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Abstract. Probabilistic inference is a key mechanism for reasoning about
probabilistic programs. Since exact inference is theoretically expensive,
most probabilistic inference systems today have adopted approximate
inference techniques, which trade precision for better performance (but
often without guarantees). As a result, while desirable for its ultimate
precision, the practical effectiveness of exact inference for probabilistic
programs is mostly unknown.
This paper presents PSI1, a novel symbolic analysis system for exact
inference in probabilistic programs with both continuous and discrete
random variables. PSI computes succinct symbolic representations of the
joint posterior distribution represented by a given probabilistic program.
PSI can compute answers to various posterior distribution, expectation
and assertion queries using its own back-end for symbolic reasoning.
Our evaluation shows that PSI is more effective than existing exact in-
ference approaches: (i) it successfully computed a precise result for more
programs, and (ii) simplified expressions that existing computer algebra
systems (e.g., Mathematica, Maple) fail to handle.

1 Introduction

Many statistical learning applications make decisions under uncertainty. Prob-
abilistic languages provide a natural way to model uncertainty by represent-
ing complex probability distributions as programs [20,21,19,8,12,25,39,46,32].
Exact probabilistic inference for programs with only discrete random variables
is already a #P-hard computational problem [13]. Programs which have both
discrete and continuous variables reveal additional challenges, such as repre-
senting discrete and continuous components of the joint distribution, computing
integrals, and managing a large number of terms in the joint distribution.

For these reasons, most existing probabilistic languages implement inference
algorithms that calculate numerical approximations. The general approaches in-
clude sampling-based Monte Carlo methods [20,40,21,19,39,46,32] and projec-
tions to convenient probability distributions, such as variational inference [34,8]
or discretization [31,12]. While these methods scale well, they typically come
with no accuracy guarantees, since providing such guarantees is NP-hard [15].

1 http://www.psisolver.org
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At the same time, there has been a renewed research interest in symbolic
inference methods due to their promise for computing more precise inference
results. Existing symbolic inference works fall into different categories:

– Approximate symbolic inference: Several analyses of graphical models ap-
proximate continuous distribution functions with a mixture of base functions,
such as truncated exponentials or polynomials, which can be integrated more
easily [44,11,36,45,43]. For instance, SVE [43] approximates distributions as
piecewise low-rank polynomials.

– Interactive symbolic inference: A user can write down the inference steps
within modern computer algebra systems, such as Mathematica [3] and
Maple [1]. These tools can help the user by automating parts of the in-
tegration and/or simplification of distribution expressions.

– Exact symbolic inference: Bhat et al. [7] presents a type-based analysis trans-
lating programs with mixed discrete/continuous variables into symbolic dis-
tribution expressions, but does not simplify integral terms symbolically and
instead computes them using a numerical integration library. Most recently,
Hakaru [38,10] optimizes probabilistic programs by translating a program
into a distribution expression in a DSL within Maple’s expression language,
and simplifying this expression utilizing Maple’s engine, before running (if
necessary) the optimized program within a MCMC simulation.

While these works are promising steps, the practical effectiveness of exact sym-
bolic inference in hybrid probabilistic models (with both discrete and continuous
distributions) remains unknown, dictating the need for further investigation.

This work. We present the PSI (Probabilistic Symbolic Inference) system, a
comprehensive approach for automating exact probabilistic inference via pro-
gram analysis. PSI’s analysis performs an end-to-end symbolic inference for
probabilistic programs with discrete and/or continuous random variables. PSI
analyzes a probabilistic program using a symbolic domain which captures the
program’s probability distribution in a precise manner. PSI comes with its own
symbolic optimization engine which generates compact expressions that repre-
sent joint probability density functions using various optimizations, including
algebraic simplification and symbolic integration. The symbolic domain and op-
timizations are designed to strike a balance between the expressiveness of the
probability density expressions and the efficiency of automatically computing
integrals and generating compact densities.

Our symbolic analysis (Section 3) generalizes existing analyzers for exact
inference on discrete programs (e.g., those that operate at the level of concrete
states [12]). Our optimization engine (Section 4) can also automatically simplify
many integrals in density expressions and thus directly improve the performance
of works that generate unoptimized expressions, such as [7]), without requiring
the full complexity of a general computer algebra system, as in [38,10]. As a
result, PSI is able to compute precise and compact inference results even when
the existing approaches fail (Section 5).



Contributions. Our main contributions are:

– Symbolic inference for programs with continuous/discrete variables: A novel
approach for fully symbolic probabilistic inference. The algorithm represents
the posterior distribution within a symbolic domain.

– Probabilistic inference system: PSI, an implementation of our algorithm to-
gether with optimizations that simplify the symbolic representation of the
posterior distribution. PSI is available at http://www.psisolver.org.

– Evaluation: The paper shows an experimental evaluation of PSI against
state-of-the-art symbolic inference techniques – Hakaru, Maple, Mathemat-
ica, and SVE – on a corpus of 21 benchmarks selected from the literature.
PSI produced correct and compact distribution expressions for more bench-
marks than the alternatives. In addition, we compare PSI to state-of-the-art
approximate inference engines, Infer.NET [34] and R2 [39], and show the
benefits of exact inference.

Based on our results, we believe that PSI is the most effective exact symbolic
inference engine to date and is useful for understanding the potential of exact
symbolic inference for probabilistic programs.

2 Overview

Figure 1 presents the ClickGraph probabilistic program, adapted from a Fun
language program from [34]. It describes an information retrieval model that
calculates the posterior distribution of the similarity of two files, conditioned on
the users’ access patterns to these files.

The program first specifies the prior distribution on the document similarity
(line 2) and the recorded accesses to A and B for each user (lines 4-5). It then
specifies a trial in which the variable sim is the similarity of the documents
for an issued query (line 7). If the documents are similar, the probabilities of
accessing them (p1 and p2) are the same, otherwise p1 and p2 are independent
(lines 9-14). Finally, the variables clickA and clickB represent outcomes of the
users accessing the documents (lines 16-17), and each trial produces a specific
observation using the observe statements (lines 18-19). The return statement
specifies that PSI should compute the posterior distribution of simAll.

2.1 Analysis

To compute the posterior distribution, PSI analyzes the probabilistic program
via a symbolic domain that captures probability distributions, and applies opti-
mizations to simplify the resulting expression after each analysis step.

Symbolic Analysis: For each statement, the analysis computes a symbolic ex-
pression that captures the program’s probability distribution at that point. The
analysis operates forward, starting form the beginning of the function. As a
pre-processing step, the analysis unrolls all loops and lowers the array elements
into a sequence of scalars or inlined constants. The state of the analysis at each
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1 def ClickGraph (){
2 simAll := Uniform (0,1);
3
4 clicksA := [1, 1, 1, 0, 0];
5 clicksB := [1, 1, 1, 0, 0]
6 for i in [0..5) {
7 sim := Bernoulli(simAll );
8
9 p1:=0; p2:=0;

10 if sim {
11 p1 = Uniform (0,1); p2 = p1;
12 } else {
13 p1 = Uniform (0,1); p2 = Uniform (0,1);
14 }
15
16 clickA := Bernoulli(p1);
17 clickB := Bernoulli(p2);
18 observe(clickA == clicksA[i]);
19 observe(clickB == clicksB[i]);
20 }
21 return simAll;
22 }

Fig. 1. ClickGraph Example

program point captures (1) the correct execution of the program as a map that
relates live program variables x1, . . . , xn to a symbolic expression e represent-
ing a probability density of the computation at this point in the program, and
(2) erroneous executions (e.g., due to an assertion violation) represented by an
aggregate error probability expression ē.

The analysis of the first statement (line 2) identifies that the state consists
of the variable simAll, which has the Uniform(0, 1) distribution. In general, for
x := Uniform(a, b), the analysis generates the expression [a ≤ x] · [x ≤ b]/(b− a),
which denotes the density of this distribution. The factors [a ≤ x] and [x ≤ b]
are Iverson brackets, guard functions that equal 1 if their conditions are true, or
equal 0 otherwise. Therefore, this density has a non-zero value only if x ∈ [a, b].
In particular, for simAll, the analysis generates eL.2 = [0 ≤ simAll] · [simAll ≤ 1].

Since the constant arrays are inlined, the analysis next processes the state-
ment on line 7 (in the first loop iteration). The analysis adds the variable sim

to the state, and multiplies the expression eL.2 with the density function for the
distribution Bernoulli(simAll):

eL.7 = [0 ≤ simAll] · [simAll ≤ 1] · (simAll · δ(1− sim) + (1− simAll) · δ(sim))

ēL.7 = 0

The expression eL.7 represents a generalized joint probability density over simAll

and sim. To encode discrete distributions like Bernoulli, the analysis uses Dirac
deltas, δ(e), which specifies a distribution with point masses at the zeros of e.

