictly negative, hence any potential critical point would necessarily be a saddle

point and thus not a local extrema.

Case 4) Fixed 𝑥1, 𝑦2 to 𝜅𝑥1 and 𝜅𝑦2 respectively. In this case the 2D Hessian determinant is also
−1
𝑥4
2

which is always strictly negative, hence any potential critical point would necessarily be a saddle

point and thus not a local extrema.

Case 5) Fixed 𝑥1, 𝑥2 to 𝜅𝑥1 and 𝜅𝑥2 respectively. In this case the function
(𝑥2 ·𝑦1 )−(𝑥1 ·𝑦2 )

𝑥2
2

becomes

linear in both dimensions, and the optimal values will occur at the corner points and hence there

are no interior critical points.

Case 6) Fixed 𝑥1, 𝑦1 to 𝜅𝑥1 and 𝜅𝑦1 respectively. In this case the Hessian determinant is

−4𝜅2𝑥
1

𝑥6
2

which is negative provided 𝜅𝑥1 ≠ 0 hence any interior critical point is necessarily a saddle point. If

𝜅𝑥1 = 0, then the function
(𝑥2 ·𝑦1 )−(𝑥1 ·𝑦2 )

𝑥2
2

becomes

𝜅𝑦
1

𝑥2
, hence

𝜕
𝜕𝑥2

=
−𝜅𝑦

1

𝑥2
2

which is non-zero provided

𝜅𝑦1 ≠ 0. If 𝜅𝑦1 and 𝜅𝑥1 = 0, then the function is everywhere 0, which will caught when we check

corner points. □

A.5.3 1D Subproblems.

Proof. Case 1) Fix every variable to its lower or upper bounds except 𝑥1. In this case the function

becomes linear and thus the extrema will occur at either 𝑥1 = 𝑙𝑥1 or 𝑥1 = 𝑢𝑥1
Case 2) Fix every variable to its lower or upper bounds except 𝑦1. In this case the function still is

linear. and thus the extrema will occur at either 𝑦1 = 𝑙𝑦1 or 𝑦1 = 𝑢𝑦1
Case 3) Fixed every variable to its lower or upper bounds except 𝑥2. In this case the function is not

linear hence we have to solve for critical points, however thankfully this is now only a univariate

problem. We have to solve for 𝑥2 ∈ [𝑙𝑥2 , 𝑢𝑥2 ] such that
𝜕
𝜕𝑥2

=
2𝜅𝑥

1
𝜅𝑦

2
−𝜅𝑦

1
𝑥2

𝑥3
2

= 0. Hence we must solve

2𝜅𝑥1𝜅𝑦2 − 𝜅𝑦1𝑥2 = 0. Hence for each possible root 𝑥2 =
2𝜅𝑥

1
𝜅𝑦

2

𝜅𝑦
1

, we must check if

2𝜅𝑥
1
𝜅𝑦

2

𝜅𝑦
1

∈ [𝑙𝑥2 , 𝑢𝑥2 ],
and if so we will need to evaluate the function

(𝑥2 ·𝑦1 )−(𝑥1 ·𝑦2 )
𝑥2
2

at said critical point. We keep in mind

that there are really 8 versions of this equation that we must resolve.

Case 4) Fix every variable to its lower or upper bounds except 𝑦2. In this case the function still is

linear and thus the extrema will occur at either 𝑦2 = 𝑙𝑦2 or 𝑦2 = 𝑢𝑦2 □

A.5.4 0D Subproblems. We just enumerate over all 2
4
corners: (𝑥1, 𝑦1, 𝑥2, 𝑦2) ∈ {𝑙𝑥1 , 𝑢𝑥1 }×{𝑙𝑦1 , 𝑢𝑦1 }×

{𝑙𝑥2 , 𝑢𝑥2 } × {𝑙𝑦2 , 𝑢𝑦2 }
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