Optimizations: After analyzing each statement, the analysis simplifies the gen-
erated distribution expression by applying equivalence-preserving optimizations:

– basic algebraic manipulations (e.g., in the previous expression, an optimiza-
tion can distribute multiplication over addition);

– removal of factors with trivial or unsatisfiable guards (e.g., in this example
the analysis checks whether a product [0 ≤ simAll] · [simAll ≤ 1] is always
equal to zero, and since it is not, leaves the expression unchanged);



– symbolic integration of the distribution expressions; for instance, at the end
of the each loop iteration, the analysis expression eL.19 contains several loop-
local variables: sim, p1, p2, clickA, and clickB. The analysis integrates out
these local variables because they will not be referenced by the subsequent
computation. It first removes the discrete variables sim, clickA, and clickB

by exploiting the properties of Dirac deltas. For the continuous variables p1

and p2, it computes the antiderivative (indefinite integral) using PSI’s inte-
gration engine, finds the integration bounds, and evaluates the antiderivative
on these bounds. After the analysis of the first loop iteration, this optimiza-
tion reduces the size of the distribution expression from 22 to 6 summands.

Result of the Analysis: After analyzing the entire program, the analysis produces
the final posterior probability density expression for the variable simAll:

eL.21 = [0 ≤ simAll] · [simAll ≤ 1] · 6(simAll + 3)5

3367

The analysis also computes that the final error probability ēL.21 is 0. This is the
exact posterior distribution for this program. We present this posterior density
function graphically in Figure 8.

2.2 Applications of PSI

PSI’s source language (with conditional and bounded loop statements) has the
expressive power to represent arbitrary Bayesian networks, which encode many
probabilistic models relevant in practice [22]. PSI’s analysis is analogous to the
variable elimination algorithm for inference in graphical models. We anticipate
that PSI can be successfully deployed in several contexts:

Probabilistic Inference: PSI allows a developer to specify several classes of
queries. For joint posterior distribution, a user may return multiple variables in
the return statement. The special operators FromMarginal(e) and Expectation(e)
return the marginal distribution and the expectation of an expression e, respec-
tively. A developer can also specify assertions using the assert(e) statement.

Testing and Debugging: The exact inference results produced by PSI can be used
as reference versions for debugging and testing approximate inference engines.
It can also be used to test existing computer algebra systems – using PSI, we
found errors in Maple’s simplifier (see Section 5).

Sampling from Optimized Probabilistic Programs: Optimized distribution ex-
pressions generated by PSI’s symbolic optimizer can be used, in principle, for
computing proposal distributions in MCMC simulations, as done by [7] and [38].

Uncertainty Propagation Analysis: PSI’s analysis can serve as a basis for static
analyses that propagate uncertainty through computations and determine error
bars for the result. This provides a powerful alternative to existing analyses that
are primarily sampling-based [9,41], with at most limited support for simplifying
algebraic identities that involve random variables [41].



n ∈ Z
r ∈ R
x ∈ Var

a ∈ ArrVar

bop ∈ {+,−, ∗, /, }̂ lop ∈ {&&, | |} cop ∈ {==, 6=, <,>,≤,≥}
Dist ∈ {Bernoulli, Gaus,. . . } SOp ∈ {Expectation, FromMarginal, SampleFrom}
p ∈ Prog → Func+

f ∈ Func → def Id(V ar∗) {Stmt; return Var∗}

se ∈ Expr → n | r | x | a[Expr] | Expr bop Expr | Expr cop Expr | Expr lop Expr |
Dist(Expr+) | SOp(Expr) | f(Expr∗)

s ∈ Stmt → x := Expr | a := array(Expr) | x = Expr | a[Expr] = Expr |
observe Expr | assert Expr | skip | Stmt; Stmt |
if Expr {Stmt} else {Stmt} | for x in [Expr..Expr) {Stmt}

Fig. 2. PSI’s Source Language Syntax

3 Symbolic Inference

In this section we describe our core analysis: the procedure analyzes each state-
ment in the program and produces a corresponding expression in our symbolic
domain which captures probability distributions.

3.1 Source Language

Figure 2 presents the syntax of PSI’s source language. This is a simple impera-
tive language that operates on real-valued scalar and array data. The language
defines probabilistic assignments, which can assign a random value drawn from a
distribution Dist, and observe statements, which allow constraining the values
of probabilistic expressions. The language also supports the standard sequence,
conditional statement, and bounded loop statement.

3.2 Symbolic Domain for Probability Distributions

Figure 3 presents the syntax of our symbolic domain. The domain can succinctly
describe joint probability distributions with discrete and continuous components:

– Basic terms include variables, numerical constants (such as e and π), loga-
rithms and uninterpreted functions. These terms can form sums, products,
or exponents. Division is handled using the rewrite a/b→ a · b−1.

– Dirac deltas represent distributions that have weight in low-dimensional sets
(such as single points). In our analysis, they encode variable definitions
and assignments, and linear combinations of Dirac deltas specify discrete
distributions.

– Iverson brackets represent functions that are 1 if the condition within the
brackets is satisfied and 0 otherwise. In our analysis, they encode comparison
operators and certain primitive probability distributions (e.g., Uniform).

– Integrals and infinite sums are used during the analysis to represent marginal-
ization of variables and UniformInt distributions respectively.

– Gaussian antiderivative – (d/dx)−1[e−x
2

](e) – used to denote the function
e∫
−∞

dx e−x
2

, which cannot be decomposed into simpler elementary functions.



e ∈ E ::= x |n | r | log(e) |ϕ(e1, . . . , en) | − e | e1 + . . .+ en | e1 · . . . · en | ee21 |

δ(e) | [e1 = e2] | [e1 ≤ e2] | [e1 6= e2] | [e1 < e2] |∑
x∈Z

eJxK |
∫
R

dx eJxK | (d/dx)−1[e−x2

](e)

Fig. 3. Symbolic domain for probability distributions

We use the notation eJx1, . . . , xnK to denote that a symbolic distribution
expression e may contain free variables x1, . . . , xn that are bound by an outer
operator (such as a sum or integral).

Our design of the symbolic domain aims to strike a balance between expres-
siveness – the kinds of distributions it can represent – and efficiency – the ability
of the analysis to automatically integrate functions and find simple equivalent
expressions. In particular, our symbolic domain enables us to define most discrete
and continuous distributions from the exponential family and other well-known
primitive distributions, such as Student-t and Laplace (see the Appendix A).

Primitive Distributions: For each primitive distribution Dist, we define two map-
pings, PDFDist, and ConditionsDist to respectively specify the probability density
function, and valid parameter and input ranges. For instance, the Bernoulli dis-
tribution with a parameter ep has PDFBern(x, ep) = ep · δ(1−x) + (1− ep) · δ(x)
and ConditionsBern = [0 ≤ ep] · [ep ≤ 1]. We present the encodings of several
other primitive distributions in the Appendix A. Additionally, PSI allows the
developer to specify an arbitrary density function of the resulting distribution
using the SampleFrom (sym expr,...) primitive, which takes as inputs a dis-
tribution expression and a set of its parameters.

Program State: A symbolic program state σ denotes a probability distribution
over the program variables with an additional error state:

σ ∈ Σ ::=λM. case M of (x1, . . . , xn)⇒ e1Jx1, . . . , xnK , ⊥ ⇒ e2 (1)

In a regular execution, the state is represented with the variables x1, . . . , xn
and the posterior distribution expression e1. We represent the error state as a
symbol ⊥ and the expression for the probability of error e2. Conceptually, the
map σ associates a probability density with each concrete program state M ,
which is either a tuple of values of program variables or the error state.

3.3 Analysis of Expressions

Figure 4 presents the analysis of expressions. The function Ae converts each ex-
pression of the source language to a transformer t ∈ Σ → Σ×E on the symbolic
representation. The transformer returns both a new state (σ ∈ Σ) and a result of
expression evaluation (e ∈ E), thus capturing side effects (e.g., sampling values
from probability distributions or exhibiting errors such as division by zero).



Ae : Expr→(Σ → Σ × E)

Ae(x) :=λσ. (σ, x)

Ae(se1 bop se2) :=λσ. let (σ1, e1) = Ae(se1)(σ) and (σ2, e2) = Ae(se2)(σ1)

in (σ2, e1 SymbolicOp(bop) e2), bop ∈ {+, -, *}
Ae(se1/se2) :=λσ. let (σ1, e1) = Ae(se1)(σ) and (σ2, e2) = Ae(se2)(σ1)

in (Assert([e2 6= 0])(σ2), e1 · e2−1)

Ae(se1&&se2) :=λσ. let (σ1, e1) = Ae(se1)(σ) and (σ2, e2) = Ae(se2)(σ1)

in (σ2, [e1 6= 0] · [e2 6= 0])

Ae(se1 | | se2) :=λσ. let (σ1, e1) = Ae(se1)(σ) and (σ2, e2) = Ae(se2)(σ1)

in (σ2, [ [e1 6= 0] + [e2 6= 0] 6= 0 ])

Ae(Dist(se1, . . . , sen)) :=λσ. let (σ1, [e1, ..., en]) = A∗e([se1, ..., sen])(σ) and FreshVar(τ)

and (P,C) = (PDFDist(τ, e1, ..., en),ConditionsDist(e1, ..., en))

in let σ2 = (Distribute(τ, P ) ◦Assert(C))(σ1) in (σ2, τ),

Assert(eJx1, . . . , xnK)(λM. case M of (x1, . . . , xn)⇒ e1Jx1, . . . , xnK ,⊥ ⇒ e2) :=

λM. case M of (x1, . . . , xn)⇒ (e1 · [e 6= 0])Jx1, . . . , xnK ,
⊥ ⇒ e2 + MarginalizeAll([e = 0] · e1)

Distribute(x, eJx1, ..., xn, xK)(λM. case M of (x1, ..., xn)⇒ e1Jx1, ..., xnK ,⊥ ⇒ e2) :=

λM. case M of (x1, ..., xn, x)⇒ e1Jx1, ..., xnK · eJx1, ..., xn, xK , ⊥ ⇒ e2

Fig. 4. Symbolic Analysis of Expressions

Operations: The first five rules transform source language variables to distribu-
tion expression variables (including operators via the helper function SymbolicOp).
The rules are standard, with boolean constants true and false encoded as num-
bers 1 and 0, respectively. The rules compose the side effects of the operands.
The division rule additionally uses the Assert helper function to add the guard
[e2 6= 0] to the distribution expression and aggregate the probability of e2 = 0
to the overall error probability.

Distribution Sampling: The expression Dist(se1, . . . , sen) accepts distribution
parameters se1, . . . , sen, which can be arbitrary expressions. For a primitive dis-
tribution Dist, the analysis obtains expressions from the mappings PDFDist and
ConditionsDist (Section 3.2).

The rule first analyzes all of the distribution’s parameters (which can repre-
sent random quantities). To iterate over the parameters, the rule uses the helper
function A∗e, defined inductively as:

A∗e([]) := λσ . (σ, [])
A∗e(se : t) := λσ . let (σ1, e) = Ae(se)(σ) and (σ2, t

′) = A∗e(t)(σ1) in (σ2, e : t′).

To ensure that distribution parameters have the correct values, the rule invokes
a helper function Assert, which adds guards from the ConditionsDist. Finally, the
rule declares a fresh temporary variable τ (specified by a predicate FreshVar),



As : Stmt → (Σ → Σ)

As(skip) := λσ.σ

As(x := se) := λσ. let (σ′, e) = Ae(se)(σ) in Distribute(x, δ(x− e))(σ′)
As(x = se) := As(x := seJτ/xK) ◦ Rename(x, τ), with FreshVar(τ)

As(s1; s2) := As(s2) ◦As(s1)

As(assert(se)) := λσ. let (σ′, e) = Ae(se)(σ) in Assert([e 6= 0])(σ′)

As(observe(se)) := λσ. let (σ′, e) = Ae(se)(σ) in Observe([e 6= 0])(σ′)

As(if se {s1} else {s2}) := λσ. let (σ0, e) = Ae(se)(σ)

and σ1 = (As(s1) ◦Observe([e 6= 0]))(σ0)

and σ2 = (As(s2) ◦Observe([e = 0]))(σ0)

in Join(σ, σ1, σ2)

As(return (x1, . . . , xn)) := KeepOnly(x1, . . . , xn)

Fig. 5. Symbolic Analysis of Statements

which is then distributed according to the density function PDFDist, using the
helper function Distribute. In the definitions of Assert and Distribute, we spec-
ified the states in their expanded forms (Equation 1).

Marginalization: Marginalization aggregates the probability by summing up over
the variables in an expression (e.g., local variables at the end of scope or variables
in an error expression). To marginalize all variables, we define the function

MarginalizeAll(eJx1, . . . , xnK) :=

∫
R

dx1 · · ·
∫
R

dxneJx1, . . . , xnK .

The function KeepOnly performs selective marginalization. It takes as input the
variables x′1 . . . , x

′
m to keep and the input state σ, and marginalizes out the

remaining variables in σ’s distribution expressions:

KeepOnly(x′1, ..., x
′
m)(λM. case M of (x1, ..., xn)⇒ e1Jx1, ..., xnK ,⊥ ⇒ e2) =

let {x′′1 , ..., x′′l } = {x1, ..., xn} \ {x′1, ..., x′m}

in λM. case M of (x′1, ..., x
′
m)⇒

∫
R

dx′′1 · · ·
∫
R

dx′′l e1Jx1, ..., xnK ,⊥ ⇒ e2

3.4 Analysis of Statements

Figure 5 presents the definition of function As: it analyzes each statement and
produces a transformer of states: Σ → Σ. The initial analysis state σ0 is defined
as follows: σ0 = (λM. case M of #»x ⇒ ϕ( #»x ),⊥ ⇒ 0). Here, the function
F under analysis has parameters #»x = (x1, ...xn) where ϕ is an uninterpreted
function representing the joint probability density of #»x . If F has no parameters,
we replace ϕ() with 1.

Definitions: The statement x := se declares a new variable x and distributes it
as a point mass centered at e (the symbolic expression corresponding to se), i.e.
the analysis binds x by multiplying the joint probability density by δ(x− e).



Rename(x, x′)(λM. case M of (x1, ..., x, ..., xn)⇒ e1Jx1, ..., x, ..., xnK ,⊥ ⇒ e2) :=

λM. case M of (x1, ..., x
′, ..., xn)⇒ e1

q
x1, ..., x

′, ..., xn
y
,⊥ ⇒ e2

Observe(eJ #»x K)(λM. case M of ( #»x )⇒ e1J #»x K ,⊥ ⇒ e2) :=

λM. case M of ( #»x )⇒ e1J #»x K · eJ #»x K ,⊥ ⇒ e2

Join((λM. case M of ( #»x )⇒ e1J #»x K ,⊥ ⇒ e2), σthen, σelse) :=

let (λM. case M of ( #»x )⇒ e′1J #»x K ,⊥ ⇒ e′2) = KeepOnly( #»x )(σthen)

and (λM. case M of ( #»x )⇒ e′′1J #»x K ,⊥ ⇒ e′′2 ) = KeepOnly( #»x )(σelse)

in λM. case M of ( #»x )⇒ e′1J #»x K + e′′1J #»x K ,⊥ ⇒ e′2J #»x K + e′′2J #»x K− e2J #»x K

Fig. 6. Analysis of Statements - Helper Functions

Assignments: Analysis of assignments to existing variables (x = se) consistently
renames these variable and introduces a new variable with the previous name.
The substitution seJτ/xK renames x to τ in the source expression se, since the
variable being assigned may itself occur in se. The function Rename(x, τ) alpha-
renames all occurrences of the variable x to τ in an existing state (σ) to avoid
capture (Figure 6). It is necessary to rename x in se separately, because se is a
source program expression, while Rename renames variables in the analysis state.

Observations: Observations are handled by a call to the helper function Observe
(Figure 6), which conditions the probability distribution on the given expression
being true. We do not renormalize the distribution after an observation, but only
once, before reporting the final result (Section 3.5). Therefore, observations do
not immediately change the error part of the distribution.

Conditionals: The analysis of conditionals first analyzes the condition, and then
creates two copies of the resulting state σ0. In one of the copies, the condition is
then observed to be true, and in the other copy, the condition is observed to be
false. Analysis of the ’then’ and ’else’ statements s1 and s2 in the corresponding
states yields σ1 and σ2. Finally, σ1 and σ2 are joined together by marginalizing all
locally scoped variables, including temporaries created during the analysis of the
condition, and then adding the distribution and the error terms (Join; Figure 6).
We subtract the error probability in the original state to avoid counting it twice.

3.5 Final Result and Renormalization

We obtain the final result by applying the state transformer obtained from anal-
ysis of the function body to the initial state and renormalizing it. We define the
renormalization function as:

Renormalize(λM. case M of (x1, . . . , xn)⇒ e1Jx1, . . . , xnK ,⊥ ⇒ e2) :=

let eZ = MarginalizeAll(e1) + e2

in λM. case M of (x1, . . . , xn)⇒ [eZ 6= 0] · e1Jx1, . . . , xnK · e−1
Z ,

⊥ ⇒ [eZ 6= 0] · e2 · e−1
Z + [eZ = 0]



The function obtains a normalization expression eZ , such that the renormalized
distribution expression of the resulting state integrates to 1. This way, PSI
computes a normalized joint probability distribution for the function results that
depends symbolically on the initial joint distribution of the function’s arguments.

3.6 Discussion

Loop Analysis: PSI analyzes loops like for i in [0..N){...} (as mentioned in
Section 2.1) by unrolling the loop body a constant N number of times. This
approach also extends to loops where the number of iterations N is a random
program variable. If N can be bounded from above by a constant Nmax, a
developer can encode the loop as

assert(N <= Nmax);

for i in [0.. Nmax) {

if(i < N) { /* loop body */ }

}

To handle for-loops with unbounded random variables and general while-loops,
a developer can select Nmax such that the probability of error (i.e., probability
that the loop runs for more than Nmax iterations) is small enough. We anticipate
that this approach can be readily automated. Related techniques such as [42]
and [18] employ similar approximation techniques.

Function Call Analysis: PSI can analyze multiple functions, generating for each
function f(x1, ..., xn) the density expression of its m outputs, parameterized by
the unknown distribution of the function’s n inputs. The distribution of the
function inputs is represented by an uninterpreted function ϕ(x1, ..., xn) which
appears as a subterm in the output density expression.

The rule for the analysis of function calls (see Appendix B) first creates
temporary variables a1, . . . , an for each argument of f , and variables r1, . . . , rm
for each result returned by f . The variables a1, . . . , an are then initialized by
the actual parameters e1, . . . , en by multiplying the density of the caller by∏
i δ(ai − ei). The result variables in f ’s density expression are renamed to

match r1, . . . , rn, and the uninterpreted function ϕ within f ’s density expression
is replaced with the new density of the caller (avoiding variable capture). Finally,
the temporary variables a1, . . . , an are marginalized.

Formal Argument: A standard approach to prove that the translation from
the source language to the target domain (in our case, the symbolic domain)
is correct is to show that the transformation preserves semantics, as in [17].
This requires a specification of semantics for both the source language and the
symbolic domain language. Below, we outline how one might approach such a
formal proof using denotational semantics that map programs and distribution
expressions to measure transformers.

Denotational semantics for the source language is easy to define by extend-
ing [30], but defining the measure semantics for distribution expressions is more
challenging. Defining measure semantics for most expression terms in the sym-
bolic domain is simple (e.g., the measure corresponding to a sum of terms is
the sum of the measures of the terms). However, the semantics of expressions



containing Dirac deltas is less immediate, since there is no general pointwise
product when Dirac delta factors have overlapping sets of free variables.

To assign semantics to a product expression with Dirac delta factors, we
therefore (purely formally) integrate the expression against the indicator func-
tion of the measured set and simplify it using Dirac delta identities until no Dirac
deltas are left. The resulting term can then be easily interpreted as a measure. A
formal proof will also need to show that this is a well-formed definition, i.e., that
all ways of eliminating Dirac deltas lead to the same measure. Once the seman-
tics for distribution expressions has been defined, the correctness proof proceeds
as a straightforward induction over the source language production rules. We
consider a complete formalized proof to be an interesting future work item.

4 Symbolic Optimizations

After each step of the analysis from Section 3, PSI’s symbolic engine simplifies
the joint posterior distribution expressions. The algorithm of this optimization
engine is a fixed point computation, which applies various symbolic transforma-
tions. We selected these transformations by their ability to optimize expressions
that typically arise when analyzing probabilistic programs and that have demon-
strated their efficiency for practical programs (as we discuss in Section 5). We
next describe three main groups of the transformations.

4.1 Algebraic Optimizations

These optimizations implement basic algebraic identities. Some examples include
removing zero-valued terms in addition expressions, removing one-valued terms
in multiplication expressions, distributing exponents over products, or condens-
ing equivalent summands and factors.

4.2 Guard Simplifications

For each term in an expression with multiple Iverson brackets and/or Dirac
deltas, these optimizations analyze the constraints in the bracket factors and
delta factors using sound but incomplete heuristics. PSI can then (1) remove
the whole term if the constraints are inconsistent and therefore the term is always
zero, (2) remove a factor if it is always satisfied, e.g., if both sides of an inequality
are constants, or (3) remove a bracket factor if it is implied by other factors.

Guard Linearization: Guard linearization analyzes complex Iverson brackets and
Dirac deltas with the goal to rewrite expressions in such a way that all included
constraints (expressions in Iverson brackets and Dirac deltas) depend on a speci-
fied variable x in a linear way. It handles constraints that are easily recognizable
as compositions of quadratic polynomials, multiplications with only one factor
depending on x and integer and fractional powers (including in particular mul-
tiplicative inverses).

One aspect that requires special care is that the integral of a Dirac delta
along x depends on the partial derivative of its argument in the direction of



x. For example, we have δ(2x) = 1
2δ(x), and in general we have δ(f(x)) =∑

i
δ(x−xi)
|f ′(xi)| for f(xi) = 0, whenever f ′(xi) 6= 0. We ensure the last constraint by

performing a case split on f ′(x) = 0, and substituting the solutions for x into
the delta expression in the “equals” case. For example, δ(y− x2) is linearized to

[−y ≤ 0] · ([x = 0] · δ(y) + [x 6= 0] · 1

2
√
y

(δ(x−√y) + δ(x+
√
y))).

We present the details of the guard linearization algorithm in the Appendix C.

4.3 Symbolic Integration

These optimizations replace the integration terms with equivalent terms that do
not contain integration symbols. If the integrated term is a sum, the symbolic
engine integrates each summand separately and pulls all successfully integrated
summands out of the integral. If the integrated term is a product, the symbolic
engine pulls out all factors that do not contain the integration variable before
performing the integration.

Integration of Terms with Deltas: The integration engine first attempts to elim-
inate the integration variable with a factor that is a Dirac delta, by applying
the rule f(e) =

∫
R dxf(x) · δ(x− e). The engine can often transform deltas that

depend on the integration variable x in more complicated ways into equivalent
expressions only containing x-dependent deltas of the above form, using guard
linearization. This transformation is applied when evaluating the integral.

Integration of Continuous Terms: The symbolic engine integrates continuous
terms (without Dirac deltas) in several steps. First, it multiplies out all terms
that contain the integration variable and groups together all Iverson bracket
terms in a single term. Second, it computes the lower and upper bounds of in-
tegration by analyzing the Iverson bracket term. If necessary, it first rewrites
the term into an equivalent term within which all Iverson brackets specify the
constraints on the integration variable in a direct fashion, using guard lineariza-
tion. This is necessary as in general, a single condition inside a bracket might
not be equivalent to a single lower or upper bound for the integration variable.
The integration bounds are then computed as the minimum of all upper bounds
and the maximum of all lower bounds, where minimum and maximum are again
encoded using Iverson brackets. Third, the symbolic engine applies a number
of standard rules for obtaining antiderivatives, including integration of power
terms, natural logaritms and exponential functions, and integration by parts.
We present the details of PSI’s integration rules in the Appendix C.

5 Evaluation

This section presents an experimental evaluation of PSI and its effectiveness
compared to the state-of-the-art symbolic and approximate inference techniques.

Implementation: We implemented PSI using the D programming language. PSI
can produce resulting query expressions in several formats including Matlab,
Maple, and Mathematica. Our system and additional documentation, including
the Appendix, is available at: http://www.psisolver.org.

http://www.psisolver.org


Table 1. Comparison of Exact and Interactive Symbolic Inference Approaches.

Benchmark Type Dataset PSI Mathem. Maple Hakaru

BurglarAlarm D –     
ClinicalTrial1 DC 100/1000  – – ××
CoinBias DC 5/5  t/o t/o  n

DigitRecognition D 784/784  – – ×
Grass D –   ××  
HIV C0 10/369 G#n – – –

LinearRegression1 C0 100/1000 G#
∫

– – –
NoisyOr D –     
SurveyUnbias DC 5/5  n t/o ×  n

TrueSkill C 3/3 G#
∫

t/o t/o G#n

TwoCoins D –    –
AddFun/max C –  # × #
AddFun/sum C –    G#n

BayesPointMachine C 6/6  n t/o t/o G#n

ClickGraph DC 5/5  t/o t/o  n

ClinicalTrial2 DC 5/5  t/o t/o  n

Coins D –   ××  
Evidence/model1 D –  # ××  
Evidence/model2 D –   ××  
LearningGaussian C0 100/100 G#n – – –
MurderMystery D –     

Legend: Type: Discrete (D), Continous (C), Zero-probability observations (0).
Dataset: Full (a/a), no input (–), or the first a out of b inputs (a/b).
Tools: Fully simplified ( ) Partially simplified (G#), Not simplified (#),

Not normalized ( n, G#n), Remaining Integrals (G#
∫
),

Incorrect (××), Crash (×), Timeout (t/o).

Benchmarks: We selected two sets of benchmarks distributed with existing in-
ference engines. Specifically, we used examples from R2 [39] and Fun programs
from Infer.NET 2.5 [34]. We describe these benchmarks in the Appendix D. We
use the data sets and queries provided with the original computations. Out of
21 benchmarks, 10 have bounded loops. The loop sizes are usually equal to the
sizes of the data sets (up to 784 data points in DigitRecognition). Since several
benchmarks have data sets that are too large for any of the symbolic tools to
successfully analyze, we report the results with truncated data sets.

5.1 Comparison with Exact Symbolic Inference Engines

Experimental Setup: For comparison with Mathematica 2015 and Maple 2015,
we instruct PSI to skip symbolic integration and automatically generate dis-
tribution expressions in the formats of the two tools. We run Mathematica’s
Simplify() and Maple’s simplify() commands. For Hakaru [38,10] (commit
e61cc72009b5cae1dee33bee26daa53c0599f0bc), we implemented the benchmarks



as Hakaru terms in Maple, using the API exposed by the NewSLO.mpl simpli-
fier (as recommended by the Hakaru developers). For each benchmark, we set a
timeout of 10 minutes and manually compared the results of the tools.

Results: Table 1 presents the results of symbolic inference. For each benchmark,
we present the types of variables it has and whether it has zero-probability
observations. We also report the size of the data set provided by the benchmark
(if applicable) and the size of the subset we used. For each tool we report the
observed inference result. We mark a result as fully simplified ( ) if it does
not have any integrals remaining and has a small number of remaining terms.
We mark results that have some integral terms remaining (G#

∫
), and partially

simplified results (G#). We mark a result as not normalized ( n, G#n) if a tool
does not fully simplify the normalization constant. We marked specifically if
execution of a tool experienced a crash (×) a timeout (t/o) or a tool produced
an incorrect result (××). For five benchmarks, the automatic conversion of PSI’s
expressions could not produce Mathematica and Maple expressions, because of
the complexity of the benchmarks. We marked those entries as ’–’. Hakaru’s
simplifier does not handle zero-probability observations and expectation queries,
and therefore we have not encoded these benchmarks (also marked as ’–’).

PSI: PSI was able to fully symbolically evaluate many of the benchmark pro-
grams and generate compact symbolic distributions. Running PSI took less
than a second for most benchmarks. The most time consuming benchmark was
DigitRecognition, which PSI analyzed in 37 seconds. For two benchmarks, PSI
was not able to remove all integral terms, although it simplified and removed
many intermediate integrals.

Mathematica and Maple: For several benchmarks, both Mathematica and Maple
did not produce a result before the timeout, or returned a non-simplified ex-
pression as the result. This indicates that the distribution expressions of these
benchmarks are too complex, causing general computer algebra systems to nav-
igate a huge search space. However, we note that these results are obtained for
a mechanized translation of programs with the specific encoding we described
in this paper. It is possible that a human-driven interactive inference with an
alternative encoding may result in more simplified distribution expressions.

Maple crashed for addFun/max and addFun/sum. We identified that the crashes
were caused by an infinite recursion and subsequent stack overflow during simpli-
fication. Four benchmarks – Coins, Evidence/model1, Evidence/model2, and Grass

produce results that are different from those produced by the other tools. For
instance, Maple simplifies the density function of Coins to 0 (which is incorrect).
We attribute this incorrectness to the way Maple integrates Dirac deltas and
how it defines Heaviside functions (by default, they are undefined at input 0,
but a user can provide a different setting [2]). In our evaluation, none of the al-
ternative settings could yield the correct results. We reported these bugs to the
Maple developers. These examples indicate that users should be cautious when
using general computer algebra systems to analyze probabilistic programs.



Fig. 7. Tracking.query2:
PSI (green; exact) and
SVE (red).

Fig. 8. ClickGraph:
PSI (green; exact) and
Infer.NET (red).

Fig. 9. AddFun/max:
PSI (green; exact) and
Infer.NET (red).

Hakaru: For the ClinicalTrial1 benchmark, Hakaru produced a result differing
from PSI’s. To get a reference result, we ran R2’s simulation to compute an
approximate result and found that this result is substantially closer to PSI’s.
For the DigitRecognition benchmark, Hakaru overflowed Maple’s stack limit.
Hakaru does not simplify the AddFun/max benchmark, but unlike Maple (which
it uses), it does not crash.

Performance: Summed over all examples where Hakaru produced correct but
possibly unsimplified results except BayesPointMachine, PSI and Hakaru ran for
about the same time (8.7s and 8.8s, respectively). BayesPointMachine is an out-
lier, for which Hakaru requires 41.9s, while PSI finds a solution in 1.24s. Math-
ematica and Maple are 10-300 times slower than PSI. We present the detailed
time measurements for each benchmark in the Appendix E.

5.2 Comparison with Approximate Symbolic Inference Engine

Experimental Setup: We compared PSI with SVE [43] by running posterior
distribution queries on the models from the SVE distribution (from the com-
mit f4cea111f7d489933b36a43c753710bd14ef9f7f). We included models tracking

(with 7 provided posterior distribution queries) and radar (with 5 posterior dis-
tribution queries). We excluded the competition model because SVE crashes on
it. We did not evaluate SVE on R2 and Infer.NET benchmarks as SVE does not
encode some distributions (e.g., Beta or Gamma) and lacks support for Dirac
deltas, significantly limiting its ability to represent assignment statements.

Results: PSI fully optimized the posterior distributions for all seven queries of
the tracking model. PSI fully optimized one query from the radar benchmark
and experienced timeout for the remaining queries. Figure 7 presents the poste-
rior density functions (PDFs) for one of the tracking queries. SVE’s polynomial
approximation yields a less precise shape of the distribution compared to PSI.

5.3 Comparison with Approximate Numeric Inference Engines
Experimental Setup: We also compared the precision and performance of PSI’s
exact inference with the approximate inference engines Infer.NET [34] and R2 [39]
for a subset of their benchmarks. Specifically, we compared PSI to Infer.NET
on ClickGraph, ClinicalTrial, AddFun/max, AddFun/sum, and MurderMystery and
compared PSI to R2 on BurglarAlarm, CoinBias, Grass, NoisyOR, and TwoCoins.
We executed both approximate engines with their default parameters.



Results: Infer.NET produces less precise approximate distributions for ClickGraph
and AddFun/max (Figures 8 and 9), Infer.NET’s approximate inference is impre-
cise in representing the tails of the distributions, although the means of the two
distributions are similar (e.g., differing by 0.7% for both benchmarks). PSI and
Infer.NET produced identical distributions for the remaining benchmarks. Be-
cause of its efficient variational inference algorithms, Infer.NET computed results
5-200 times faster than PSI. The precision loss of R2 on Burglar alarm is 20%
(R2’s output burglary probability is 0.0036 compared to the exact probability
0.00299). For the other benchmarks, the difference between the results of PSI
and R2 is less than 3%. The run times of PSI and R2 were similar, e.g., PSI
was two times faster on TwoCoins, and R2 was two times faster on NoisyOR. We
present details of the comparison in the Appendix F.

The examples in Figures 7, 8, and 9 illustrate that the choice of inference
method depends on the context in which the inference results are used. While
inferences about expectations in machine learning applications may often toler-
ate imprecision in return for faster or more scalable computation, many uses of
probabilistic inference in domains such as security, privacy, and reliability en-
gineering need to reason about a richer set of queries, while requiring correct
and precise inference. We believe that the PSI system presented in this paper is
particularly suited for such settings and is an important step forward in making
automated exact inference feasible.

6 Related Work

This section discusses related work in symbolic inference and probabilistic pro-
gram analysis.

6.1 Symbolic Inference

Graphical Models: Early research in the machine learning community focused
on symbolic inference in Bayesian networks with discrete distributions [44] and
combinations of discrete and linearly-dependent Gaussian distributions [11]. For
more complex hybrid models, researchers proposed projecting distributions to
mixtures of base functions, which can be easily integrated, such as truncated
exponentials [36] and piecewise polynomials [45,43]. In contrast to these approx-
imate approaches, PSI’s algorithm performs exact symbolic integration.

Probabilistic Programs: Claret et al. [12] present a data flow analysis for symbol-
ically computing exact posterior distributions for programs with discrete vari-
ables. This analysis operates on the program’s concrete state, while efficiently
storing the states using ADD diagrams.

Bhat et al. [6] present a type system for programs with continuous proba-
bility distributions. This approach is extended in [7] to programs with discrete
and continuous variables (but only discrete observations). Like PSI, the density
compiler from [7] computes posterior distribution expressions, but instead of
symbolically simplifying and removing integrals, it generates a C program that
performs numerical integration (which may, in general, be expensive to run).



The Hakaru probabilistic language [38,10] runs inference tasks by combining
symbolic and sampling-based methods. To optimize MCMC sampling for prob-
abilistic programs, Hakaru’s symbolic optimizer (1) translates the programs to
probability density expressions in Maple’s language, (2) calls an extended ver-
sion of Maple’s simplifier, (3) uses these results to generate an optimized Hakaru
program, and, if necessary, (4) calls a MCMC sampler with the optimized pro-
gram. While Maple’s expression language is more expressive than PSI’s, it also
creates a more complex search space for expression optimizations. PSI further
reduces the search space by optimizing expressions after each analysis step, while
in Hakaru’s workflow, the distribution expression is optimized only after trans-
lating the whole program.

6.2 Probabilistic Program Analysis
Verification: Researchers presented various static analyses that verify proba-
bilistic properties of programs, including safety, liveness, and/or expectation
queries. These verification techniques have been based on abstract interpreta-
tion [35,16,14,33], axiomatic reasoning [37,29,5], model checking [26], and sym-
bolic execution [42,18]. Many of the existing approaches compute exact proba-
bilities of failure only for discrete distributions or make approximations when
analyzing computations with both discrete and continuous distributions.

Researchers have also formalized fragments of probability theory inside general-
purpose theorem provers, including reasoning about discrete [28,4] and continu-
ous distributions [17,24]. The focus of these works is on human-guided interactive
verification of (possibly recursive) programs. In contrast, PSI performs fully au-
tomated inference of hybrid discrete and continuous distributions for programs
with bounded loops.

Transformation: R2 [39] transforms probabilistic programs by moving observe
statements next to the sampling statement of the corresponding variable to im-
prove performance of MCMC samplers. Gretz et al. [23] generalize this transfor-
mation to move observations arbitrarily through a program. Probabilistic pro-
gram slicing [27] removes statements that are not necessary for computing a
user-provided query. These transformations simplify program structure, while
preserving semantics. In comparison, PSI directly transforms and simplifies the
probability distribution that underlies a probabilistic program.

7 Conclusion

We presented PSI, an approach for end-to-end exact symbolic analysis of prob-
abilistic programs with discrete and continuous variables. PSI’s symbolic na-
ture provides the necessary flexibility to answer various queries for non-trivial
probabilistic programs. More precise and reliable probabilistic inference has the
potential to improve the quality of the results in various application domains
and help developers when testing and debugging their probabilistic models and
inference algorithms. With its rich symbolic domain and optimization engine, we
believe that PSI is a useful tool for studying the design of precise and scalable
probabilistic inference based on symbolic reasoning.
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Appendix

A Common Probability Distributions

Table 2 presents several primitive distributions encoded in PSI’s intermediate
language. For a distribution Dist, the function PDFDist returns the probability
density function and the function ConditionsDist returns the conditions that
the parameters should satisfy. Both inputs and the parameters can be random
quantities. The translation to this intermediate language from the mathematical
definition of the functions is typically straightforward.

Name (Params) PDF (x, Params) Conditions (x, Params)

Bernoulli (ep) ep · δ(1− x) + (1− ep) · δ(x) [0 ≤ ep] · [ep ≤ 1]

Poisson (eλ) e−eλ ·
∑
x′∈Z[0 ≤ x′] · δ(x− x′) · ex

′
λ /Γ (x′ + 1) [0 < eλ]

UniformInt (ea, eb)
∑
x′∈Z δ(x−x

′)[ea≤x′]·[x′≤eb]∑
x′∈Z[ea≤x′]·[x′≤eb]

[
∑
x′∈Z[ea ≤ x′]·

[x′ ≤ eb] 6= 0 ]

Uniform (ea, eb)
[ea = eb] · δ(x− ea)

[ea ≤ eb]
+ [ea 6= eb] · 1

(eb−ea)
· [ea ≤ x] · [x ≤ eb]

Gaussian (eµ, eν) [eν = 0] · δ(x− eµ) + [eν 6= 0] · exp(−(x−eµ)2/(2eν ))
√

2πeν
[0 ≤ eν ]

Pareto (ea, eb) ea · eeab · x
−(ea+1) [0 ≤ ea] · [0 ≤ eb]

Beta (eα, eβ) 1/B(eα, eβ) · xα−1 · (1− x)β−1 · [0 ≤ x] · [x ≤ 1] [0 < eα] · [0 < eβ ]

Gamma (eα, eβ) βα

Γ (α)
· xα−1 · e−β·x · [0 ≤ x] [0 < α] · [0 < β]

Table 2. PDF and Correctness Conditions for Several Primitive Distributions.

Currently, PSI supports following distributions: Gauss, Uniform, Exponential,
Gamma, Beta, StudentT, Weibull, Laplace, Pareto, Rayleigh, Bernoulli, UniformInt,
and Categorical. Adding a new primitive distribution only requires a few lines
of code.

Additionally, PSI allows the developer to specify an arbitrary PDF of the re-
sulting distribution in PSIs intermediate language from Fig. 3 using the SampleFrom

(pdf expression,...) primitive.

B Symbolic Inference (Remaining Rules)

Copy rules for relational operators, add the rule for function call.

C Rules for Symbolic Integration

In this section, we give a more detailed exposition of the rules we use to replace
the integration terms with equivalent terms that do not contain integration sym-
bols.



If the integrated term is a sum, the symbolic engine integrates each summand
separately and pulls all successfully integrated summands out of the integral. If
the integrated term is a product, the symbolic engine pulls out all factors that
do not contain the integration variable before performing the integration.

Guard Normalization Internally, all brackets are represented using only the forms
[e = 0], [e 6= 0] and [e ≤ 0]. If Iverson brackets occur nested within Dirac deltas
or other Iverson brackets, these enclosing deltas or brackets are replaced by an
exhaustive case distinction on all possible combinations of Iverson bracket con-
ditions, pruning unsatisfiable conditions if possible. For example, the expression
[[x = 0] · [y ≤ 0] = 0] is transformed into [x = 0] · [y ≤ 0] · [1 ·1 = 0]+[x 6= 0] · [y ≤
0]·[0·1 = 0]+[x = 0]·[−y ≤ 0]·[y 6= 0]·[1·0 = 0]+[x 6= 0]·[−y ≤ 0]·[y 6= 0]·[0·0 = 0]
which is in turn simplified to [x 6= 0] · [y ≤ 0] + [x = 0] · [−y ≤ 0] · [y 6= 0] + [x 6=
0] · [−y ≤ 0] · [y 6= 0].

Guard Linearization To transform an expression into an equivalent expression
that only contains guards depending linearly on a given variable x, all subex-
pressions that are Iverson brackets or Dirac deltas are rewritten. In fact, our
algorithm will isolate the variable x from all other variables in case it succeeds
(i.e., the variable is an isolated summand in the constraints it occurs in). Guard
linearization is a sound but incomplete heuristic that works for many practi-
cally relevant constraints; it does not solve arbitrary non-linear constraints (this
is an undecidable problem). We handle constraints that are easily recognizable
as compositions of quadratic polynomials, multiplications with only one factor
depending on x and integer and fractional powers (including in particular mul-
tiplicative inverses).

For the following, we assume that Dirac delta constraint expressions have
only countably many zeros. Due to guard normalization, we can assume that all
such expressions are differentiable at all points where they are defined.

Note that this discussion is not entirely formal; expressions are sometimes
used interchangeably with their meaning. Furthermore, we treat additional as-
sumptions that hold for the duration of a recursive call implicitly.

For a given Iverson bracket or Dirac delta, first, the constraint expression (i.e.
e in δ(e) or [e ≤ 0], [e = 0], [e 6= 0]) is normalized by distributing products over
sums containing the variable x. We then use a recursive algorithm to linearize the
constraint. The recursion state contains four variables p, l and r; each of those
contains an expression from our distribution expression language. The recursive
algorithm maintains different invariants for the different kinds of guards:

– Iverson brackets of the form [e ≤ 0]:
[e ≤ 0] is equivalent to [0 ≤ p] · [l ≤ r] + [p < 0] · [r ≤ l].

– Iverson brackets of the form [e = 0]:
[e = 0] is equivalent to [l = r].

– Dirac deltas δ(e):

δ(e) is equivalent to
∑
x′∈R:lJx′/xK=r,( ∂∂x e)Jx

′/xK 6=0
δ(x−x′)

( ∂∂x e)Jx
′/xK +[ ∂∂xe = 0] · δ(e).



Furthermore, throughout the execution of the recursive algorithm, x does
not occur free in r. p is ignored for guards that are not of the shape [e ≤ 0].

The invariants, together with the information which type of Iverson brack-
et/Dirac delta is being handled allow computation of a guard which is equivalent
to the original guard at any point in the recursive algorithm (except for Dirac
deltas, where we additionally need to be able to solve the equation l = r). In-
tuitively, the recursive algorithm recurses, maintaining the invariant, until the
original guard can be either easily written in a linear shape given the invariant,
or it can be determined that linearization is not supported.

We start the recursion with p = 1, l = e and r = 0 such that the invariants
are satisfied.

One invocation of the recursive algorithm performs the following case dis-
tinction on the shape of l:

– Case l = l1 + · · ·+ ln:
The summands are partitioned according to whether x occurs free in them.
In case only one summand li has this property, the algorithm recurses with
p′ = p, l′ = li and r′ = r − li. Otherwise, if l − r can be written as a
quadratic polynomial a · x2 + b · x + c, the algorithm performs a symbolic
case split on a = 0: It recurses with l′ = b · x + c, r′ = r and multiplies
the result by [a = 0]. Additionally, it creates symbolic expressions for the
discriminant d = b2−4ac and the two roots z1 = (−b−

√
d)/(2·a), z2 = (−b+√

d)/(2 · a). From those expressions, an appropriate expression handling the
nondegenerate quadratic can be built using moderately complex expressions
with Iverson brackets/Dirac deltas depending at most linearly on x. (The
related case of an arbitrary even power is discussed below in more detail.
This should clarify how this expression is built.) This expression is computed
(for [e 6= 0], [e = 0] and δ(e), this involves additional recursive calls with
l′ = x, r′ = z1,2), multiplied by [a = 0] and added to the expression handling
the degenerate case.

– Case l = l1 · · · ln:
The summands are partitioned according to whether x occurs free in them.
In case only one summand li has this property, the algorithm performs a
symbolic case split on 0 = L := l1 · · · li−1 · li+1 · · · ln (by encoding both
branches symbolically and multiplying them with the appropriate Iverson
brackets [L = 0] and [L 6= 0] respectively, both not depending on x): For
L = 0, the condition reduces to an Iverson bracket/Dirac delta of the original
kind with an expression of −r. As −r does not depend on x, such guards
have no non-linear dependencies on x. For L 6= 0, the algorithm recurses
with p′ = p · L, l′ = li and r′ = r/L. Linearization is not performed for
(non-polynomial) constraints with more than one x-dependent factor.

– Case l = ll21 , 0 > l2 constant :
The algorithm computes the expression i = l−l21 and performs a symbolic
case split on r = 0. For r 6= 0, the algorithm recurses with p′ = −p · r · i,
l′ = l′,r′ = r−1. For r = 0, the result depends on the kind of guard under
consideration. For [e ≤ 0], guard linearization is applied recursively to the



expression [p · i ≤ 0]. For [e 6= 0], the result is given by 1 and for [e = 0] it is
0. (This exploits the fact that the inverse of a real number is never zero.)

– Case l = ln1 , n even integer :
The algorithm first computes symbolic expressions for the two roots z2 =
r1/n, z1 = −z2. The result depends on the kind of guard under consideration.
• For [e ≤ 0]: Constraint linearization is performed recursively on [0 ≤ p].

The algorithm performs a symbolic case split on the result. For 0 ≤ p,
the algorithm recurses with p′ = −1, l′ = l1, r

′ = z1 and p′′ = 1, l′′ =
l1, r

′ = z2, multiplies the results (in order to get an appropriate ex-
pression describing the constraint that l1 is between the two roots) and
multiplies with a factor [r ≥ 0] (in order to ensure that the subexpres-
sions z1 and z2 are well-formed). For p < 0, the algorithm recurses with
p′ = 1, l′ = l1, r

′ = z1 and p′′ = −1, l′′ = l1, r
′′ = z2 adds the results

(in order to get an appropriate expression describing the constraint that
l1 is not strictly inbetween the two roots), after multiplying the second
summand with [z2 6= 0] (in order to avoid double-counting a root at 0)
and multiplies with a factor [0 < r] (in order to ensure that the subex-
pressions z1 and z2 are well-formed) finally, the expression [r ≤ 0] is
added as a summand (as all even powers are at least 0).

• For [e 6= 0] and [e = 0], the algorithm recurses with l′ = l1, r
′ = z1

and l′′ = l1, r
′′ = z2, multiplies/adds (avoiding double-counting) the

results respectively, and multiplies with a factor [0 ≤ r]. For [e 6= 0], the
algorithm finally adds a summand [r < 0]

– Case l = ln1 , n odd integer:
The algorithm performs a symbolic case split on 0 ≤ r. For 0 ≤ r, the
algorithm recurses with p′ = p, l′ = l1 and r′ = r1/n. For r < 0, the
algorithm recurses with p′ = p, l′ = l1 and r′ = −(−r)1/n (this is necessary
because the simplifier never considers power expressions with negative base
and fractional exponent well-formed).

– Case l = l
m/n
1 ,m, n integers:

The algorithm recurses on p′ = p, l′ = l1, r
′ = rn/m and multiplies the result

with [0 ≤ r] (in order to make sure rn/m is well-formed). For [e ≤ 0], the
algorithm additionally adds a summand p′ · [r < 0] where p′ is the result
of running constraint linearization recusively on [p < 0]. For [e < 0], the
algorithm additionally adds a summand [r < 0].

– Case l = x:
For Iverson brackets, the algorithm can simply return the precise expressions
which are known to be equivalent to the original guards due to the invariants,
as those already have the required shape.
For Dirac deltas, the sum simplifies, as the only possible value for x′ is
r, which does not depend on x, and hence the remaining Dirac delta has
a constraint expression of the right shape. The only term in the invariant
which is potentially problematic is [ ∂∂xe = 0] · δ(e). Intuitively, our approach

will be to solve the equation ∂
∂xe = 0 for x. Then we can substitute x for

its solution within δ(e), which makes the Delta completely independent of
x. The algorithm simply calls constraint linearization recursively on [ ∂∂xe =



0] and distributes products over sums and simplifies the result. Then the
algorithm iterates over all summands of the resulting expression. For each
summand s, the algorithm iterates over all factors and tries to find an Iverson
bracket of the shape [x−e′ = 0]. The algorithm then computes s ·δ(eJe′/xK).
All of these expressions are then added together to form the expression
e′′. In case the algorithm is not able to determine a suitable e′ for some
summand, guard linearization fails. The result is given by linearize([ ∂∂xe =

0]) · δ(x−r)∂
∂x e

+e′′. (Where “linearize” performs guard linearization recursively.)

– Otherwise: If l is not given in any of the discussed shapes, guard linearization
fails.

Continuous Integration If no Dirac delta or uninterpreted function is found in the
integrand, the integral to be evaluated is continuous. In this case, the symbolic
engine first linearizes Iverson bracket constraints in the integration variable. If
all Iverson brackets are successfully linearized, upper bounds and lower bounds
on the integration variable can be extracted by solving a simple linear equation
for each such Iverson bracket. The engine computes symbolic expressions for the
minimum of all upper bounds and the maximum of all lower bounds. (Using the
encoding min(a, b) = [a ≤ b] ·a+ [b < a] · b.) Note that the bounds of integration
can also be −∞ and ∞ respectively.

Once integration bounds have been determined, it suffices to compute an
antiderivative for the remaining factors of the integrand, by the fundamental
theorem of calculus. The symbolic engine applies a number of standard rules for
symbolic integration in order to compute antiderivatives:

– Powers of the integration variable without free integration variable in the
exponent (including the special cases x = x1 and 1 = x0) are handled by the
standard rule∫

dxxy = [y + 1 6= 0] · x
y+1

y + 1
+ [y + 1 = 0] · log x+ C

– Powers that only contain the integration variable in the exponent are handled
by rewriting them from xy to ey·log x. If the exponent z(x) := y · log x is a
linear function in x, PSI applies the standard rule∫

dxez(x) =
ez(x)

z′(x)
+ C.

– The natural logarithm is integrated as∫
dx log(a · x+ b) = a−1 · (a · x+ b) · log(a · x+ b)− x+ C.

– For a > 0,
∫

dx e−a·x2+b·x+c =e
b2

4a
+c 1√

a
· (d/dx)−1 [e−x2

]
(√

a · x− b
2·
√
a

)
+ C

– The antiderivative of log(x)y/x is given by

[y + 1 = 0] · log(log(x)) + [y + 1 6= 0] · log(x)y+1

y + 1
.



– For Γ (a, z) =
∫
R dt[z ≤ t] · ta−1 · e−t and n a positive integer constant,∫

dx log(x)n = (−1)n · Γ (1 + n,− log(x)) + C.

– For a > 0,
∫

dx (d/dx)−1 [e−x2

](a · x + b) = 1
a

(d/dx)−1 [e−x2

](a · x + b) · (a · x +

b)− e−(a·x+b)2 + C

– The antiderivative of a Gaussian times its own antiderivative is evaluated
via partial integration.

– If the integrand has the form xn · f(x) for some positive integer n, and the
symbolic evaluation engine is able to find an antiderivative F (x) for f(x) as
well as for n · xn−1 · F (x), the antiderivative for the integrand is computed
via partial integration as∫

dxxn · f(x) = xn · F (x) +

∫
dxn · xn−1F (x)

. All expressions encountered in this fashion are tracked, and if a linear
relation is discovered for an antiderivative, it is computed by solving the
corresponding linear equation.

The antiderivatives are then evaluated at the computed bounds. This possibly
necessitates evaluating a limit in case one or more of the bounds is infinite. We
implemented a number of standard rules to evaluate limits and remove them
from the final distribution expression.

Sums and Products of Terms If the integrated term is a sum, the symbolic
integration engine attempts to integrate each summand separately and pulls all
successfully integrated summands out of the integral. If the integrated term is a
product, the symbolic integration engine pulls out all factors that do not contain
the integration variable before continuing the integration.

Evaluating Limits We implemented a number of simple rules to evaluate limits.
For example, for a sum, some summands will have a finite limit, some summands
will go to ∞ and some summands will go to −∞. To compute a limit, more
case splits may become necessary. For example limx→∞ e−a·x

2

where a does not
depend on x is 1 if a is zero,∞ if a is negative and 0 if a is positive. The necessary
case splits are performed using Iverson brackets.

In case the engine is able to evaluate all necessary limits and they are finite
in all cases, the final result is then the product of an Iverson bracket checking
that the lower bound is at most the upper bound times the difference of the
antiderivative evaluated at the upper and lower bound respectively.

D Benchmarks

We selected programs from those that are distributed with the existing R2 [39]
and Infer.NET [34] inference systems. R2 benchmarks include:



– BurglarAlarm: Finds the probability of burglary, given that the alarm
sounded.

– ClinicalTrial1: Find if a new medical treatment is effective given the ob-
servations of its outcome on the experimental and control groups.

– CoinBias: Finds the bias of a biased coin given the toss observations.

– DigitalRecognition: Recognizes numerical digits from handwritten notes.

– Grass: Finds the probability of raining, given that the grass is wet.

– HIV: Estimates the parameters of a linear HIV dynamical model from data.

– LinearRegression1: Computes a best fit line given data observations.

– NoisyOR: Finds the posterior distribution of a node’s value (computed as
the noisy-or function of the values of the node’s parents) in a directed acyclic
graph.

– SurveyUnbias: Computes a gender bias for a survey report, models popu-
lation with a Gaussian distribution.

– TrueSkill: Computes the skills of players in a series of games, given the
outcomes of these games.

– TwoCoins: Finds the marginal distributions, two fair coins, given that not
both tosses resulted in heads.

Infer.NET Fun language benchmarks include:

– AddFun/Max: Computes a maximum of Gaussian variables.

– AddFun/Sum: Computes a sum of Gaussian variables, with a filter.

– BayesPointMachine: Training a Bayes point machine.

– ClickGraph: Finds the relevance of a web page from the sequence of a user’s
clicks.

– ClinicalTrial2: Find if a new medical treatment is effective given the obser-
vations of its outcome on the experimental and control groups. Differs from
the R2 version in the parameters and the query.

– Coins: Two coins example. The query is the full joint posterior distribution.

– Evidence/Model1: Tossing a single coin, with a prior evidence that influ-
ences whether the coin is tossed.

– Evidence/Model2: Tossing two coins, with a a prior evidence that deter-
mines whether two or one coins are tossed.

– LearningGaussian: Learning mean and variance of a Gaussian distribution
from a set of data points.

– MurderMystery: Finds the probability that a person is the murderer given
the weapon.

We elided the benchmarks LDA and MixtureOfGaussians, which use Dirich-
let distributions, which we and Hakaru do not currently support.



Table 3. Comparison of Exact and Interactive Symbolic Inference Approaches.

Benchmark PSI Mathematica Maple Hakaru

BurglarAlarm 0.07 4.57 4.06 0.02
ClinicalTrial1 17.15 – – ××0.54
CoinBias 0.10 t/o t/o 0.02
DigitRecognition 36.97 – – ×6.24
Grass 0.68 7.89 2.00 0.02
HIV 1.14 – – –
LinearRegression1 2.93 – – –
NoisyOr 0.53 118.89 57.72 0.04
SurveyUnbias 1.22 t/o ×585.09 0.23
TrueSkill 0.38 t/o t/o 5.36
TwoCoins 0.04 9.77 0.57 0.01
AddFun/max 0.05 31.66 ×2.02 0.126
AddFun/sum 0.03 9.77 3.89 0.213
BayesPointMachine 1.24 t/o t/o 41.95
ClickGraph 3.56 t/o t/o 2.01
ClinicalTrial2 0.87 t/o t/o 0.72
Coins 0.01 0.58 ××0.46 0.01
Evidence/model1 0.01 0.55 ××0.44 0.01
Evidence/model2 0.01 6.40 ××0.42 0.01
LearningGaussian 15.01 – – –
MurderMystery 0.02 0.93 0.51 0.01

E Comparison with Exact Symbolic Approaches

Table 3 presents the timing results for each benchmark and the tool. Columns
2-5 present time in seconds required to compute the output distribution of each
benchmark. We specifically marked if a benchmark caused a tool to timeout
(t/o), crash (×) or produce a wrong result (××). We ran the timing experiment
on an Intel(R) i7 CPU at 3.40GHz, with 16 GB of RAM, running Linux OS.

F Comparison with Approximate Inference Approaches

Tables 4 and 5 present the comparison of PSI with R2 and Infer.NET approx-
imate inference engines for a subset of the benchmarks. For each comparison
we present columns that represent the name of the benchmark, the results (in
the symbolical domain form) that PSI computed for the probabilistic query, the
result of the alternative approach (R2 and Infer.NET), and the the inference
times of PSI and alternative approaches. We collected inference times of these
approaches from tool diagnostics (and removed the time to set up their analysis).

Precision of Expectation Queries For all benchmarks in Table 4, PSI produces
precise expected values (and does not need to apply approximations). The preci-
sion loss of R2 on Burglar alarm is 20%. For the other benchmarks, this difference



Benchmark Expectation PSI Expectation R2 Time PSI Time R2

BurglarAlarm 2969983/992160802 ≈ 0.002993 . . . 0.0036 70 ms 173 ms

CoinBias 5/12 = 0.416̄ 0.417 100 ms 356 ms

Grass 509/719 ≈ 0.7079 . . . 0.715 680 ms 336 ms

NoisyOR 130307/160000 ≈ 0.8144 . . . 0.814 530 ms 250 ms

TwoCoins (1/3, 1/3) (0.324, 0.336) 40 ms 108 ms

Table 4. R2 Benchmark Precision and Analysis Time

Benchmark Distribution PSI Distribution Infer.NET

BurglarAlarm (2969983 · δ(1− b) + 989190819 · δ(b))/992160802 Bernoulli(0.002995)

ClickGraph 6(s+3)5

3367 · [0 ≤ s] · [s ≤ 1] Beta(1.625, 1)

ClinicalTrial
900/102 · c · (1− c)4 · t4 · (1− t)· (Beta(5,2), Beta(2,5))

(77 · δ(1− e) + 25 · δ(e)) Bernoulli(0.755))

AddFun/max
√

2/π · (d/dx)−1[e−x
2
](r/
√

2) · e−r
2/2 Gauss(0.56, 0.68)

AddFun/sum (2 ·
√
π)−1 · e−r

2/4 Gauss(0, 2)

MurderMystery (9 · δ(1− p) + 560 · δ(p))/569 Bernoulli(0.0158)

Benchmark Time PSI Time Infer.NET

BurglarAlarm 70 ms 14 ms

ClickGraph 3.56 s 20 ms

ClinicalTrial 870 ms 21 ms

AddFun/max 50 ms 4 ms

AddFun/sum 30 ms 4 ms

MurderMystery 20 ms 1 ms

Table 5. Infer.NET Benchmark Precision and Analysis Time.

is smaller than 3%. For TwoCoins, R2 is not able to find equal expectations even
though the two outputs have the same marginal distribution. With an exception
of NoisyOr, both tools have similar inference times.

Precision of Posterior Distribution Queries For all benchmarks in Table 5, PSI
produces precise results PSI was able to compute precise closed-form expressions
for all output distributions. For three examples (BurglarAlarm, GaussSum, and
MurderMystery) Infer.NET computes the almost the same distributions (with
numerical error of distribution parameters less than 0.01%). For ClinicalTrial,
Infer.NET produces the distributions of two independent variables. Table 5 con-
tains the joint distribution from which these marginals can be immediately de-
rived. Infer.NET produces less precise approximate distributions for ClickGraph
and AddFun/max.
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